Morley's Trisection Theorem : an Extension and its Relation to the Circles of Apollonius.

By W. L. Marr, M.A., B.Sc.

(Read 8th May 1914. Received 1st July 1914).

Introductory Part.

1. In Morley's trisection theorem there are three triads of parallel lines which by their intersection with each other form equilateral triangles. The three lines EF, $\mathrm{E}_{11} \mathrm{~F}_{11}, \mathrm{E}_{22} \mathrm{~F}_{22}$ (v. Taylor and Marr) form one of these triads, and the equations are :-

$$
\begin{equation*}
\text { (EF). } \quad x \sin \alpha_{2}+y \sin \beta_{1}+z \sin \gamma_{1}=0 \tag{1}
\end{equation*}
$$

$\left(\mathrm{E}_{11} \mathrm{~F}_{11}\right) . x \sin \alpha+y \sin \beta_{2}+z \sin \gamma_{2}=0$

$$
\begin{equation*}
\left(\mathrm{E}_{22} \mathrm{~F}_{22}\right) . \quad x \sin \alpha_{1}+y \sin \beta+z \sin \gamma=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{3} \mathrm{~A}, \quad \alpha_{1}=\frac{1}{3} \mathrm{~A}+\frac{2 \pi}{3}, \quad \alpha_{2}=\frac{1}{3} \mathrm{~A}+\frac{4 \pi}{3} \tag{3}
\end{equation*}
$$

and $\beta, \gamma, \beta_{1}, \gamma_{1}$, etc., are similarly defined.
Subtract (2) from (3) and

$$
\begin{equation*}
x \cos \alpha_{2}+y \cos \beta_{1}+z \cos \gamma_{1}=0 \tag{4}
\end{equation*}
$$

Multiply (1) by cose and (4) by sinc, add, and

$$
\begin{equation*}
x \sin \left(\alpha_{2}+\epsilon\right)+y \sin \left(\beta_{1}+\epsilon\right)+z \sin \left(\gamma_{1}+\epsilon\right)=0 \tag{5}
\end{equation*}
$$

(5) is a line parallel to (1), (2), or (3).
ϵ is arbitrarily chosen and temporarily fixed.
(5) will be named $\overline{211}_{\epsilon}$ or simply $\overline{211}$.
2. The line

$$
x \sin \left(\alpha_{2}+\epsilon\right)+y \sin \left(\beta_{1}+\epsilon\right)+z \sin \left(\gamma_{1}+\epsilon\right)=0
$$

or $\overline{211}_{\epsilon}$ is the polar of the point

$$
\left[\sin \left(\alpha_{2}+\epsilon\right), \sin \left(\beta_{1}+\epsilon\right), \sin \left(\gamma_{1}+\epsilon\right)\right]
$$

or (211) ϵ with respect to the imaginary conic $x^{2}+y^{2}+z^{2}=0$.

If the point (211) be given, the corresponding line $\overline{211}$ can be obtained by the following construction :-
(1) Find the isogonal conjugate of (211) and call it Q .
(2) Join AQ to meet BC in X^{\prime}

$$
B Q \text { to meet } C A \text { in } Y^{\prime} \text {, etc. }
$$

(3) Find X the harmonic conjugate of X^{\prime} with respect to BC . So for Y and Z
The line XYZ is $\overline{211}$.
Similarly $\overline{121}$ is obtained from (121)
and $\overline{112} \quad, \quad "(112)$.
3. The point (211) lies on the line

$$
x \sin (\beta-\gamma)+y \sin \left(\gamma-\alpha+\frac{4 \pi}{3}\right)+z \sin \left(x-\beta+\frac{2 \pi}{3}\right)=0
$$

or

$$
x \sin p+y \sin q_{9}+z \sin r_{1}=0
$$

or briefly the line $\overline{p q_{2} r_{1}}$, where

$$
p=\beta-\gamma, q=\gamma-\alpha, \text { etc., } p_{1}=p+\frac{2 \pi}{3}, \text { etc. }
$$

(121) lies on the line $\overline{p_{1} q r_{2}}$,

$$
\begin{equation*}
\text { on } \quad \overline{p_{2} q_{1} r} . \tag{112}
\end{equation*}
$$

The three lines $\overline{p q_{2} r_{1}}$, etc., were first discovered by Mr F. G. Taylor in another connexion and shown to meet in the symmedian point.

Part I.—The First Group of Equilateral Triangles.

4. To form an equilateral triangle three lines are required, viz., $\overline{211}_{\epsilon}, \overline{121}_{\epsilon}, \overline{112}_{\epsilon}$. This triangle would correspond in Morley's diagram, where $\epsilon=0$, to DEF.

