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Abstract

In this paper, we construct several new permutation polynomials over finite fields. First, using the
linearised polynomials, we construct the permutation polynomial of the form

∑k
i=1(Li(x) + γi)hi(B(x))

over Fqm , where Li(x) and B(x) are linearised polynomials. This extends a theorem of Coulter, Henderson
and Matthews. Consequently, we generalise a result of Marcos by constructing permutation polynomials
of the forms xh(λ j(x)) and xh(µ j(x)), where λ j(x) is the jth elementary symmetric polynomial of
x, xq, . . . , xqm−1

and µ j(x) = TrFqm /Fq (x j). This answers an open problem raised by Zieve in 2010. Finally,
by using the linear translator, we construct the permutation polynomial of the form L1(x) + L2(γ)h( f (x))
over Fqm , which extends a result of Kyureghyan.
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1. Introduction

Let Fq denote the finite field of characteristic p with q elements (q = pn, n ∈ N), and
let F∗q := Fq \ {0}. Let Fq[x] be the ring of polynomials over Fq in the indeterminate x.
If the polynomial f (x) ∈ Fq[x] induces a bijective map from Fq to itself, then f (x)
is called a permutation polynomial of Fq. Permutation polynomials have been an
interesting subject of study in the area of finite fields for many years. Particularly,
permutation polynomials have many important applications in coding theory [5],
cryptography [10] and combinatorial design theory. Information about properties,
constructions and applications of permutation polynomials may be found in Lidl and
Niederreiter [7].

Let m > 1 be a given integer. By TrFqm /Fq (x) we denote the trace from Fqm to Fq,
that is,

TrFqm /Fq (x) = x + xq + · · · + xqm−1
.
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A polynomial of the form

L(x) =

m−1∑
i=0

aix
qi
∈ Fqm [x]

is called a linearised polynomial over Fqm . It is well known that a linearised polynomial
L(x) is a permutation polynomial of Fqm if and only if the set of roots in Fqm of L(x)
equals {0} (see, for example, [7, Theorem 7.9]). Throughout, L(x) denotes a linearised
polynomial.

To find new classes of permutation polynomials is one of the open problems raised
by Lidl and Mullen [6]. There has been significant progress in finding new permutation
polynomials. Wan and Lidl [11], Masuda and Zieve [9] and Zieve [13] constructed
permutation polynomials of the form xr f (x(q−1)/d) and studied their group structure.
Zieve [12] characterised the permutation polynomial of the form xr(1 + xv + x2v +

· · · + xkv)t. Ayad et al. [1] obtained some permutation binomials and proved the
bound of p, if axn + xm permutes Fp. A number of classes of permutation polynomials
related to the trace functions were constructed. Recently, Coulter et al. [3] constructed
the permutation polynomials of the form L(x) + xh(TrFqm /Fq (x)). Marcos [8] obtained
permutation polynomials of the form bL(x) + γh(TrFqm /Fq (x)). Zieve [14] presented
rather more general versions of the first four constructions from [8]. But how to extend
the fifth construction from [8] to a more general version is an interesting open problem
raised in [14]. For some other permutation polynomials constructed by using the trace
function, readers are referred to [2].

The main goal of the present paper is to construct new classes of permutation
polynomials over finite fields. In Section 2, we construct some permutation
polynomials using linearised polynomials. In fact, we obtain a characterisation so that∑k

i=1(Li(x) + γi)hi(B(x)) ∈ Fqm [x], with Li(x) and B(x) being linearised polynomials, is
a permutation polynomial. See Theorem 2.2 below, which extends the results obtained
by Coulter et al. [3] and by Marcos [8], respectively.

For any positive integer j, let µ j(x) = TrFqm /Fq (x j) ( j ≤ qm − 1) and λ j(x) =

σ j(x, xq, . . . , xqm−1
) ( j ≤ m − 1), where σ j(x, xq, . . . , xqm−1

) is the jth elementary
symmetric polynomial of x, xq, . . . , xqm−1

. Marcos [8] used the function λ(x) (equal to
λ2(x) or µ2(x)) to construct permutation polynomials and only obtained some sufficient
conditions for xh(λ(x)) to be a permutation polynomial. In Section 3, using λ j(x) and
µ j(x), we extend this result of Marcos [8] by giving sufficient and necessary conditions
for xh(λ j(x)) and xh(µ j(x)) to be permutation polynomials. This answers an open
problem raised by Zieve [14].

