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Abstract. In this paper, we discuss implications of the results obtained in [5]. It
was shown there that eigenvectors of the Bethe algebra of the quantum glN Gaudin
model are in a one-to-one correspondence with Fuchsian differential operators with
polynomial kernel. Here, we interpret this fact as a separation of variables in the glN
Gaudin model. Having a Fuchsian differential operator with polynomial kernel, we
construct the corresponding eigenvector of the Bethe algebra. It was shown in [5] that
the Bethe algebra has simple spectrum if the evaluation parameters of the Gaudin
model are generic. In that case, our Bethe ansatz construction produces an eigenbasis
of the Bethe algebra.
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1. Introduction. Generally speaking, separation of variables in a quantum
integrable model is a reduction of a multi-dimensional spectral problem to a suitable
one-dimensional problem. For example, the famous Sklyanin’s separation of variables
for the gl2 Gaudin model [10] is a reduction of the diagonalization problem of the
Gaudin Hamiltonians, acting on a tensor product of gl2-modules, to the problem
of finding a second-order Fuchsian differential operator with polynomial kernel and
prescribed singularities. Having such a differential operator, Sklyanin constructs an
eigenvector of the Hamiltonians.

It has been proved recently in [5] that the eigenvectors of the Bethe algebra of
the glN Gaudin model are in a bijective correspondence with Nth-order Fuchsian
differential operators with polynomial kernel and prescribed singularities. This reduces
the multi-dimensional problem of the diagonalization of the Bethe algebra to the one-
dimensional problem of finding the corresponding Fuchsian differential operators. In
that respect, ‘the variables are separated’.

Having an eigenvector of the Bethe algebra, one has an effective way to construct
the corresponding Fuchsian operator (see [2, 5] and Theorem 2.1). In the opposite
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direction, the assignment of an eigenvector to a Fuchsian operator is not explicit in
[5]. In this paper, having a Fuchsian differential operator with polynomial kernel, we
construct the corresponding eigenvector of the Bethe algebra. Our construction of an
eigenvector from a differential operator can be viewed as a (generalized) Bethe ansatz
construction (cf. [1, 6–8]).

It has been proved in [5] that the action of the Bethe algebra on a tensor product of
irreducible finite-dimensional evaluation glN [t]-modules has simple spectrum provided
the evaluation points are generic. In that case, our construction of eigenvectors of
the Bethe algebra produces an eigenbasis of the Bethe algebra, thus showing the
completeness of the Bethe ansatz.

2. Eigenvectors of Bethe algebra.

2.1. Lie algebra glN . Let eij, i, j = 1, . . . , N, be the standard generators of the Lie
algebra glN , satisfying the relations [eij, esk] = δjseik − δikesj.

Let M be a glN-module. A vector v ∈ M has weight λ = (λ1, . . . , λN) ∈ �N if
eiiv = λiv for i = 1, . . . , N. A vector v is called singular if eijv = 0 for 1 � i < j � N.

We denote by (M)λ the subspace of M of weight λ, by (M)sing the subspace of
M of all singular vectors and by (M)sing

λ the subspace of M of all singular vectors of
weight λ.

Denote by Lλ the irreducible finite-dimensional glN-module with highest weight λ.
Any finite-dimensional glN weight module M is isomorphic to the direct sum

⊕
λ Lλ ⊗

(M)sing
λ , where the spaces (M)sing

λ are considered as trivial glN-modules.
The glN-module L(1,0,...,0) is the standard N-dimensional vector representation of

glN , which we denote by V . We choose a highest weight vector in V and denote it
by v+.

A glN-module M is called polynomial if it is isomorphic to a sub-module of V⊗n

for some n.
A sequence of integers λ = (λ1, . . . , λN) such that λ1 � λ2 � . . . � λN � 0 is called

a partition with at most N parts. Set |λ| = ∑N
i=1 λi. Then it is said that λ is a partition

of |λ|.
The glN-module V⊗n contains the module Lλ if and only if λ is a partition of n

with at most N parts.

