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HAUSDORFF-YOUNG INEQUALITIES FOR FUNCTIONS IN
BERGMAN SPACES ON TUBE DOMAINS

by DAVID BEKOLLE and ALINE BONAMI
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We prove that the functions of the Bergman spaces A' on tube domains may be written as Laplace
transforms of functions when 1 < p < 2. We give in this context a generalization of the Hausdorff-Young
inequality with the exact constant, and deduce from the case p = 2 the expression of the Bergman kernel as a
Laplace transform.

1991 Mathematics subject classification: 32A37.

1. Introduction

Let F denote a non empty open connected proper subset of W. Let Tr be the tube
over F,

Tr = {z = x + iye C"; y e T}.

For every p e[l, oo), the Bergman space Ap(Tr) is defined as

where W(7f) is the space of holomorphic functions on Tr, and dv is the Lebesgue
measure on C".

Our aim is to prove that all functions in Ap{Tr), for 1 < p < 2, are Laplace
transforms of functions, and to give in this context a generalization of the usual
Hausdorff-Young inequality.

Let us denote by K = Kr the function on R" which is defined by

K(t)= f e-2Mlu) du (1)

where {t, u) = £jL, f;"/ is the Euclidean scalar product. Then the main theorem is the
following.

Theorem 1. Let p belong to [1,2], and let p be the conjugate exponent of p. Then
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every F e Ap(Tr) is the Laplace transform of a unique function f e LP(R", K(pt)p~x dt),
namely

F{z)=\ f{t)fP"Mdt. (2)
JR-

Moreover the map F -*• f is a bounded operator from Ap(Tr) to Z/'(R\ K(j>t)p'~x dt), with
norm < cp, that is, for 1 < p < 2

[ £ \f(t)\'K(ptY'-1 rftj ' < c,\J \F(z)\>dv(z)] ' (3)

while, for p = 1,

sup|/(r)|K(0< I \F(z)\dv(z). (4)
KER" Jrr

The constant cp may be taken equal to the best constant in the classical Hausdorff-Young
inequality, that is

')w(p')

In the particular case when p = 2, the operator F—>/ is unitary from A2(Tr) onto
L2(R",K(2t)dt). So

f \f{t)\2K{2t)dt = f |F(z)|2 dv(z). (5)

The fact that the Laplace transform is well defined will be proved in the next section.
We shall also prove that the constant of the classical Hausdorff-Young inequality is
the best possible (see Theorem 5 below). So the norm of the operator F -*• f from
Ap(Tr) to U (K", K(pt)p"' dt) is the same as the norm of the Fourier transform from
L"(W) to L"'(R"). Remember that the best constant cp in the classical Hausdorff-Young
inequality has been obtained by W. Beckner [1].

Let us say briefly what was previously known in this area. In the case of the upper
half-plane, the boundary value of a function F e Ap(Tr) belongs to the Besov space
Bp

 /P'P(E.) and the function / is the Fourier transform of the boundary value of F. So
(3) (with a bigger constant) follows from the characterization of the Besov spaces
through Littlewood-Paley decomposition (see for instance [10]). For a general tube
domain, the cases p = 1 and p = 2 have been obtained by T. Genchev [3]. Moreover T.
Genchev has given some partial results for 1 < p < 2 for starlike cones [4]. The
problem of obtaining a generalization of the classical Hausdorff-Young inequality has
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also been considered in [5]. But none of these two papers contains the boundedness
of the operator F - • / from A"(Tr) to LP'(R\ K(pt)"'~l dt) when 1 < p < 2.

Let us remark that it follows from Theorem 1 that Ap(Tr) = {0} whenever K(t) = +oo
a.e. As we shall see, the reverse assertion is also valid. So, as a corollary, we get:

Theorem 2. Let p belong to [1, oo). Then A"(Tr) = {0} if and only if K{t) - -t-oo a.e.