In Section 4, by using the technique of linear translator (see Section 4 for its
definition), we construct the permutation polynomial of the form L1(x) + L2(γ)h( f (x)).
This result generalises one of the main results in [4].

2. Permutation polynomials constructed by the linearised polynomials

In this section, we construct a new class of permutation polynomials involving
linearised polynomials. We need the following results in the sequel.
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L 2.1. Let B(x) ∈ Fq[x] and L(x) ∈ Fq[x] be linearised polynomials. Then, for
any a ∈ Fq and x and y ∈ Fqm , aB(x) = B(ax), B(x + y) = B(x) + B(y) and B(L(x)) =

L(B(x)).

We can now give the first main result of this paper.

T 2.2. For 1 ≤ i ≤ k, let γi ∈ Fqm and let Li(x), B(x) ∈ Fq[x] be linearised
polynomials. Let hi(x) ∈ Fqm [x] be such that hi(B(Fqm )) ⊆ Fq. Then F(x) :=∑k

i=1(Li(x) + γi)hi(B(x)) is a permutation polynomial over Fqm if and only if each of
the following is true.

(1)
∑k

i=1(Li(x) + B(γi))hi(x) permutes B(Fqm ).
(2) For any y ∈ B(Fqm ),

∑k
i=1 Li(x)hi(y) = 0 and B(x) = 0 with x ∈ Fqm are both true if

and only if x = 0.

P. First we show the sufficiency part. Assume that (1) and (2) hold. Suppose that
there exist two elements α, β ∈ Fqm such that F(α) = F(β). Thus B(F(α)) = B(F(β)).
That is,

B
( k∑

i=1

(Li(α) + γi)hi(B(α))
)

= B
( k∑

i=1

(Li(β) + γi)hi(B(β))
)
. (2.1)

Then Lemma 2.1 applied to both sides of (2.1) gives us that

k∑
i=1

(Li(B(α)) + B(γi))hi(B(α)) =

k∑
i=1

(Li(B(β)) + B(γi))hi(B(β)). (2.2)

Since
∑k

i=1(Li(x) + B(γi))hi(x) permutes B(Fqm ), it follows from (2.2) that B(α) = B(β).
Write t := B(α) = B(β). Then t ∈ B(Fqm ) and B(α − β) = 0. Since F(α) = F(β),

k∑
i=1

Li(α − β)hi(t) = 0.

Now applying condition (2) to α − β, we obtain that α − β = 0 which implies that
α = β. Hence F(x) is a permutation polynomial over Fqm . The sufficiency part is
proved.

Let us now show the necessity part. Let F(x) be a permutation polynomial of Fqm .
First we prove that (1) is true. To do so, we let B(x) act on F(x) for x ∈ Fqm , and then
by Lemma 2.1 we get that

B(F(x)) =

k∑
i=1

(Li(B(x)) + B(γi))hi(B(x)). (2.3)

Since F(x) is a permutation polynomial of Fqm ,

|{B(F(x)) : x ∈ Fqm}| = |{B(x) : x ∈ Fqm}| = |B(Fqm )|. (2.4)
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Hence by (2.3) and (2.4),∣∣∣∣∣{ k∑
i=1

(Li(B(x)) + B(γi))hi(B(x)) : x ∈ Fqm

}∣∣∣∣∣ = |B(Fqm )|.

This implies that
∑k

i=1(Li(x) + B(γi))hi(x) permutes B(Fqm ). Thus (1) is proved.
It remains to show that (2) is true. For this purpose, we assume that for certain

y ∈ B(Fqm ) and x ∈ Fqm , we have
∑k

i=1 Li(x)hi(y) = 0 and B(x) = 0. We can take two
elements α, β ∈ Fqm satisfying that B(α) = B(β) = y. Then B(α − β) = 0. But B(x) = 0.
Therefore, α − β and x are both in the kernel ker(B) of B(x). So we can write
x = α − β + z for some z ∈ ker(B). Since

∑k
i=1 Li(x)hi(y) = 0,

k∑
i=1

Li(α − β + z)hi(y) = 0. (2.5)

On the other hand, since z ∈ ker(B), we have B(z) = 0, which implies that B(β − z) =

B(α) = y. It then follows immediately that

F(α) − F(β − z) =

k∑
i=1

(Li(α) + γi)hi(B(α)) −
k∑

i=1

(Li(β − z) + γi)hi(B(β − z))

=

k∑
i=1

Li(α − β + z)hi(y).