In the same diagram

$$
\begin{aligned}
& \mathrm{E}_{11} \mathrm{~F}_{11} \text { is } \overline{022}_{\epsilon}=0 \\
& \mathrm{E}_{22} \mathrm{~F}_{22} \text { is } \overline{100}_{e}=0 .
\end{aligned}
$$

5. The problem is to find $\overline{211 \epsilon}, \sqrt{21_{\epsilon}}, \sqrt{12_{\epsilon}}$. To find these lines a point (111) $)_{\epsilon}$ is required. Call this point R . (v. §6).

AR meets $\overline{p q_{2} r_{1}}$ in (211). [$v . \S(3)$.]
BR meets $\overline{p_{1} q r_{2}}$ in (121).
CR meets $\overline{p_{2} q_{1} r}$ in (112).

Hence by means of (111) the three points (211) $)_{\epsilon}$ etc., are found from which the equilateral triangle $\overline{211}, \overline{121}, \overline{112}$ can be derived. This triangle may be called eDEF, and the point (111) the "primary point" from which it is derived. For eDEF we may write simply DEF.
6. The point (111) $)_{\epsilon}$ or, at length,

$$
\left[\sin \left(\alpha_{1}+\epsilon\right), \sin \left(\beta_{1}+\epsilon\right), \sin \left(\gamma_{1}+\epsilon\right)\right]
$$

lies on the line

$$
x \sin p+y \sin q+z \sin r=0
$$

or, briefly, $\overline{p q r}$, one of a group of three important lines $\overline{p q r}, \overline{p_{1} q_{1} r_{1}}$, $\overline{p_{2} q_{2} r_{2}}$ discovered by Mr Taylor and shown to meet in the point

$$
\left[\sin \left(A+\frac{2 \pi}{3}\right), \sin \left(B+\frac{2 \pi}{3}\right), \sin \left(C+\frac{2 \pi}{3}\right)\right],
$$

or, briefly, $\left(\sin A_{1} \sin B_{1} \sin C_{1}\right)$ one of the points of intersection of the Apollonius circles. This point will be called H_{1}.
7. It will be assumed that ${ }_{\epsilon}$ DEF and $A B C$ are in perspective. The axis of perspective is :-

$$
\left|\begin{array}{ccc}
x & y & z \\
0 & \operatorname{cosec}\left(\beta_{1}+\epsilon\right) & -\operatorname{cosec}\left(\gamma_{1}+\epsilon\right) \\
-\operatorname{cosec}\left(\alpha_{1}+\epsilon\right) & 0 & \operatorname{cosec}\left(\gamma_{1}+\epsilon\right)
\end{array}\right|=0
$$

for eEF meets BC in $\left[0, \operatorname{cosec}\left(\beta_{1}+\epsilon\right),-\operatorname{cosec}\left(\gamma_{1}+\epsilon\right)\right]$ and so for ${ }_{\epsilon} \mathrm{FD}$.

This equation becomes $\Sigma x \sin \left(\alpha_{1}+\epsilon\right)=0$, the equation of the the line $\overline{111}$, which corresponds to the primary point (111) from which the triangle DEF is derived. It will be assumed, without further proof, that the axis of perspective of any equilateral triangle, with ABC , is the line corresponding to the primary point from which that equilateral triangle is derived.

The line $\overline{11}_{\epsilon}$ passes through ($p q r$) for any value of ϵ since $\Sigma \sin \left(\alpha_{1}+\epsilon\right) \sin (\beta-\gamma) \equiv 0$. The characteristic property of ${ }_{\epsilon} \mathrm{DEF}$ is that, for any value of ϵ, the axis of perspective with ABC passes through ($p q r$). In Morley's diagram, the axes of perspective of DEF, $\mathrm{D}_{11} \mathrm{E}_{11} \mathrm{~F}_{11}, \mathrm{D}_{22} \mathrm{E}_{22} \mathrm{~F}_{22}$ with ABC pass through (pqr).

The point (pqr) may be called the source of perspective, or, brietly, the source of ϵ DEF.
8. By operating from three primary points (000), (111), (222) on $\overline{p q r}$, we could reach the three triads of lines [$\overline{100}, \overline{010}, \overline{001}]$, [$\overline{211}$, etc.], [$\overline{022}$, etc.], which, for a given value of ϵ, form a system of equilateral triangles corresponding to Morley's particular system where $\epsilon=0$.

It will be better, however, to be content with (111) on $\overline{p q r}$ and proceed to $p_{1} q_{1} r_{1}$ any point of which has coordinates of the type $\sin \left(\alpha_{2}+\epsilon\right), \sin \left(\beta_{1}+\epsilon\right), \sin (\gamma+\epsilon)$, or, briefly, $(210)_{\epsilon}$.
9. This point (210) will serve as the primary point of another type of equilateral triangle. Call (210) T.