When F is convex, this condition is equivalent to the fact that F does not contain
any straight line. When F is a cone, it is equivalent to the fact that F* is not void,
where F* denotes the open dual cone of F, given by

r = {t e M"; (t, y) >0,yeF\{0}}.

Moreover, in this case the function/ given in Theorem 1 is 0 a.e. outside F*.
Bochner's theorem asserts that the tube domains Tr are domains of holomorphy if

and only if F is convex (see [6]). Moreover, the envelope of holomorphy of Tr is T^,
where Fc is the convex hull of F. So H(Tr) = 7^(7^). The same equivalence holds for
Hardy spaces as it is shown in [9]. It is no more the case for Bergman spaces. We give
counter-examples, which are based on the following corollary of Theorem 1.

Theorem 3. The restriction operator from /l2(Trc) to A2{Tr) is onto if and only if there
exists a constant C such that, for almost every t e R",

f e"2"1'1" du<C f du

When Fc is a homogeneous cone, D. Luecking (see [8]) has given a necessary and
sufficient condition of a different nature, which implies that all the Bergman spaces on
Tpc and Tr respectively are the same for every value of p.

We shall proceed as follows. We prove Theorem 1 in Section 2. In Section 3, we give
Laplace transforms formulae for the Bergman kernel of Tr. Such formulae are known
in the case of convex cones (see [7]). We also give formulae for the holomorphic
continuation F of a function F 6 Ap(Tr), 1 < p < 2. We prove Theorem 3 at the end of
this section, as well as the counter-examples.

Finally, let us remark that the interpolation space between A1 and A1 is A" when F
is a homogeneous cone. It is a consequence of the fact that there exists a bounded
projection n from L\Tr) to A\TT) which is also bounded on L2(7f). This last fact is an
easy corollary of the results of [2]. We write it here for completeness.

Theorem 4. When F is a homogeneous cone, then the interpolation space

(A\Tr), A\Tr)\

is isomorphic to A"(Tr)for p = 2/(0 + 1).
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Proof. If B denotes the Bergman kernel, the operator n of kernel [B(z, ())2B(t, ()"'
has the required properties (see [2]). •

In this case, (3) in Theorem 1 (with a bigger constant) follows by interpolation
between the cases p = 1 and p = 2, which is the usual proof of the classical Hausdorff-
Young inequalities.

2. Laplace transforms and Hausdorff-Young inequalities

Our first proposition deals with Laplace transforms. We write F = £(/) when F is
the Laplace transform of/, that is:

= I f(f)elinMdt
JtL"

(6)

Of course, F is well defined only when / is sufficiently decreasing at oo. The function
K — Kr has been defined in (1).

Proposition 2.1. Assume that p e (1, oo]. Let g be a measurable function such that:

p't)"-1 dt < oo if p < oo

sup{\g(t)\K(t)) < oo if p = oo.

Then, for every y eF, the function t *-+ g(t)e"2"(y0 is integrable, and so the Laplace
transform £(g) is well defined. Moreover it is a holomorphic function in Tr, and the
following estimates are valid:

J \C(g)(z)\2 dv(z) = f \g(t)\2K(2t) dt. (7)

For 1 < p < 2,

|£(0)(z)|>'dv(z)\ < cp ̂  IrtOI'KGrtr' dt\ . (8)

Proof. Let us first consider a particular case. Let P be the product of intervals
P = ( - . i > + i ) \ Then

H
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Let us show in this case that C(g) is well defined and holomorphic on TP. For
a e (0,1), let us write Pa = (—a, +a)n. To prove that the function is holomorphic in the
interior of TPe it is sufficient to show that g{t) fJjLi cosh(27tafJ) is integrable in R". Using
the Holder inequality and the hypothesis on g, it follows from the inequality

f \f\cosh(2natj)\ KP(p't)'ldt oo

which is an easy consequence of the expression of KP. When Q is any product of
intervals, the same result is obtained from the result for P using translation and
dilation. Let us now consider the general case. Let Q denote a product of intervals
which is contained in F. Then Ke < Kr, and g satisfies also the hypothesis with Q
instead of F. So C{g) is well defined and holomorphic on TQ. As this is valid for each
Q, C(g) is well defined and holomorphic on Tr.