(2.6)

Hence, by (2.5) and (2.6), we derive that F(α) = F(β − z). Since F(x) is a permutation
polynomial of Fqm , we obtain that α − β + z = 0. Namely, x = 0. Thus (2) is true. The
necessity part is proved.

This completes the proof of Theorem 2.2. �

As a special case of Theorem 2.2, we have the following result.

C 2.3. Let L1(x), L2(x) ∈ Fq[x] be linearised polynomials. Let h(x) ∈
Fq[x] and γ ∈ Fqm . Then F(x) := L1(x) + (L2(x) + γ)h(TrFqm /Fq (x)) is a permutation
polynomial over Fqm if and only if each of the following is true.

(1) L1(x) + (L2(x) + TrFqm /Fq (γ))h(x) ∈ Fq[x] is a permutation polynomial over Fq.
(2) For any y ∈ Fq, L1(x) + L2(x)h(y) = 0 and TrFqm /Fq (x) = 0 with x ∈ Fqm are both

true if and only if x = 0.

From Corollary 2.3, we derive the following consequences.

C 2.4 [3]. Let F(x) := L(x) + xh(TrFqm /Fq (x)) with L(x) ∈ Fq[x] being a
linearised polynomial and h(x) ∈ Fq[x]. Then F(x) is a permutation polynomial over
Fqm if and only if each of the following is true.

(1) L(x) + xh(x) is a permutation polynomial over Fq.
(2) For any y ∈ Fq, we have that x ∈ Fqm satisfies L(x) + xh(y) = 0 and TrFqm /Fq (x) = 0

if and only if x = 0.

[4] Constructing permutation polynomials over finite fields 423
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P. This follows from Corollary 2.3 by setting L1(x) = L(x), L2(x) = x and
γ = 0. �

C 2.5 [8]. Let L(x) = a0x + a1xq + · · · + am−1xqm−1
∈ Fq[x] be a linearised

polynomial which permutes Fqm . Let h(x) ∈ Fq[x] and γ ∈ Fqm . Then the polynomial
F(x) := L(x) + γh(TrFqm /Fq (x)) permutes Fqm if and only if the polynomial (a0 + a1 +

· · · + am−1)x + TrFqm /Fq (γ)h(x) permutes Fq.

P. Since L(x) is a permutation of Fqm , we have that for any x ∈ Fqm , L(x) = 0 if
and only if x = 0. So by Corollary 2.3 we know that F(x) is a permutation polynomial
over Fqm if and only if L(x) + TrFqm /Fq (γ)h(x) is a permutation polynomial over Fq.

On the other hand, if x ∈ Fq, we have L(x) = (a0 + a1 + · · · + am−1)x. It then follows
that F(x) is a permutation polynomial over Fqm if and only if (a0 + a1 + · · · + am−1)x +

TrFqm /Fq (γ)h(x) is a permutation polynomial over Fq, as desired. �

We now give an example to illustrate Corollary 2.3.

E 2.6. Let Fqm = F8m with m > 1 an odd integer. Let h(x) = x3 − ax, L1(x) =

a2x and L2(x) = x2, where a ∈ F∗8. Then L1(x) + L2(x)h(x) = D5(x, a), the Dickson
polynomial of degree five over F8. Since gcd(5, q2 − 1) = 1, by [7, Theorem 7.16] we
know that D5(x, a) is a permutation polynomial over F8. That is, L1(x) + L2(x)h(x) =

x5 − ax3 + a2x is a permutation polynomial over F8. Let y ∈ F8 be any element
and x ∈ Fqm satisfy that TrFqm /F8 (x) = 0 and L1(x) + L2(x)h(y) = 0. If h(y) = 0, then
TrFqm /F8 (x) = 0 and L1(x) = 0. From L1(x) = a2x = 0, we derive that x = 0. If h(y) , 0,
it then follows from L1(x) + L2(x)h(y) = 0 that x = 0 or x = a2/(y3 − ay) , 0. Assume
that x = a2/(y3 − ay). Since m is odd and a2/(y3 − ay) , 0,

TrFqm /F8 (x) = TrFqm /F8

( a2

y3 − ay

)
=

ma2

y3 − ay
, 0.

