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Abstract A strip of radius r in the hyperbolic plane is the set of points within distance r of a given
geodesic. We define the density of a packing of strips of radius r and prove that this density cannot
exceed

S(r) =
3
π

sinh r arccosh
(

1 +
1

2 sinh2 r

)
.

This bound is sharp for every value of r and provides sharp bounds on collaring theorems for simple
geodesics on surfaces.
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1. Introduction

A strip packing of the hyperbolic plane H
2 is a set of isometric copies of a strip of radius

r whose interiors are disjoint. It is well known that one cannot define the density of such
a packing by considering its density within discs of fixed centre whose radii tend to ∞ [2].
To circumvent this problem, one defines a local density by partitioning H

2 into finite-area
regions {Ri} and then defining, for each i, the local density ρi = vol(P ∩ Ri)/ vol(Ri).
As these densities may differ among regions, density is defined as the least upper bound
of the ρi. In the next section we construct such a partition of H

2 into convex polyhedra
called supporting polyhedra and prove that the local packing density cannot exceed S(r),
defined at (1.1). This bound is sharp for every r and is obtained by generalizing the
method of [2] used to get the bound 3/π for horodisc packings (a horodisc may be
thought of as a degenerate strip of infinite radius). As

1
x

arccosh(1 + 1
2x2) = 1 − 1

24x2 + 3
640x4 − · · ·

is an alternating series with decreasing terms for x � 1, we have

3
π

(
1 − 1

24 sinh2 r

)
< S(r) <

3
π

, sinh(r) > 1,
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and we observe exponential convergence to the horodisc packing bound as r → ∞ in (1.1).
We see this convergence geometrically by normalizing so that some finite point of the
hyperbolic plane remains a fixed point of tangency of two different strips. On the other
hand, for r small we have

S(r) ≈ 6
π

r log
1
r

→ 0 as r → 0,

and so thin strips do not pack well in the hyperbolic plane.
In comparison, optimal disc packings are known only for the special values cosh r =

1
2 sin(π/p), p � 7, where the symmetry group is the (2, 3, p)-hyperbolic triangle group.

The symmetry group Γ (P) of a strip packing P is the group of orientation-preserving
isometries which permute the members of P. This group is discrete whenever |P| � 2.
We are generally interested in the case where Γ (P) also has co-finite area and acts
transitively on P, in which case we refer to P as a lattice packing. For these packings
it is natural to let the {Ri} be the translates of a fundamental domain for Γ (P). The
values of ρi are then clearly all the same, and independent of the fundamental domain
chosen. We refer to the local density defined in this way as the group density of P. When
P is a lattice packing, the group density is also bounded above by (1.1) (Corollary 1.3
below).

Any co-finite-area group leaving a lattice packing P invariant is finite index in Γ (P),
thus if Γ is a co-finite-area group with fundamental domain D acting transitively on a
lattice packing P, then the group density of P is vol(P ∩ D)/ vol(D), where P is the
union of the strips in P.

Let P be a packing of strips of radius r, in H
2. A circle C1 which touches n � 3 of

these strips, but whose interior meets none of them, is said to be a supporting circle.
The circle C with the same centre as C1 and radius increased by r then touches the
axes of these strips. Let C be such a circle and B1, B2, . . . , Bn with axes g1, g2, . . . , gn,
respectively, be the strips touching it, taken anticlockwise around C. Let pi be the arc
joining gi and gi+1, perpendicular to both (here and subsequently indices are taken mod-
ulo n), and let ai be the arc of gi which lies between its intersections with pi−1 and
with pi. We define the supporting polygon PC associated with the supporting circle C

to be the right-angled 2n-gon whose sides are a1, p1, a2, p2, . . . , an, pn (see Figure 1).
This definition has a natural counterpart in the case r = ∞, i.e. when P is a pack-
ing of horoballs. In this case, supporting polygons are defined as polygons spanned by
the boundary points of a collection of horoballs which are tangent to a common cir-
cle. This definition is used by Fejes Tóth [2] to define the local density of horoball
packings. Also in [2, p. 248] it is proved that the interiors of any two supporting poly-
gons are disjoint and that, when the packing is saturated (i.e. that it is not properly
contained in any larger packing), they tessellate the plane. These arguments apply,
essentially unchanged, to prove the same conclusion for supporting polygons in strip
packings.

Associated with each supporting circle C and corresponding supporting polygon PC

we have the local density ρC defined by ρC = vol(P ∩ PC)/ vol(PC). We can now state
our main result.
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Theorem 1.1. For every packing of strips of radius r in H
2 and every supporting

circle C,

ρC � S(r) =
3
π

sinh r arccosh
(

1 +
1

2 sinh2 r

)
. (1.1)

This bound is sharp.