2.2. Current algebra glN [t]. Let glN [t] = glN ⊗ �[t] be the Lie algebra of glN-
valued polynomials with the pointwise commutator. We call it the current algebra. We
identify the Lie algebra glN with the sub-algebra glN ⊗ 1 of constant polynomials in
glN [t]. Hence, any glN [t]-module has the canonical structure of a glN-module.

It is convenient to collect elements of glN [t] in generating series of a formal variable
u. For g ∈ glN , set

g(u) =
∞∑

s=0

(g ⊗ ts)u−s−1.

For each a ∈ �, there exists an automorphism ρa of glN [t], ρa : g(u) �→ g(u −
a). Given a glN [t]-module M, we denote by M(a) the pull-back of M through the
automorphism ρa. As glN-modules, M and M(a) are isomorphic by the identity map.

https://doi.org/10.1017/S0017089508004850 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004850


ON SEPARATION OF VARIABLES FOR glN GAUDIN MODEL 139

We have the evaluation homomorphism, ev : glN [t] → glN , ev : g(u) �→ gu−1. Its
restriction to the sub-algebra glN ⊂ glN [t] is the identity map. For any glN-module M,
we denote by the same letter the glN [t]-module, obtained by pulling M back through
the evaluation homomorphism. For each a ∈ �, the glN [t]-module M(a) is called an
evaluation module.

2.3. Bethe algebra. Given an N × N matrix A with possibly non-commuting
entries aij, we define its row determinant to be

rdet A =
∑
σ∈SN

(−1)σ a1σ (1)a2σ (2) . . . aNσ (N).

Let ∂ be the operator of differentiation in variable u. Define the universal differential
operator DB by

DB = rdet

⎛
⎜⎜⎝

∂ − e11(u) −e21(u) . . . −eN1(u)
−e12(u) ∂ − e22(u) . . . −eN2(u)

. . . . . . . . . . . .

−e1N(u) −e2N(u) . . . ∂ − eNN(u)

⎞
⎟⎟⎠ .

It is a differential operator in variable u, whose coefficients are formal power series in
u−1 with coefficients in U(glN [t]),

DB = ∂N +
N∑

i=1

Bi(u) ∂N−i,

where

Bi(u) =
∞∑
j=i

Bij u−j

and Bij ∈ U(glN [t]), i = 1, . . . , N, j ∈ ��i . We call the unital sub-algebra of U(glN [t])
generated by Bij, i = 1, . . . , N, j ∈ ��i the Bethe algebra and denote it by B.

By [1, 11], the algebra B is commutative and commutes with the sub-algebra
U(glN) ⊂ U(glN [t]).

As a sub-algebra of U(glN [t]), the algebra B acts on any glN [t]-module M. Since
B commutes with U(glN), it preserves the subspace of singular vectors (M)sing as well
as weight subspaces of M. Therefore, the subspace (M)sing

λ is B-invariant for any
weight λ.

Let λ(1), . . . ,λ(k), λ be partitions with at most N parts and b1, . . . , bk distinct
complex numbers. We are interested in the action of the Bethe algebra B on the
tensor product of evaluation modules ⊗k

s=1Lλ(s) (bs) and more precisely, on the subspace
(⊗k

s=1Lλ(s) (bs))
sing
λ .

Note that the subspace (⊗k
s=1Lλ(s) (bs))

sing
λ is zero-dimensional unless |λ| =∑k

s=1 |λ(s)|.

2.4. Fuchsian differential operators and eigenvectors of Bethe algebra. Denote
� = (λ(1), . . . ,λ(k)) and b = (b1, . . . , bk). Let ��,λ ,b be the set of all monic Fuchsian
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differential operators of order N,

D = ∂N +
N∑

i=1

hDi (u) ∂N−i,

with the following properties:
(a) The singular points of D are at b1, . . . , bk and ∞ only.
(b) The exponents of D at bs, s = 1, . . . , k, are equal to λ

(s)
N , λ

(s)
N−1 + 1, . . . , λ

(s)
1 +

N − 1 .
(c) The exponents of D at ∞ are equal to 1 − N − λ1, 2 − N − λ2, . . . ,−λN .
(d) The kernel of the operator D consists of polynomials only.