Thus we conclude that for any y ∈ F8, TrFqm /F8 (x) = 0 and L1(x) + L2(x)h(y) = 0 if and
only if x = 0. Now, by Corollary 2.3,

L1(x) + L2(x)h(TrFqm /F8 (x)) = a2x + x2(TrFqm /F8 (x)3 − aTrFqm /F8 (x))

is a permutation polynomial over Fqm .

3. Permutation polynomials constructed by the elementary
symmetric polynomials

Let m and j be positive integers such that j ≤ m. Let σ j(x1, . . . , xm) denote the jth
elementary symmetric polynomial in m variables x1, . . . , xm. That is,

σ j(x1, . . . , xm) =
∑

1≤i1<···<i j≤m

xi1 · · · xi j .

424 X. Qin and S. Hong [5]
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Then we can define the polynomial λ j(x) by

λ j(x) := σ j(x, xq, . . . , xqm−1
) =

∑
0≤i1<i2<···<i j≤m−1

xqi1 +···+qi j
.

Marcos [8] used the polynomials λ2(x) and TrFqm /Fq (x2) to give two sufficient
conditions for xh(λ2(x)) and xh(TrFqm /Fq (x2)) to be permutation polynomials.

In this section, we construct two new classes of permutation polynomials by using
the functions λ j(x) and TrFqm /Fq (x j). We begin with the following two lemmas.

L 3.1. Let α ∈ Fqm and a ∈ Fq. Then for any positive integer j with j ≤ m, we
have λ j(x) ∈ Fq[x], λ j(α) ∈ Fq, λ j(αq) = λ j(α) and λ j(aα) = a jλ j(α).

P. By the definition of λ j, one can easily check that Lemma 3.1 is true. �

L 3.2. For any integer j satisfying that 1 ≤ j ≤ m and gcd( j, q − 1) = 1, the
mapping λ j : Fqm → Fq is onto.

P. First we show that there is an α ∈ Fqm such that λ j(α) , 0. Since λ j(x) has at
most

deg(λ j(x)) = qm− j + · · · + qm−1 ≤ 1 + q + · · · + qm−1 =
qm − 1
q − 1

< qm = |Fqm |

roots in Fqm , there exists an element α ∈ Fqm such that λ j(α) , 0. Now pick an α ∈ Fqm

such that a := λ j(α) , 0. In what follows, we show that for any b ∈ Fq, we can find an
element β ∈ Fqm such that λ j(β) = b.

Since gcd( j, q − 1) = 1, by [7, Theorem 7.8] we know that ax j is a permutation
polynomial over Fq. It follows that for any given b ∈ Fq, there exists an element c ∈ Fq

such that b = ac j. Since λ j(α) = a, letting β := cα gives us that

λ j(β) = λ j(cα) = c jλ j(α) = ac j = b,

as desired. Thus Lemma 3.2 is proved. �

Using the polynomials λ j(x), we can give the following characterisation of
permutation polynomials of the form xh(λ j(x)), which is the second main result of
this paper.

T 3.3. Let m and j be positive integers such that j ≤ m−1 and gcd( j, q−1) = 1.
Let h(x) ∈ Fq[x]. Then xh(λ j(x)) is a permutation polynomial over Fqm if and only if
h(0) , 0 and xh(x) j permutes Fq.

P. Write F(x) := xh(λ j(x)). First we show the sufficiency part. Since xh(x) j

permutes Fq, we obtain that δh(δ) j , 0 for δ ∈ F∗q. We get that h(δ) , 0 for δ ∈ F∗q.
Hence h(δ) , 0 for all δ ∈ Fq.

Now we choose two elements α, β ∈ Fqm such that F(α) = F(β), namely,

αh(λ j(α)) = βh(λ j(β)). (3.1)

[6] Constructing permutation polynomials over finite fields 425
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Then λ j(F(α)) = λ j(F(β)). Using Lemma 3.1,

λ j(α)h(λ j(α)) j = λ j(β)h(λ j(β)) j. (3.2)

Since xh(x) j permutes Fq, (3.2) tells us that λ j(α) = λ j(β). It then follows from (3.1)
and the fact that h(δ) , 0 for all δ ∈ Fq that α = β. Hence F(x) is a permutation
polynomial over Fqm . The sufficiency part is proved.