Before proving this result we apply it to hyperbolic surfaces M = H
2/Γ , where Γ is

a torsion-free Fuchsian group. If M contains a strip (an embedded neighbourhood of a
simple closed geodesic, sometimes called a collar), then the area of M is, trivially at
least, that of the strip. Indeed, in [4] it is shown that every simple closed geodesic on M

admits a collar about it of area at least 8/
√

5; refinements can be deduced from [1]. The
bound (1.1) can be used to improve this.

Corollary 1.2. If a hyperbolic surface M = H
2/Γ contains n geodesics of length �i,

i = 1, 2, . . . , n, with pairwise-disjoint neighbourhoods of radius r, then the area of M is
at least

2
3π�

[
arccosh

(
1 +

1
2 sinh2 r

)]−1

,

where � = �1 + · · · + �n.

Proof. Lifting the n collars to H
2 gives a packing P of the plane. If necessary, we

extend this packing to a saturated packing which is still invariant under Γ . Clearly, Γ

permutes the supporting polygons induced by this packing and the only isometry in Γ

which maps a supporting polygon to itself is the identity (since such a map fixes the centre
of the supporting circle). Thus some finite union of supporting polygons is a fundamental
domain of Γ and so the group density of P is bounded by the right-hand side of (1.1).
Mapping down to H

2/Γ again, this also bounds the density of the collar packing in M .
Since these collars have total area 2� sinh r the theorem follows. �

Corollary 1.3. The group density of a lattice packing is at most the right-hand side
of (1.1).

Proof. By Selberg’s Lemma [7], the symmetry group of P has a torsion-free finite-
index subgroup Γ . Since the group density of P equals the proportion of the area of
H

2/Γ which lies in the projection of the strips in P to H
2/Γ , the result follows from

Theorem 1.1 above. �

The existence of embedded collars about geodesics, particularly short geodesics, is an
important geometric fact about surfaces and more general hyperbolic manifolds leading to
the so-called thick and thin decomposition. Lower bounds for collar radii are found from
such things as Jørgensen’s inequality or the Margulis Lemma (see [1,3,4]). Corollary 1.2
provides sharp upper bounds for collaring theorems for surfaces.
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Corollary 1.4. Let M be a hyperbolic surface of genus g > 1 containing a simple
closed geodesic γ of length �. Let r be the radius of the largest embedded collar about
γ. Then

sinh r �
[
2 sinh

(
�

12(g − 1)

)]−1

. (1.2)

Proof. The area of M is 4π(g−1), which must exceed the area bound of Corollary 1.2.
�

The examples used to show that our bounds are sharp (groups generated by reflections
in certain hyperbolic hexagons (see § 2), also show that Corollary 1.2 is optimal for
infinitely many � and r. Indeed it was our attempt to find a higher-dimensional analogue
of Corollary 1.2 (strips become cylinders) that led to the results herein. However, other
than asymptotic results very little is known in higher dimensions (see [5]).

2. Proof of the main theorem

Definition 2.1. For R > 0, |sin θ| > sech R,

�(R, θ) = arcsinh
(

cos θ√
cosh2 R sin2 θ − 1

)
. (2.1)

If a Lambert quadrilateral has acute angle θ and an edge e of length R adjacent to
θ, then �(R, θ) is the length of the edge adjacent to e and opposite θ (readily proved
from [1, Theorem 7.17.1], for example).

Let θ0 = arcsin(sech R). Then the function �(R, θ) is decreasing in [θ0, π − θ0], strictly
convex in [θ0, π/2], and satisfies

�(R, π − θ) = −�(θ). (2.2)

Proof of Theorem 1.1. Let C1 be a supporting circle, touching n strips, and let C,
gi, ai and pi be as above. The supporting polygon P = PC1 has area (n − 2)π and the
intersection of P with the strips has area σ sinh r, where σ is the sum of the lengths of
the ai. Therefore,

ρ = ρC1 =
σ sinh r

(n − 2)π
. (2.3)

This density depends on n, on the radius R of the circle C, and on the arrangement of
the axes g1, . . . , gn around it. We show that, for fixed R and n, ρ is maximized when
the axes are crowded as closely together as possible around C. We then show that ρ is
maximized when R is as small as possible and finally, given this, when n = 3. In this
case the upper bound of the theorem is attained.