Note that the set ��,λ ,b is empty unless |λ| = ∑k
s=1 |λ(s)|.

Let M be a glN [t]-module and v an eigenvector of the Bethe algebra B ⊂ U(glN [t])
acting on M. Then for any coefficient Bi(u) of the universal differential operator DB

we have Bi(u)v = hi(u)v, where hi(u) is a scalar series. We call the scalar differential
operator

DB
v = ∂N +

N∑
i=1

hi(u) ∂N−i

the differential operator associated with the eigenvector v.

THEOREM 2.1. Let v ∈ (⊗k
s=1Lλ(s) (bs))

sing
λ be an eigenvector of the Bethe algebra; then

DB
v ∈ ��,λ ,b. Moreover, the assignment v �→ DB

v is a bijective correspondence between
the set of eigenvectors of the action of the Bethe algebra on (⊗k

s=1Lλ(s) (bs))
sing
λ (considered

up to multiplication by non-zero numbers) and the set ��,λ ,b.

The first statement is Theorem 4.1 in [2] (cf. [4]). The second statement is Theorem
7.1 in [5].

The goal of this paper is to construct the inverse bijection.

3. Schubert cell and universal weight function.

3.1. The cell �λ. Let N, d ∈ �>0, N � d. Let �d [u] be the space of polynomials
in u of degree less than d. We have dim �d [u] = d. Let Gr(N, d) be the Grassmannian
of all N-dimensional subspaces in �d [u].

Given a partition λ = (λ1, . . . , λN) such that λ1 � d − N, introduce a sequence

P = {d1 > d2 > · · · > dN} , di = λi + N − i

and denote by �λ the subset of Gr(N, d) consisting of all N-dimensional subspaces
X ⊂ �d [u] such that for every i = 1, . . . , N, the subspace X contains a polynomial of
degree di.

In other words, �λ consists of subspaces X ⊂ �d [u] with a basis {f1(u), . . . , fN(u)}
of the form

fi(u) = udi +
di∑

j=1, di−j 	∈P

fijudi−j.
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For a given X ∈ �λ, such a basis is unique. The basis {f1(u), . . . , fN(u)} will be called
the flag basis of the subspace X .

The set �λ is a (Schubert) cell isomorphic to an affine space of dimension |λ| with
coordinate functions fij.

For X ∈ �λ, we denote by DX the monic scalar differential operator of order N
with kernel X . We call DX the differential operator associated with X .

3.2. Generic points of �λ. For g1, . . . , gl ∈ �[u], introduce the Wronskian by the
formula

Wr(g1(u), . . . , gl(u)) = det

⎛
⎜⎜⎜⎝

g1(u) g′
1(u) . . . g(l−1)

1 (u)
g2(u) g′

2(u) . . . g(l−1)
2 (u)

. . . . . . . . . . . .

gl(u) g′
l(u) . . . g(l−1)

l (u)

⎞
⎟⎟⎟⎠ .

For X ∈ �λ, let {f1(u), . . . , fN(u)} be the flag basis of X . Introduce the polynomials
{y0(u) , y1(u) , . . . , yN−1(u)}, by the formula

ya(u)
∏

a<i<j�N

(λi − λj) = Wr(fa+1(u), . . . , fN(u)) , a = 0, . . . , N .