Let us now show the necessity part. Assume that F(x) is a permutation polynomial
over Fqm . First we prove that h(0) , 0. By Lemma 3.2, we know that the mapping λ j

is onto if gcd( j, q − 1) = 1. For 1 ≤ j ≤ m − 1,

deg λ j(x) = qm− j + · · · + qm−1 ≤ q + · · · + qm−1.

Thus, for any a ∈ F∗q, the equation λ j(x) = a has at most q + · · · + qm−1 roots in Fqm .
Then the equation λ j(x) = 0 has at least qm − (q − 1)(q + · · · + qm−1) = q roots in Fqm .
Hence λ j(x) = 0 has a nonzero root in Fqm . We pick α ∈ F∗qm such that λ j(α) = 0. Then
αh(0) = αh(λ j(α)) = F(α). Since F(x) is a permutation polynomial over Fqm and α is
nonzero, we have F(α) , 0. That is, αh(0) , 0. Thus h(0) , 0.

It remains to show that xh(x) j permutes Fq. On the one hand, by Lemma 3.1,

λ j(F(x)) = λ j(x)h(λ j(x)) j. (3.3)

In addition, applying Lemma 3.2, we know that for all integers j with 1 ≤ j ≤ m − 1
and gcd( j, q − 1) = 1, λ j(x) is a mapping from Fqm onto Fq. This implies that

{xh(x) j : x ∈ Fq} = {λ j(x)h(λ j(x)) j : x ∈ Fqm}. (3.4)

Since F(x) permutes Fqm , it then follows from (3.3) and (3.4) that

|{xh(x) j : x ∈ Fq}| = |{λ j(x)h(λ j(x)) j : x ∈ Fqm}|

= |{λ j(F(x)) : x ∈ Fqm}|

= |{λ j(x) : x ∈ Fqm}| = q.

Hence xh(x) j permutes Fq. The necessity part is proved.
The proof of Theorem 3.3 is complete. �

Now define

µ j(x) :=
m−1∑
i=0

x jqi
= TrFqm /Fq (x j) for 1 ≤ j ≤ qm − 1.

Then µ j(x) ∈ Fq[x], µ j(α) ∈ Fq and µ j(aα) = a jµ j(α) for all a ∈ Fq and α ∈ Fqm . Also
µ j(x) is a mapping from Fqm onto Fq if gcd( j, qm − 1) = 1. Replacing λ j(x) by µ j(x),
we can characterise the permutation polynomials of the form xh(µ j(x)) as follows.
Theorem 3.4 is the third main result of this paper and its proof is similar to that of
Theorem 3.3, and so we just give a sketch of the proof.

426 X. Qin and S. Hong [7]
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T 3.4. Let m and j be positive integers such that j ≤ qm − 1 and
gcd( j, qm − 1) = 1. Let h(x) ∈ Fq[x]. Then xh(µ j(x)) is a permutation polynomial over
Fqm if and only if h(0) , 0 and xh(x) j permutes Fq.

P. We here merely prove that if xh(µ j(x)) is a permutation polynomial over Fqm ,
then h(0) , 0. The other part of the proof is similar to that of Theorem 3.3.

Assume that xh(µ j(x)) is a permutation polynomial over Fqm . Clearly, there
exists a nonzero element θ such that TrFqm /Fq (θ) = 0. Since gcd( j, qm − 1) = 1, x j

permutes Fqm . So there is a nonzero element ω ∈ Fqm such that ω j = θ. Therefore,
TrFqm /Fq (ω j) = 0, that is, µ j(ω) = 0. Then ωh(0) = ωh(µ j(ω)). Since xh(µ j(x)) is a
permutation polynomial over Fqm and ω is nonzero, we have ωh(0) , 0. Thus h(0) , 0.
Theorem 3.4 is proved. �

Picking j = 2, then the sufficiency part of Theorems 3.3 and 3.4 becomes [8,
Proposition 12]. Evidently, Theorems 3.3 and 3.4 give an answer to the open problem
raised by Zieve in [14].

4. Permutation polynomials constructed by linear translators

The main idea of this section is to construct permutation polynomials over finite
fields with linear translators. We first recall the definition of linear translators as
follows.