To prove (7), we use the Plancherel identity. To prove (8), we use the classical
Hausdorff-Young inequality to get

j \C{g\z)\p dv(z) < ( c / f \ J \g{t)\'e-2"™ dtj 'dy.

We then use Minkowski inequality for the Lplp norm, and the definition of K to
conclude. •

Let us remark that inequality (8) may be seen as the dual version of the
Hausdorff-Young inequality (3).

As a consequence of Proposition 2.1, we see that all Bergman spaces contain non
zero functions when K(t) < oo on a set of positive measure: it follows directly from (8)
for A"(Tr) when p > 2. For other values of p, just remark that if A2p(Tr) # {0} then
the same is true for Ap(Tr): if F belongs to the first one of these spaces, then F2 belongs
to the second one. So we have proved one implication in Theorem 2. The other one
is a direct consequence of Theorem 1 for p < 2: if K(t) — oo a.e., then f = 0 for each
F e A"{Tr), and so Ap(Tr) — {0}. For other values of p, let us use again that if
Alp{TT) ^ {0} then the same is true for Ap(Tr). An easy induction gives all values of p
from the values in [1,2].

To write every F € A'[Tr) as a Laplace transform, we first prove the following
lemma using a classical method of Hardy. It is also given in [4] in this context.

Lemma 2.1. Let pe[l ,co) . For every F e Ap(Tr) and every y e T , the function
x t-» F(x + iy) belongs to the space Lp(Rn).

Proof. Let us denote by d(y) the Euclidean distance from y to 3F, and by
B(x + iy) the Euclidean open ball with centre x + iy and radius d(y)/2. Then
B(x + iy) c Tr; moreover, by the mean value formula and by the Holder inequality,
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|F(x + iy)\> < - ^ f \F{co)\" dv(co) < - ^ f |F(«)I' dv(co).
L"(W] JB(x+iy) [d{y)] J\x-Rw,\<d{y)

Then the use of the Fubini theorem yields that

f \F(x + iy)\" dx < -Jp- f \F(co)\p dv{d). (9)
JR" («(>')) JTr D

We also have, for q > p ,

f \F(x + iy)\"dx< % i - T f I \F((o)\p dv(a>)) '. (10)
JR" (d(y))<p ' H i r r /

Let us now prove Theorem 1. By Lemma 2.1 and by the usual Hausdorff-Young
inequality we know that, for every F e Ap(Tr) and for every y e F, the function
x i-» F(x + iy) has a Fourier transform which is in IF (R"). We write it as

fy(t) e~2«M = [ F(x + iy) e-*"M dx.
J
[
R"

We shall prove that the function fy is independent of y. To do this, we use the fact that
such a property is valid when F belongs to a Hardy space (see [9, p. 100). More
precisely, since F is connected, it is sufficient to prove that, for every fixed
y e F, fy(t) —fy'(t) almost everywhere when / belongs to some neighbourhood of y. Let
us choose B = B(y, d(y)/2) as such a neighbourhood. Then F belongs to the Hardy
space H2(TB) by (10). We conclude using the result for H2 spaces.

The function/ —fy for some (all) y e F is the function that we were looking for. It
satisfies

^M = f F(x + iy)e-2i*lxt)dx.
JR"

(11)

Here the right hand side stands for the Fourier transform of a function in LP(W). In
particular for 1 < p < 2, by the Hausdorff-Young inequality,

I ] \f(t)\> e-2"™ dt\ <c,\j\F(x + iy)\'dx\ . (12)

Let us prove that / satisfies the inequality (3). Let

U -|i/G>'-i) r r / r \p'~] i"^'-')