Join AT to cut $\overline{p_{1} q r_{2}}$ in (010) for the coordinates of a point on $\overline{p_{1} q r_{2}}$ are at discretion (121), (202), or (010). (v. §3).
Join BT to cut $\overline{p_{2 q_{1}} r}$ in (220).
Join CT to cut $\overline{p q_{2} r_{1}}$ in (211).
The three points (010), (220), (211) lead to the three corresponding lines from which an equilateral triangle of the type $\mathrm{D}_{02} \mathrm{E}_{21} \mathrm{~F}_{10}$ is formed.

It is interesting to note (i) that $\overline{211}$, a line which is related to A, is obtained from CT, that $\overline{010}$, which is related to B, is obtained from AT, and so for $\overline{200}$, (ii) that $D_{02} \mathrm{E}_{21}$ is inclined at 120° to DE. We shall find later that $\overline{p q r}$ and $\overline{p_{\mathrm{I}} q_{1} r_{1}}$, from primary points on which the triangles $\epsilon_{\epsilon} \mathrm{DEF},{ }_{\epsilon} \mathrm{D}_{02} \mathrm{E}_{21} \mathrm{~F}_{10}$ are derived, are also inclined at 120°.
10. The primary point being (210), the axis of perspective of $\mathrm{D}_{02} \mathbf{F}_{21} \mathrm{~F}_{10}$ with ABC is 210 .
$\overline{210_{\epsilon}}$ passes through ($p_{1} q_{1} r_{1}$) for any value of ϵ.
The characteristic of $\epsilon \mathrm{D}_{02} \mathrm{E}_{21} \mathrm{~F}_{10}$ is that its axis of perspective with A.BC passes through $\left(p_{1} q_{1} r_{1}\right)$, which may be called the source of $D_{02} \mathrm{E}_{21} \mathrm{~F}_{10}$. In Morley's particular system the axes of perspective of $\mathrm{D}_{02} \mathrm{E}_{21} \mathrm{~F}_{10}, \mathrm{D}_{10} \mathrm{E}_{02} \mathrm{~F}_{21}, \mathrm{D}_{22} \mathrm{E}_{10} \mathrm{~F}_{02}$ with ABC pass through ($p_{1} q_{1} r_{1}$).
11. Proceed to $\overline{p_{2} q_{2} r_{2}}$, and take a point on it as primary point, viz. (012). From (012) we can reach the three lines $\overline{12}, 02 \overline{02}, \overline{010}$ which form an equilateral triangle of the type $D_{01} E_{12} F_{20}$.

The axis of perspective is $\overline{012}$.
The source of ${ }_{\epsilon} \mathrm{D}_{01} \mathrm{E}_{12} \mathrm{~F}_{20}$ is $\left(p_{2} q_{2} r_{2}\right)$.

12. Summary.

By operating from primary points (111), (210), (012), we reach three types of triangles DEF, $\mathrm{D}_{03} \mathrm{E}_{21} \mathrm{~F}_{10}, \mathrm{D}_{02} \mathrm{E}_{12} \mathrm{~F}_{20}$, each with a characteristic source. These sources $(p q r),\left(p_{1} q_{1} r_{1}\right),\left(p_{2} q_{2} r_{2}\right)$ are collinear on $\sum_{x \sin } \mathrm{~A}_{1}=0$, which is interpreted as follows. The point $\left(\sin \mathrm{A}_{1}, \sin \mathrm{~B}_{1}, \sin \mathrm{C}_{1}\right)$ lies on $\overline{p q r}, \overline{p_{1} q_{1} r_{1}}, \overline{p_{2} q_{2} r_{2}}$, and may be regarded as $(111) \epsilon^{\prime},(210)_{\epsilon^{\prime \prime}}$, or $(012) \epsilon^{\prime \prime \prime}$. As (111) it will be the primary point of a triangle $\epsilon^{\prime} \mathrm{DEF}$ with source $\overline{p q r}$, as (210) it will be the primary point of another triangle $\epsilon^{\prime \prime} \mathrm{D}_{02} \mathrm{E}_{21} \mathrm{~F}_{30}$ inclined at 120° to DEF with source ($p_{1} q_{1} r_{1}$), as (012) it will be the primary point of $\epsilon^{\prime \prime \prime} \mathrm{D}_{01} \mathrm{E}_{15} \mathrm{~F}_{20}$ with source ($p_{o} q_{q} r_{2}$). But, as we are operating from $\left(\sin A_{1}, \sin B_{1}, \sin C_{1}\right)$, the axis of perspective of any of these three triangles with $A B C$ is $\Sigma x \sin \mathrm{~A}_{1}=0$, on which, therefore, the three sources must lie. ($v . \S 7$).