We first suppose that n and R are fixed and that C is centred at the origin (in the
disc model). We introduce some more notation, illustrated above for n = 3. Let ri be
the radius of C which meets gi perpendicularly, and let θi be the angle between ri and
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Figure 1. Supporting polygon.

ri+1, measured anticlockwise from ri to ri+1 (so that θi > π is possible). The sum σ of
the lengths of the edges ai is a function of θ1, . . . , θn. Consider the n pentagons bounded
by ri, ri+1, pi and arcs from gi and gi+1. The sum of the lengths of edges of these n

pentagons, which lie in the geodesics gi, with these lengths being counted as negative if
they come from a pentagon corresponding to angle θi > π, is σ (Figure 1).

Each pentagon can be bisected into two Lambert quadrilaterals, and (2.1) and (2.2)
give σ = 2

∑n
i=1 �(R, θi/2). We claim that σ is maximized when, for all but at most

one i, θi/2 = A = A(R) := arcsin(cosh r/ cosh R). This is the minimum possible value of
θi/2 as it is attained when ρ(gi, gi+1) = 2r, i.e. when the corresponding strips touch. To
prove that this gives the maximum we show that σ can be increased if θi > 2A for two
or more values of i, which we may suppose to be i = n and i = j < n. By the symme-
try and convexity properties of �(R, θ), the sum �(φ1) + �(φ2) is maximized, subject to
φ1 + φ2 = φ (2A < φ < π) and φ1, φ2 � A when either φ1 or φ2 is A. It follows that if
we rotate gj clockwise about the origin until θj is reduced to 2A, σ is not decreased
(and, unless θj+1 = 2A, is increased). Having rotated gj in this way, θj+1 is increased,
and so we can then rotate θj+1 clockwise until θj+1 is reduced to 2A. Continuing in
this way we rotate each geodesic in turn clockwise so that it is as near as possible to
its clockwise neighbour. Finally, we rotate gn. By assumption θn > 2A, this increases σ.
Since

∑
θi = π we have thus shown that the maximum value of σ, for given n and R, is

σmax = 2[(n − 1)�(R, A) + �(R, π − (n − 1)A)].
We now maximize this expression by varying R. In fact A is the more convenient

variable to use. Clearly, A ∈ (0, π/n], the maximum value of A being taken when the
strips are symmetrically spread around C. We show that this value of A also maximizes σ.

We have

1
2

d
dA

σmax =
cosh2 r cos((n − 1)A)[(n − 1) sin A cos((n − 1)A) − sin((n − 1)A) cos A]

(cosh2 r sin2((n − 1)A) − sin2 A)
√

cosh2 r − sin2 A
.

https://doi.org/10.1017/S0013091502000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000081


72 T. H. Marshall and G. J. Martin

Figure 2. Densest packing of plane strips (r = 0.5).

The term in square brackets is zero at A = 0 and has derivative

[1 − (n − 1)2] sinA sin(n − 1)A,

which is negative throughout (0, π/n], cos(n − 1)A changes sign once from positive
to negative in (0, π/n] and the other factors are positive. Thus, to show that σmax is
maximized at A = π/n, we need that only show that σmax|A=π/n � limA→0 σmax. That
is we must show ∀r > 0, n � 3,

n arcsinh
(

cos π/n

sinh r

)
− (n − 1) arcsinh

(
1

sinh r

)
+ arcsinh

(
1√

(n − 1)2 cosh2 r − 1

)
� 0.

This is readily verified in the limit as r → ∞, and the derivative of the left-hand side of
the above inequality is

−1
sinh r

[
n cos(π/n) cosh r√
cos2(π/n) + sinh2 r

− (n − 1) +
(n − 1) sinh2 r

(n − 1)2 cosh2 r − 1

]
� −n cos (π/n) − n + 1

sinh r
.

(2.4)
The expression on the right-hand side of (2.4) is negative for n � 5 and an easy
calculation shows that the same is true of the expression on the left-hand side for n � 4.
Consequently, for each n � 3 and r > 0, σ attains its maximum value at A = π/n and
this value is

2n arcsinh
(

cos(π/n)
sinh r

)
.

Thus, by (2.3),

ρ = ρC1 � 2n sinh(r)
(n − 2)π

arcsinh
(

cos(π/n)
sinh r

)
. (2.5)

It is elementary to show that this expression is maximized at n = 3 and this completes
the proof of the inequality (1.1).

Finally, we show by example that the density bound in (1.1) is sharp. For any r > 0
let P be a right-angled hexagon with side lengths alternating between 2r and s, where
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s is determined by the relation cosh s = (cosh 2r/(cosh 2r − 1)) (such a hexagon exists
(see, for example, [6]). Let Γ be the group generated by reflections through the sides
of P , and let P be the set of strips of radius r whose axes are the geodesics containing
the edges of length s of the images of P under Γ (see Figure 2). In the notation of the
foregoing proof, A = π/3 and n = 3, or by direct calculation, the bound (1.1) is attained
by this packing. �
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