Set

la =
N∑

b=a+1

λb , a = 0, . . . , N . (1)

Clearly, l0 = |λ| and lN = 0.
For each a = 0, . . . , N − 1, the polynomial ya(u) is a monic polynomial of degree

la. Denote t(a)
1 , . . . , t(a)

la the roots of the polynomial ya(u) and

tX = (
t(0)
1 , . . . , t(0)

l0 , . . . , t(N−1)
1 , . . . , t(N−1)

lN−1

)
. (2)

We say that tX are the root coordinates of X .
We say that X ∈ �λ is generic if all roots of the polynomials y0(u) ,

y1(u) , . . . , yN−1(u) are simple, and for each a = 1, . . . , N − 1, the polynomials ya−1(u)
and ya(u) do not have common roots.

If X is generic, then the root coordinates tX satisfy the Bethe ansatz equations [7]:

la−1∑
j′=1

1

t(a)
j − t(a−1)

j′
−

la∑
j′=1
j′ 	=j

2

t(a)
j − t(a)

j′
+

la+1∑
j′=1

1

t(a)
j − t(a+1)

j′
= 0.

Here the equations are labelled by a = 1, . . . , N − 1, j = 1, . . . , la.
Conversely, if t = (t(0)

1 , . . . , t(0)
l0 , . . . , t(N−1)

1 , . . . , t(N−1)
lN−1

) satisfy the Bethe ansatz
equations, then there exists a unique X ∈ �λ such that X is generic and t are its root
coordinates (see (2)). This X is determined by the following construction (see [7]). Set

χa(u, t) =
la−1∑
j=1

1

u − t(a−1)
j

−
la∑

i=1

1

u − t(a)
j

, a = 1, . . . , N .
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Then

DX = (∂ − χ1(u, t)) . . . (∂ − χN(u, t)) .

LEMMA 3.1. Generic points form a Zariski open subset of �λ.

The lemma follows, for example, from part (i) of Theorem 6.1 in [6].

3.3. Universal weight function. Let λ be a partition with at most N parts. Let
l0, . . . , lN be the numbers defined in (1). Denote n = l0, l = l1 + · · · + lN−1 and l =
(l1, . . . , lN−1).

Consider the weight subspace (V⊗n)λ of the nth tensor power of the vector
representation of glN and the space �l+n with coordinates t = (t(0)

1 , . . . ,

t(0)
l0 , . . . , t(N−1)

1 , . . . , t(N−1)
lN−1

).
In this section we remind the construction of a rational map ω : �l+n → (V⊗n)λ,

called the universal weight function (see [9]).
A basis of V⊗n is formed by the vectors

eJv = ej1,1v+ ⊗ · · · ⊗ ejn,1v+,

where J = (j1, . . . , jn) and 1 � js � N for s = 1, . . . , N. A basis of (V⊗n)λ is formed by
the vectors eJ v such that #{s | js > i} = li for every i = 1, . . . , N − 1. Such a J will be
called l-admissible.

The universal weight function has the form

ω(t) =
∑

J

ωJ(t) eJv,

where the sum is over the set of all l-admissible J, and the function ωJ(t) is defined
below.

For an admissible J, define S(J) = {s | js > 1}, and for i = 1, . . . , N − 1, define

Si(J) = { s | 1 � s � n , 1 � i < js }.
Then |Si(J) | = li.

Let B(J) be the set of sequences β = (β1, . . . , βN−1) of bijections βi : Si(J) →
{1, . . . , li}, i = 1, . . . , N − 1. Then |B(J) | = ∏N−1

a=1 la! .
For s ∈ S(J) and β ∈ B(J), introduce the rational function

ωs,β(t) = 1

t(1)
β1(s) − t(0)

s

j1−1∏
i=2

1

t(i)
βi(s) − t(i−1)

βi−1(s)

and define

ωJ(t) =
∑

β∈B(J)

∏
s∈S(J)

ωs,β .