Part II.-The Second Group of Equilateral Triangles.

13. The primary points, from which the equilateral triangles can be derived, may be exhibited in three triads :-

$$
\begin{aligned}
& (000),(111),(222) \text { on } \overline{p q r} \\
& (210),(021),(102) \text { on } \overline{p_{1} q_{1} r_{1}} \\
& (012),(120),(201) \text { on } \overline{p_{2} q_{2} r_{2}} .
\end{aligned}
$$

The secondary points, which correspond to the sides of the equilateral triangles, are :-

$$
\begin{aligned}
& (211),(022),(100) \text { on } \overline{p q_{2} r_{2}} \\
& \text { (121), (202), (010) on } \overline{p_{1} q r_{2}} \\
& \text { (112), (220), (001) on } \overline{p_{2} q_{1} r} .
\end{aligned}
$$

The number of groups is 27 , and there remain, therefore, three triads:--

$$
\begin{aligned}
& (200),(011),(122) \text { on } \overline{p q_{1} r_{2}} \\
& (020),(101),(212) \text { on } \overline{p_{2} q r_{1}} \\
& (002),(110),(221) \text { on } \overline{p_{1} q_{2} r .}
\end{aligned}
$$

These lines $\overline{p q_{1} r_{2}}$, etc., have been shewn by Mr Taylor to pass through the point $\left[\sin \left(A+\frac{4 \pi}{3}\right)\right.$,etc. $]$, or, briefly, $\left(\sin A_{2}, \sin B_{2}, \sin C_{2}\right)$, the other point of intersection of the circles of Apollonius. This point will be called H_{2}.

It will be shewn later that, like the $\overline{p q r}$ lines, these $\overline{p q_{1} r_{3}}$ lines are inclined to each other at 120°, and that this property is reflected in the inclination to each other of the equilateral triangles to which these $\overline{p q_{1} r_{2}}$ lines are related.
14. As primary point take (200) on $\overline{p q_{1} r_{2}}$ and call it V .

AV meets $\overline{p q_{2} r_{1}}$ in (100).
BV meets $\overline{p_{2} q_{1} r}$ in (220).
CV meets $\overline{p_{1} q r_{2}}$ in (202).
The sides of the equilateral triangles derived from (200) are thus $\overline{100}, \overline{220}, \overline{20 \%}$. This is the triangle $\epsilon \mathrm{D}_{11} \mathrm{E}_{10} \mathrm{~F}_{01}$. The triangle has to be read in the clockwise rotation. The transposition of E and F will be understood if it is noticed that AV meets its proper line $\overline{p q_{2} r_{1}}$, whereas BV meets $\overline{p_{2} q_{1} r}$, a line related to C and CV meets $\overline{p_{1} q r_{2}}$, a line related to B .

The primary point being (200), the axis of perspective with ABC is $\overline{200}$.

The source of ${ }_{\epsilon} \mathrm{D}_{11} \mathrm{E}_{10} \mathrm{~F}_{01}$ is $\left(p q_{1} r_{2}\right)$.
In Morley's particular system the axes of perspective of $\mathrm{D}_{11} \mathrm{E}_{10} \mathrm{~F}_{01}, \mathrm{D}_{22} \mathrm{E}_{21} \mathrm{~F}_{12}$, and $\mathrm{D}_{00} \mathrm{E}_{03} \mathrm{~F}_{20}$ with ABC pass through ($p q_{1} r_{2}$).
15. Operating from (020) on $\overline{p_{2} q r_{1}}$ as primary point, we reach the triangle ${ }_{\epsilon} \mathrm{D}_{01} \mathrm{E}_{11} \mathrm{~F}_{10}$. The sides of this triangle are inclined at 120° to those of the previous, and ${\overrightarrow{p_{2} q r_{1}}}_{2}, \overrightarrow{p q_{2} r_{2}}$ are inclined at the same angle, as will be proved later.

The axis of perspective is $\overline{020}$, and the source is $\left(p_{2} q r_{1}\right)$.
16. From (002) on $\overline{p_{1} q_{2} r}$ we reach ${ }_{\epsilon} \mathrm{D}_{10} \mathrm{E}_{01} \mathrm{~F}_{11}$. The source is ($p_{1} q_{z} r$).
17. The vertices of the nine equilateral triangles, if we take Morley's particular system, in this second group are distinct, but each vertex has already appeared as a vertex in the first group. The sources of the three types of triangles in the second group are collinear on $\Sigma x \sin A_{2}=0$, which is interpreted thus:

$$
\left(\sin \mathrm{A}_{2} \sin \mathrm{~B}_{2} \sin _{2}\right) \text { lies on } \overline{p q_{1} r_{2}}, \overline{p_{2} q r_{1}}, \overline{p_{1} q_{2} r},
$$

and may ve regarded as $(200)_{\epsilon^{\prime}}$ or $(020)_{\epsilon^{\prime \prime}}$ or $(002) \epsilon_{\epsilon^{\prime \prime}}$. It will thus give rise to three different equilateral triangles inclined to each other at 120°. As the axis of perspective with ABC of any of these is $\Sigma x \sin \mathrm{~A}_{2}=0$, the line which corresponds to the primary point ($\sin \mathrm{A}_{2}$, etc.), it follows that the three sources must lie on Sxsin $\mathrm{A}_{2}=0$ since each source lies on the axis of perspective.

Part III.-The Geometry of $\overline{100}_{c}$ and the nine pqr lines.
18. The line $\overline{100}_{\epsilon}$ or $E_{\epsilon 22} \mathrm{~F}_{22}$ is

$$
x \sin \left(\alpha_{1}+\epsilon\right)+y \sin (\beta+\epsilon)+z \sin (\gamma+\epsilon)=0 .
$$

If $\overline{100}_{\epsilon}$ meet BC in K , the coordinates of K are $0,-\sin (\gamma+\epsilon)$, $\sin (\beta+\epsilon)$. If K be found, $\overline{100_{\epsilon}}$ is a line through K inclined at $(\gamma-\beta)$ to CB. It will serve us better, however, to find X , where X is on $B C$ and $A X$ is the line isogonal to $A K$.

Construction for X. (Fig. 1).

Fig. 1.
Draw the Apollonius circle through A. Make the angle $\mathrm{CBP}=\beta+\epsilon$ and angle $\mathrm{BCP}=\gamma+\epsilon, \quad \mathrm{Q}$ and Q^{\prime} are the intersections of the circle BPC and the Apollonius circle.
$P Q$ meets $B C$ in $X . \quad P Q^{\prime}$ meets $B C$ in X^{\prime}.

$$
\begin{aligned}
\begin{aligned}
\frac{B X}{X C} & =\frac{B X / B Q}{X C / C Q} \cdot \frac{B Q}{C Q}=\frac{\sin B Q X}{\sin C Q X} \cdot \frac{\sin C}{\sin B} \\
& =\frac{\sin (\gamma+\epsilon)}{\sin (\beta+\epsilon)} \cdot \frac{\sin C}{\sin B}
\end{aligned} .
\end{aligned}
$$

$$
\text { (for } \mathrm{BQX}=\pi-\mathrm{BQP}=\pi-\mathrm{BCP}=\pi-(\gamma+\epsilon)
$$

$$
\mathrm{CQX}=\mathrm{PBC}=\beta+\epsilon,
$$

and Q lies on the Apollonius circle,

$$
\begin{gathered}
\therefore \mathrm{BQ} / \mathrm{CQ}=\sin \mathrm{C} / \sin \mathrm{B} \\
\therefore \mathrm{BX} \sin \mathrm{~B} / \mathrm{XC} \sin \mathrm{C}=\sin (\gamma+\epsilon) / \sin (\beta+\epsilon),
\end{gathered}
$$

or if $0, y, z$ be the co-ordinates of X,

$$
z / y=-\sin (\gamma+\epsilon) / \sin (\beta+\epsilon) .
$$

Similarly, if X^{\prime} be $0, y^{\prime}, z^{\prime}$,

$$
z^{\prime} / y^{\prime}=\sin (\gamma+\epsilon) / \sin (\beta+\epsilon),
$$

and, therefore, $\left(\mathrm{AB}, \mathrm{XX}^{\prime}\right)$ is harmonic.
Find AK, the line isogonal to AX with K on BC. As the tangent at P is inclined at $(\gamma-\beta$) to $C B$, draw through K the line parallel to this tangent, and $\overline{100_{\epsilon}}$ is obtained.
19. The line $\overline{p_{q r}}$ is $\Sigma x \sin (\beta-\gamma)=0$. This line, as we have seen, is the locus of the primary points of the triangle ${ }_{\epsilon} \mathrm{DEF}$ for any value of ϵ. In Morley's particular system Mr Taylor has shown that it is the "line of poles" of DEF, $D_{11} E_{11} F_{11}, D_{22} \mathrm{~F}_{22} \mathrm{~F}_{22}$. In the previous construction for $\overline{100} \boldsymbol{l e t} \epsilon=-\alpha$. (Fig. 2).

Fig. 2.