\f{t)\"'K{pt)p'-X dt\ = / ( \f(t)\pe'2np{'y)dy) dt\
J lJR"\Jr ) J
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By the Minkowski inequality used for the U "' norm, we have

) dy'

Using (12), we find the following inequality:

The right hand side is exactly the integral in the tube domain Tr. This proves (3). We
know from Proposition 2.1 that the Laplace transform of/ is well defined. Moreover,
by the inverse Fourier transform formula, it is equal to F. We have finished the proof
of Theorem 1 for pe ( l ,2 ) . For p = \ the proof follows the same lines, and the
inequality is obtained directly. For p = 2 the equality in (5) follows from Plancherel
identity, and the fact the map is onto is a consequence of Proposition 2.1.

Let us restrict to the case of convex domains in the following proposition.

Proposition 2.2. When Y is convex, then Ap(Tr) — {0} for some p > \ if and only if
Y contains a straight line.

Proof. Let Y contain a straight line. Using a rotation and translation if necessary,
we may assume that it is the yl axis. As F is open and convex, it contains also a
cylinder Ce, with

It follows that K(t) = +00 for every t. By Theorem 2, A"(Tr) - {0}. Assume now that
T contains no straight line. Then Y is contained in an open convex cone which contains
no straight line (see [9]). For such a cone r0, which we may assume issued from 0,
there exists t0 e K" and e0 > 0 such that (t0, y) > eo\y\ for every y e Fo. It follows that
K(t) < oo in a neighbourhood of to» and so AP{TT) ^ {0}. •

Let us now restrict to cones.

Proposition 2.3. When Y is a cone, then Ap(Tr) = {0} for some p > 1 if and only if
F* is void. Assume that F* is non void. Then every F 6 Ap(Tr) is the Laplace transform of
a function which is zero a.e. outside Y*.

Proof. Let us denote by F* the closed dual cone of Y

Y* = {te R"; (t, y) > 0, y e f}.
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We shall use the following lemma.

Lemma 2.2. F* is the interior ofTtt. Moreover, when F* = 0, then Tn is contained in
a hyperplane; when F* ^ 0, then F# is the closure of F*, and F#\F* has Lebesgue
measure 0.

Proof. The first assertion is a direct consequence of the definitions. To prove the
second one, just remark that F# is a convex cone. If it is not contained in a hyperplane,
then it contains the convex hull of a union of n half-lines which are generated by n
independent vectors; hence its interior is non void. Next, assume that F* / 0. Clearly
F# contains the closure of F*. Conversely, by convexity, if t belongs to F# then the
set

{t + XB(ta, z),ke [0,1]}

is contained in F#. Here B(to,e) is any ball in F*. So t belongs to the closure of F*.
Now it is well known that, as F* is a convex open cone, F*\F* has Lebesgue
measure 0. •

To prove Proposition 2.3, it is sufficient to prove that K(i) < +oo for t e F*, while
K(i) = +oo for t & F#. This is a consequence of the following lemma:

Lemma 2.3. For t e F*, there exists e > 0 such that, for y e F (t, y) > e\y\. For
t & F#, there exists e > 0 and an open non void cone Fo contained in F such that, for
y e Fo, (t, y) < -e\y\.

Remark 2.1. On F#\F*, K may be finite or not. In [7], it is proved that K = +oo when
F is a convex cone. Our example in Section 3 is based on an example of a cone F for
which K is not identically +oo on 3F*.

Finally, let us prove that the constant cp is the best possible. More precisely, let us
prove the following theorem.