EXAMPLE 1. Let n = 2 and l = (1, 1, 0, . . . , 0). Then

ω(t) = 1(
t(2)
1 − t(1)

1

)(
t(1)
1 − t(0)

1

) e3,1v+ ⊗ v+ + 1(
t(2)
1 − t(1)

1

)(
t(1)
1 − t(0)

2

) v+ ⊗ e3,1v+.
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THEOREM 3.2. Let X ∈ �λ be a generic point with root coordinates tX . Consider the
value ω(tX ) of the universal weight function ω : �l+n → (V⊗n)λ at tX . Consider V⊗n as
the glN [t]-module ⊗n

s=1V (t(0)
s ). Then

(i) the vector ω(tX ) belongs to (V⊗n)sing
λ ;

(ii) the vector ω(tX ) is an eigenvector of the Bethe algebra B, acting on ⊗n
s=1V (t(0)

s ).
Moreover, DB

ω(tX ) = DX , where DB
ω(tX ) and DX are the differential operators

associated with the eigenvector ω(tX ) and the point X ∈ �λ, respectively.

Part (i) is proved in [1] and [8]. Part (i) also follows directly from Theorem 6.16.2
in [9]. Part (ii) is proved in [3].

Remark. For a generic point X ∈ �λ the differential operator DX has the
following properties (continued from Section 2.4):

(e) The singular points of DX are at t(0)
1 , . . . , t(0)

n and ∞ only.
(f ) The exponents of DX at t(0)

s , s = 1, . . . , n, are equal to 0, 1, . . . , N − 2, N.
(g) The exponents of DX at ∞ are equal to 1 − N − λ1, 2 − N − λ2, . . . ,−λN .
(h) The kernel of the operator DX consists of polynomials only.

On the other hand, Theorem 2.1, applied to the glN [t]-module ⊗n
s=1V (t(0)

s ), yields
that for any eigenvector v of the Bethe algebra B, acting on (⊗n

s=1V (t(0)
s ))sing

λ , the
differential operator DB

v has properties (e)–(h).
Therefore, the universal weight function and the assignment DX �→ X �→ ω(tX )

allows us to reverse the correspondence v �→ DB
v of Theorem 2.1 for the case of the

glN [t]-module ⊗n
s=1V (t(0)

s ) under the condition that X ∈ �λ is generic. Our goal is to
generalize this construction to the case of a glN [t]-module ⊗k

s=1Lλ(s) (bs) and an arbitrary
differential operator D ∈ ��,λ ,b.

4. Construction of an eigenvector from a differential operator.

4.1. Epimorphism Fλ. Let λ(1), . . . ,λ(k), λ be partitions with at most N parts
such that |λ| = ∑k

s=1 |λ(s)| and b1, . . . , bk distinct complex numbers. Denote n = |λ|
and ns = |λ(s)|, s = 1, . . . , k.

For s = 1, . . . , k, let Fs : V⊗ns → Lλ(s) be an epimorphism of glN-modules. Then

F1 ⊗ · · · ⊗ Fk : ⊗k
s=1V (bs)⊗ns → ⊗k

s=1Lλ(s) (bs) (1)

is an epimorphism of glN [t]-module, which induces an epimorphism of B-modules

F :
( ⊗k

s=1 V (bs)⊗ns
)sing
λ

→ ( ⊗k
s=1 Lλ(s) (bs)

)sing
λ

.

4.2. Main result. Let D0 be an element of ��,λ ,b. Let X0 be the kernel of D0.
Then X0 is a point of the cell �λ. Choose a germ of an algebraic curve X(ε) in �λ such
that X(0) = X0 and X(ε) are generic points of �λ for all non-zero ε. Let t(ε) be the
root coordinates of X(ε). The algebraic functions t(0)

1 (ε), . . . , t(0)
n (ε) are determined up

to permutation. Order them in such a way that the first n1 of them tend to b1 as ε → 0;
the next n2 coordinates tend to b2; and so on until the last nk coordinates tend to bk.
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For every non-zero ε, the vector v(ε) = ω(t(ε)) belongs to (V⊗n)sing
λ . This vector

is an eigenvector of the Bethe algebra B, acting on (⊗n
s=1V (t(0)

s (ε)))sing
λ , and we have

DB
v(ε) = DX(ε) (see Theorem 3.2).