The angle $\mathrm{CBP}=\beta-\alpha$ and $\mathrm{BCP}=\gamma-\alpha$.
The angle $\mathrm{BQ}^{\prime} \mathrm{C}=(\beta-\alpha+\gamma-\alpha)=\frac{\pi}{3}-\mathrm{A}$.
Now Q^{\prime} lies on the Apollonius circle through A, and since $B Q^{\prime} \mathrm{C}=\frac{\pi}{3}-\mathrm{A}$, it is $\left(\mathrm{H}_{1}\right)$ one of the two points of intersection of the three Apollonius circles, and its coordinates are $\sin A_{1} \sin B_{1} \sin C_{1}$. (v. §6).

The coordinates of X^{\prime}, the meet of PQ^{\prime} and $\mathrm{BC},(v . \S 18)$ are $0, \sin (\beta-\alpha), \sin (\gamma-\alpha)$ or $0,-\sin (\alpha-\beta), \sin (\gamma-\alpha)$, and hence X^{\prime} is a point on $\Sigma x \sin (\beta-\gamma)=0$ or $\overline{p q r}$. But $\mathrm{Q}^{\prime}\left(\right.$ or $\left.\mathrm{H}_{1}\right)$ is also a point on $\overline{p q r}$.
$\therefore \overline{p q r}$ is the line $Q^{\prime} \mathrm{X}^{\prime}$.
20. The line $\left.\overline{\left(p_{q}\right)}\right)_{\theta}$ is $\Sigma x \sin (\beta-\gamma+\theta)=0$. Rotate the $\mathbf{C P}$ of Fig. 2 to the right through an angle θ to the position $\mathbf{C P}_{\theta}$.

The angle $\mathrm{CBP}_{\theta}=\beta-\alpha-\theta$,
and the angle $\mathrm{BCP}_{\theta}=\gamma-\alpha+\theta$.
P_{θ} lies on the circle BPC which intersects the Apollonius circle in Q^{\prime} or H_{2}.

Join $\mathrm{P}_{\theta} \mathrm{Q}^{\prime}$ to meet BC in $\mathrm{X}^{\prime}{ }_{\theta}$.
The coordinates of $\mathrm{X}_{\theta}^{\prime}(v . \S 18)$ are
or

$$
0, \sin (\beta-\alpha-\theta), \sin (\gamma-\alpha+\theta),
$$

$$
0,-\sin (\alpha-\beta+\theta), \sin (\gamma-\alpha+\theta),
$$

and, therefore, $\mathrm{X}_{\theta}^{\prime}$ is a point on $\overline{(p q r)_{\theta}}$.
Since $\triangle \sin \mathrm{A}_{1} \sin (\beta-\gamma+\theta) \equiv 0, \mathrm{Q}^{\prime}$ (or H_{1}) is also a point on $\overline{(p q r})_{\theta}$ and hence $Q^{\prime} X_{\theta}^{\prime}$ is the line $(\overline{p q r})_{\theta}$.
21. The angle between $Q^{\prime} \mathbf{X}^{\prime}$ and $Q^{\prime} \mathbf{X}_{\theta}^{\prime}$ is $\mathrm{PQ}^{\prime} \mathbf{P}_{\theta}=\mathrm{POP}_{\theta}=\theta$, Thus $\overline{(p q r)})_{\theta}$ is inclined at an angle θ to $\overline{p q r}$. When $\theta=\frac{2 \pi}{3}$, $\overline{(p q r})_{\theta}$ becomes $\bar{p}_{1} q_{1} r_{1}$, and hence $\overline{p_{1} q_{1} r_{1}}$ and $\overline{p q r}$ are inclined to each other at 120°, and so for $\overline{p_{2} q_{2} r_{3}}$ and $\overline{p_{1} q_{1} r_{1}}$.
22. Any line through \mathbf{H}_{1} is of the form $\Sigma x \sin (\beta-\gamma+\theta)=0$. When $\theta=\gamma-\beta$ this equation becomes

$$
y \sin (2 \gamma-\alpha-\beta)+z \sin (\gamma+\alpha-2 \beta)=0
$$

or

$$
\begin{gathered}
y \sin \left(\mathrm{C}-\frac{\pi}{3}\right)+z \sin \left(\frac{\pi}{3}-\mathrm{B}\right)=0, \\
y \sin _{1}-z \sin \mathrm{~B}_{1}=0
\end{gathered}
$$

or
This is the line AH_{1}, and thus AH_{1} is inclined at $(\gamma-\beta)$ to $\overline{p q r}$.
23. The line $\overline{p q_{1} r_{2}}$ is

$$
x \sin (\beta-\gamma)+y \sin \left(\gamma-\alpha+\frac{2 \pi}{3}\right)+z \sin \left(\alpha-\beta+\frac{4 \pi}{3}\right)=0 .
$$

This line is the locus of the primary points of the triangle ${ }_{6} \mathrm{D}_{12} \mathrm{E}_{10} \mathrm{~F}_{01}$. In Morley's particular system Mr Taylor has shown that it is the "line of poles" of $D_{11} E_{10} F_{01}, D_{22} \mathrm{E}_{21} \mathrm{~F}_{12}, \mathrm{DE}_{02} \mathrm{~F}_{20}$.