Theorem 5. Let F be an open connected set in W such that Ap(Tr) ^ {0}. Then the
smallest constant cp such that every F e Ap(Tr) may be written as the Laplace transform of
f, with

U -il/p' r , nl/p

a\f(t)\"'K(pty-ldt\ < c p | / \F(z)\"dv(z)\ , (13)

r P1" r / 2

is equal to —7
Proof. The set E = {t e R"; K(t) < 00} is convex and has positive measure. Hence
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it contains a ball. We shall call pt° its centre. From the inequality

it follows that

/" e-2lt("°u> e
2lt£|u| d« < £ K(pr° + eft,, if, • • • if.))

where the sum is taken on all rj), e {—1, +1}. So, for E small enough,

Ie-
2"(f"°"> e2«i«i rfu << 00. (14)

Assume that (13) is valid with the constant cp. We shall prove that the usual
Hausdorff-Young inequality is also valid with the same constant cp, that is

i/p'

for every function g e LP(]R"). Here g is the Fourier transform of g, given by

JR"

From density arguments and dilation, it is sufficient to prove (15) when g is of class
C°° and supported in the unit ball. Let us consider

g(N(t-t°))e*nMdt.
R"

The left hand side of (13), written for FN, gives

\ ( - ?' o - i o'-i

LA" 9 P

which tends to

ii/p'

The right hand side of (13), written again for FN, is equal to
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N"lp [ IL ]FN(NX+w dx dy] '•J
But

+»'-l0) f g(t)e2ix(x+iiJ) dt.
JR"

It follows from a theorem of Paley-Wiener (see [11]) that there exists some constant
C such that

\N"/pFN(Nx + iy)\ < C(l + |x|)-2" e" 2 "^ el*l

while Nn/ll\FN(Nx + iy)\ tends to e~27l{yA\g(x)\. Using (14), we can apply the theorem
of dominated convergence. The right hand side of (13) tends to

which gives (15) and finishes the proof. •

Remark 2.2. The same kind of proof allows to show that

L ( P ' ) 1 / P ' J

is also the best constant in (8).

3. Bergman kernel and holomorphic continuation to the convex hull

In this section, we give some applications of Theorem 1.

3.1. Bergman kernel of a tube domain

We prove that the Bergman kernel may be written as a Laplace transform.

Corollary 3.1. Let T be a non empty open connected subset of R" such that
K(i) < co on a set of positive measure. Then the Bergman kernel B{z, Q of Tr is given
by

B(z, 0= [ (K(2t)Yl e^'-M dt z, C e Tr. (16)
JR"
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Here, by definition, (K(t))"1 is taken equal to 0 when K{t) — +00.

Proof. The Bergman kernel B(z, Q is characterized by the following three properties:

(i) for every z,C e Tr,

(ii) for every C e Tr, the function B(., () belongs to A2(Tr);

(iii) for every F e A2(Tr) and for every z e Tr

F(z)= f B(z,QF(z)dv(z).

Let us prove (ii). By Theorem 1, it is sufficient to show that

(K(2t)y] e-4"M dt < 00 (17)
R"

for all i j eT . Let us first remark that the set E of r\ e R" such that (17) holds is a
convex set. So if it contains almost every point of a product of intervals, called again
Q, then it contains Q itself. We shall use this property and prove that E contains every
product of intervals which is contained in P. More precisely, using dilation and
translation if necessary, we assume that P is contained in F and prove that Pa is
contained in E for a e (0,1). To do this, it is sufficient to show that

Jpa JR"
/ / (K(2t))~l e-4"1"" dtdrf < 00.
Jpa JR

But this integral is equal to

/ (K(2t)ylKPa(2t)dt.
JR"

Let us use the fact that KP < Kr — K, and the expression of KP. We find that

< 00

for a < 1, which allows to conclude. Let us prove (iii). Let F e A2(Tr). Then, by
Theorem 1, F - Cf with/ e L2(R", K(2t) dt). In view of properties (i) and (ii), for z e Tr,

/ B(2, C)F(Odv(C) = (F, B(., z))A*m = I / ( t ) ^ dt = F(z).
Jrr JR"

We used the polarization of (5). This proves the Corollary 3.1. •
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Let us give some of the consequences of this explicit formula. Let us first remark
that

\B{z, C)| < (B(z, z))

One has also the following inequality for cones, namely

|B(z, 01 < 22nB(z, z). (18)

To prove (18), we write

g2"1'-'-'* dt. (19)
Jr'

It follows that

\B(z, 01 < / (X(2t))-' e-2"^" dt = 22" f (X(20)"' e"4"'"0 dt,
Jr' Jr~

the last equality coming from homogeneity.