The vector v(ε) depends on ε algebraically. Let v(ε) = v0 εa0 + v1 εa1 + · · · be its
Puiseux expansion, where v0 is the leading non-zero coefficient.

THEOREM 4.1. For a generic choice of the maps F1, . . . , Fk, the vector F(v0)
is non-zero. Moreover, F(v0) is an eigenvector of the Bethe algebra B, acting on
(⊗k

s=1Lλ(s) (bs))
sing
λ , and DB

F(v0) = D0.

Proof. For any element B ∈ B, the action of B on the U(glN [t])-module ⊗n
s=1V (zs)

determines an element of End(V⊗n), polynomially depending on z1, . . . , zn. Since for
every non-zero ε, the vector v(ε) is an eigenvector of B, acting on (⊗n

s=1V (t(0)
s (ε)))sing

λ ,
and since DB

v(ε) = DX(ε), we conclude that the vector v0 is an eigenvector of B, acting

on (⊗k
s=1V (bs)⊗ns )sing

λ , and DB
v0

= D0.
The glN [t]-module ⊗k

s=1V (bs)⊗ns is a direct sum of irreducible glN [t]-modules of
the form ⊗k

s=1Lμ(s) (bs), where |μ(s)| = ns, s = 1, . . . , k. Since D0 ∈ ��,λ ,b, the vector
v0 belongs to the component of the type ⊗k

s=1Lλ(s) (bs). Therefore, for generic choice of
the maps F1, . . . , Fk, the vector F(v0) is non-zero.

Since the map F1 ⊗ · · · ⊗ Fk (see (1)) is a homomorphism of glN [t]-modules, the
vector F(v0) is an eigenvector of the Bethe algebra B, acting on (⊗k

s=1Lλ(s) (bs))
sing
λ , and

DB
F(v0) = D0. �

Remark. The direction of the vector v0 can depend on the choice of the algebraic
curve X(ε) in �λ. However, Theorem 2.1 yields that the direction of the vector F(v0)
does not depend on either the choice of the curve X(ε) or the choice of the maps
F1, . . . , Fk.

Given D ∈ ��,λ ,b , denote by w(D) the vector F(v0) ∈ (⊗k
s=1Lλ(s) (bs))

sing
λ con-

structed from D in this section. The vector w(D) is defined up to multiplication by
a non-zero number. The assignment D �→ w(D) gives the correspondence, which is
inverse to the correspondence v �→ DB

v in Theorem 2.1.

4.3. Completeness of Bethe ansatz for glN Gaudin model. The construction of the
vector w(D) ∈ (⊗k

s=1Lλ(s) (bs))
sing
λ from a differential operator D ∈ ��,λ ,b can be viewed

as a (generalized) Bethe ansatz construction for the glN Gaudin model (cf. the Bethe
ansatz constructions in [1, 6–8]).

The following statement is contained in Theorem 6.1, Corollary 6.2 and Coro-
llary 6.3 of [5].

THEOREM 4.2. If b1, . . . , bk are distinct real numbers, then the action of the Bethe
algebra on (⊗k

s=1Lλ(s) (bs))
sing
λ is diagonalizable and has simple spectrum.

Hence, for generic complex numbers b1, . . . , bk, there exists an eigenbasis of the
action of the Bethe algebra on (⊗k

s=1Lλ(s) (bs))
sing
λ . This eigenbasis is unique up to

permutation of vectors and multiplication of vectors by non-zero numbers.
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COROLLARY 4.3. If b1, . . . , bk are distinct real numbers or b1, . . . , bk are generic
complex numbers, then the collection of vectors

{
w(D) ∈ ( ⊗k

s=1 Lλ(s) (bs)
)sing
λ

∣∣ D ∈ ��,λ ,b
}

is an eigenbasis of the action of the Bethe algebra.
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