In the construction for $\overline{100}_{\varepsilon}(v . \S 18)$ let

$$
\epsilon=\frac{2 \pi}{3}-\alpha \quad \text { (Fig. 3). }
$$

Fig. 3.
The angle

$$
\mathrm{BPC}=\left(\frac{2 \pi}{3}+\beta-\alpha\right)+\left(\frac{2 \pi}{3}+\gamma-\alpha\right)-\pi=\frac{2 \pi}{3}-\mathrm{A} .
$$

The circle BPC cuts the Apollonius circle in Q^{\prime} on the side of $B C$ remote from P.

The angle

$$
\mathrm{BQ}^{\prime} \mathrm{C}=\pi-\left(\frac{2 \pi}{3}-\mathrm{A}\right)=\frac{\pi}{3}+\mathbf{A} .
$$

Hence Q^{\prime} is the second point of intersection of the three A pollonius circles, viz. H_{2}, and its coordinates are $\sin \mathrm{A}_{2}, \sin \mathrm{~B}_{2}, \sin \mathrm{C}_{2}$. (v. §13).

If X^{\prime} is the meet of PQ^{\prime} and $\mathrm{BC}, \mathrm{QX}^{\prime}$ is the line $\overline{\left(p q_{1} r_{2}\right)}$. (cf. § 19).
24. The line $\overline{\left(p q_{1} r_{2}\right)_{\theta}}$ is
$x \sin (\beta-\gamma+\theta)+y \sin \left(\gamma-\alpha+\frac{2 \pi}{3}+\theta\right)+z \sin \left(\alpha-\beta+\frac{4 \pi}{3}+\theta\right)=0$.
By a proof similar to that of $\$ 21$ it can be shown that $\overline{\left(p q_{1} r_{2}\right)_{\theta}}$ and $\overline{p q_{1} r_{2}}$ are inclined at an angle θ.

Hence (cf. §21) $\overline{p q_{1} r_{2}}, \overline{p_{1} q_{2} r}, \overline{p_{2} q r_{1}}$ are inclined to each other at 120°.
25. AH_{2} is inclined to ${\overline{p q_{1}}{ }_{2}}$ at $(\gamma-\beta)$ (cf. $\S 22$).
26. As AH_{1} is inclined at $(\gamma-\beta)$ to $\overline{p q r}$ and AH_{2} has the same inclination to $\overline{p q_{1} r_{2}}$, it follows that $\overline{p q r}$ and $\overline{p q_{1} r_{2}}$ make with each other an angle equal to $\mathrm{H}_{1} \mathrm{AH}_{2}$.

Hence $\overline{p q r}$ and $\overline{p q_{1} r_{2}}$ intersect on the circumference of the Apollonius circle through A.
$\overline{p q r}$ and $\overline{p q_{i} r_{2}}$ meet on the Apollonius circle (A).
$\begin{array}{lllll}\overline{p_{1} q_{1} r_{1}} \\ p_{2} q_{2} r_{2} & \text { and } \\ p_{1} q_{2} r & " & " & " & " \\ p_{2} q r_{1} & " & " & " & "\end{array}$ $\overline{p q r}$ and $\overline{p_{2} q r_{11}}$, etc., meet on the Apollonius circle (B).
$\overline{p q r}$ and $\overline{p_{1} q_{2} r}, \quad " \quad, \quad \geqslant$ (C). (v. Fig. 5.)
27. The line $\overline{p q_{2} r_{1}}$ is

$$
x \sin (\beta-\gamma)+y \sin \left(\gamma-\alpha+\frac{4 \pi}{3}\right)+z \sin \left(\alpha-\beta+\frac{2 \pi}{3}\right)=0 .
$$

147

This line is the locus of the points (211)e which correspond to the lines $\overline{211_{\epsilon}}$ or ϵ EF. In Morley's particular system Mr Taylor has shown that it is the "line of poles" of a certain triad of nonequilateral triangles.

In the construction for $\overline{100_{\varepsilon}}(v . \S 18)$ let

$$
\epsilon=\frac{4 \pi}{3}-\alpha \quad \text { (Fig. 4). }
$$

Fig. 4.
The angle

$$
\mathrm{BPC}=\pi-\left[\left(\frac{4 \pi}{3}+\beta-\alpha\right)+\left(\frac{4 \pi}{3}+\gamma-\alpha\right)-2 \pi\right]=\mathrm{A} .
$$

Hence P lies on the circumcircle of ABC and the circle BPC or ABC meets the Apollonius circle in A , and the tangent at P is parallel to EF.