3.2. Analytic continuation to the convex hull

Let r c be the convex hull of the open subset P. From Bochner's Theorem we know
that each holomorphic function on 7f extends holomorphically to 7^. We prove now
that for Bergman spaces the extension is given as a Laplace transform. The next
proposition is a refinement of Proposition 2.1.

Proposition 3.1. Assume that p e [ l , oo]. Let g be a measurable function such that:

\g(t)\>K{p'ty-x dt < oo if p < oo

sup{\g(t)\K(t)) < co ifp = oo.

Then, for every y e P*, the function 11-> g(t) e~2n{yJ) is integrable, and so the Laplace
transform C(g) is well defined. Moreover it is a holomorphic function in T^

Proof. From the proof of Proposition 2.1 it follows that, when y° belongs to P,
then g(t) e~2niyJ) is bounded by an integrable function of t for y in a neighbourhood of
y°. Let now y° belong to P . We can write y° = YljLi A-jy*> w ' t n A •••• . / ' m T and
£ j l i Xj = 1. By convexity of the exponential function,

;=•
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which gives the integrability of \g(t)\ e~2My •". The same proof gives the boundedness
by an integrable function in a neighbourhood of y°. •

Let us remark that in particular the extension of the Bergman kernel Tr to T^ is also
given by Formula (16). We still use the notation B(z, Q for the extension. Moreover,
with the same modification of the proof of Corollary 3.1 as in the proof of the last
proposition, one can show that, for every £ e Tr , the function B(.,C) is in the space
/42(Tr). As a consequence, we get the following.

Proposition 3.2. Let F be a function in A2(Tr), and let F be its extension to A2^^).
Then, for ze Tr,

F(z)= / B(z,QF(Qdv(Q.

Let us now give the proof of Theorem 3. Let us write Kc(t) = /^ e"2"""'du. Then,
using Theorem 1, it is clear that the inequality Kc < CK and the Proposition 3.1 have
as a consequence that the extension of each function in A2{Tr) belongs to A2(Tyc).
Conversely, assume that the restriction is onto. Then, using the closed graph theorem
and Theorem 1, we know that there exists a constant C such that for each positive
function /

f \f{t)\2Kc(t)dt < cj^\f(t)\2K(t)dt.

The inequality Kc < CK follows at once.
Let us give counter-examples for which the Bergman spaces of Tr and 7}* do not

coincide. Let us first give an example in two dimensions for which the first ones
contain non zero functions while the second ones do not. Take

r = {y = (yi,y2); 0 < y, < exp(-yi)}.

Then P = {y — (y,, y2); 0 < y, < 1} contains straight lines, and by Proposition 2.2
A'iJrc) — {0}. It is easy to compute K{t), and show that it is finite for every t. So
Ap(Tr) contains non zero functions.

Finally let us restrict to cones: in this case Proposition 2.3 asserts that either the
Bergman spaces of 7f and Tp« contain both non zero functions, or all these spaces are
reduced to {0}. We can only have a counterexample using Theorem 3. Let us give the
example of a cone in E3 for which there is no constant C such that Kc < CK. Take

r = {y = Cy,, v2, y3); 0 < y2 < y3, 0 < y,y3 < y\}.

Then

rc = {y = (yt,y2, y3); 0 < y, < y2 < y3}-
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An easy computation gives K(0) < +00 while Kc(0) = +00, as well as the non existence
of a constant C.

Remark 3.1. All the results given in this paper are still valid when the Lebesgue
measure dy on the cone F is replaced by some weighted measure p(y)dy, under the
assumption that p is a measurable positive function which is bounded below on every
compact by some strictly positive constant.
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