A now takes the place of Q in the construction for $\overline{100_{\epsilon}}$ and the coordinates of X , the point of intersection of PA and BC , are (v. §18)
or

$$
\begin{gathered}
0,-\sin \left(\frac{4 \pi}{3}+\beta-\alpha\right), \sin \left(\frac{4 \pi}{3}+\gamma-\alpha\right), \\
0, \sin \left(\alpha-\beta+\frac{2 \pi}{3}\right), \sin \left(\gamma-\alpha+\frac{4 \pi}{3}\right)
\end{gathered}
$$

X , therefore, is the harmonic conjugate of the meet of $\overline{p_{q_{2}} r_{1}}$ and BC.

Similarly Y is the harmonic conjugate of the meet of $\overline{p q_{2} r_{1}}$ and CA. So for Z.

The construction for $\overline{p q_{2} r_{1}}$ is, then, as follows:- (v. Fig. 4).
Find P the point of contact of the upper tangent to the circle ABC, which is parallel to EF. Let PA meet BC in X, etc. Let X^{\prime} be the harmonic conjugate of X with regard to BC , etc.

The line $X^{\prime} Y^{\prime} Z^{\prime}$ is $\overline{p q_{2} r_{1}}$.
The three lines $\bar{p} \bar{q}_{2} r_{1}, \overline{p_{1} q r_{2}}, \overline{p_{2} q_{1} r}$ are obtained in the same manner from three points P, which lie on the circumference of ABC , and are the vertices of an equilateral triangle with sides parallel to those of DEF.
28. Let the coordinates of P on the circumcircle be $1 / \alpha, 1 / \beta, 1 / \gamma$. Since the circumcircle is the isogonal conjugate of the line at infinity, (α, β, γ) is a point on the line at infinity, and, therefore, $\alpha \sin A+\beta \sin B+\gamma \sin C=0$. The line $X^{\prime} \mathrm{Y}^{\prime} Z^{\prime}$ can easily be proved to have the equation $x a+y \beta+z \gamma=0$, and therefore must pass through the symmedian point $(\sin \mathrm{A}, \sin \mathrm{B}, \sin \mathrm{C})$ since

$$
x: y: z=\sin \mathrm{A}: \sin \mathrm{B}: \sin \mathrm{C}
$$

satisfies $\Sigma x \alpha=0$.
Take any point on $X^{\prime} Y^{\prime} Z^{\prime}$, the coordinates of which are $(211)_{\epsilon}$, but which may now be named $x_{0} y_{0} z_{0}$. Just as the point (211) corresponds to the line $\overline{211}$, so the point $\left(x_{0} y_{0} z_{0}\right)$ corresponds to

$$
x x_{0}+y y_{0}+z z_{0}=0 .
$$

But since

$$
\left(x_{0} y_{0} z_{0}\right) \text { is on } \Sigma x \alpha=0,
$$

$$
x_{0} \alpha+y_{0} \beta+z_{0} \gamma=0,
$$

and therefore the equation $\Sigma \Sigma x_{0}=0$ is satisfied by

$$
x: y: z=\alpha: \beta: \gamma .
$$

This means that $\Sigma x x_{0}=0$ always passes through ($\alpha \beta \gamma$) for any position of $x_{0} y_{0} z_{0}$ on $\mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime}$. Since ($\alpha \beta \gamma$) is a point at infinity, it follows that $\sum x x_{0}=0$ remains parallel for different positions of $x_{0} y_{0} z_{0}$. It has already been shewn that, for any value of ϵ, $\overline{211_{\varepsilon}}$ is parallel to EF, but this proof, which is independent of the particular position of P on the circumcircle, shows that a series of parallel lines related to P can be obtained for any position of P on the circumcircle.
29. If the coordinates of P be $\operatorname{cosec}(B-C), \operatorname{cosec}(C-A)$, $\operatorname{cosec}(A-B)$, then the $X^{\prime} Y^{\prime} Z^{\prime}$ corresponding to this P is $\triangle x \sin (B-C)=0$. This line is the Hessian axis, and contains the two points $H_{1}\left(\sin A_{1}\right.$, etc.) and $H_{2}\left(\sin A_{2}\right.$ etc.). Hence ($\left.\$ 28\right)$ $\triangle x \sin A_{1}=0$ and $\searrow x \sin A_{2}=0$ are parallel, i.e. the two lines which contain respectively the sources of the triangles of the first and second groups are parallel.

I wish to thank Mr F. Glanville Taylor and the Editors for helpful criticism and suggestions.