D 4.1 [4]. Let f : Fqm → Fq, a ∈ Fq and α be a nonzero element in Fqm . If
f (x + uα) − f (x) = ua for all x ∈ Fqm and u ∈ Fq, then we say that α is an a-linear
translator of the function f . In particular, a = f (α) − f (0).

Using linear translators to construct permutation polynomials, we are now in a
position to give the fourth main result of this paper.

T 4.2. Let L1(x) ∈ Fqm [x] be a linearised permutation polynomial of Fqm and
L2(x) ∈ Fqm [x] be a linearised polynomial of Fqm . Let b ∈ Fq, γ ∈ Fqm , h : Fq→

Fq, f : Fqm → Fq be surjective and L−1
1 L2(γ) be a b-linear translator of f . Then

L1(x) + L2(γ)h( f (x)) is a permutation polynomial of Fqm if and only if either L2(γ) = 0
or x + bh(x) is a permutation polynomial of Fq.

P. Write g(x) := x + bh(x) and G(x) := L1(x) + L2(γ)h( f (x)).
First we show the sufficiency part. Since L1(x) is a permutation polynomial

over Fqm , so is G(x) if L2(γ) = 0. Assume that L2(γ) , 0 and g(x) is a permutation
polynomial of Fq. In the following, we show that G(x) is a permutation polynomial of
Fqm . Take any two elements x1, y1 ∈ Fqm such that G(x1) = G(y1). That is,

L1(x1) + L2(γ)h( f (x1)) = L1(y1) + L2(γ)h( f (y1)), (4.1)

which implies that L1(x1 − y1) = aL2(γ), where a := h( f (y1)) − h( f (x1)) ∈ Fq. But
the assumption that L1(x) is a permutation polynomial over Fqm implies that there

[8] Constructing permutation polynomials over finite fields 427
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exists a unique element α ∈ Fqm such that L1(α) = aL2(γ). Thus α = aL−1
1 L2(γ) and

L1(α) = L1(x1 − y1). It follows immediately that α = x1 − y1, that is,

x1 = y1 + aL−1
1 L2(γ). (4.2)

So (4.1) gives us that

L1(aL−1
1 L2(γ)) + L2(γ)h( f (y1 + aL−1

1 L2(γ))) = L2(γ)h( f (y1)), (4.3)

which is equivalent to

aL2(γ) + L2(γ)h( f (y1 + aL−1
1 L2(γ))) = L2(γ)h( f (y1)). (4.4)

By the assumption, we have L2(γ) , 0. So (4.4) is equivalent to

a + h( f (y1 + aL−1
1 L2(γ))) = h( f (y1)). (4.5)

Since L−1
1 L2(γ) is the b-linear translator of f , we have f (y1 + aL−1

1 L2(γ)) − f (y1) = ab.
Hence (4.5) is equivalent to

a + h( f (y1) + ab) = h( f (y1)). (4.6)

Clearly, (4.6) is equivalent to

( f (y1) + ab) + bh( f (y1) + ab) = f (y1) + bh( f (y1)).

In other words, (4.6) is equivalent to

g( f (y1) + ab) = g( f (y1)). (4.7)

We claim that a = 0. In fact, if b = 0 then, by (4.6), a = 0, as claimed. If b , 0,
then it follows from the assumption that g(x) is a permutation polynomial of Fq, and
from (4.7) that a = 0. The claim is proved. Then by the claim and (4.2), we derive
immediately that x1 = y1. This implies that G(x) is a permutation polynomial of Fqm .
The sufficiency part is proved.

Now let us prove the necessity part. Let G(x) be a permutation polynomial of Fqm .
Suppose that L2(γ) , 0. In what follows we show that g(x) is a permutation polynomial
of Fq. If b = 0, then g(x) = x, which is, of course, a permutation polynomial of Fq. If
b , 0, then we choose any two elements u1 ∈ Fq and u ∈ Fq such that

g(u1) = g(u1 + bu). (4.8)

Since f is surjective, there exists an element v1 ∈ Fqm such that u1 = f (v1). Then (4.8)
is equivalent to

g( f (v1)) = g( f (v1) + bu). (4.9)

Replacing y1 and a by v1 and u, respectively, then (4.7) becomes (4.9). Thus the
equivalence of (4.3) and (4.7) applied to (4.9) gives us that

L1(v1) + L2(γ)h( f (v1)) = L1(v1 + uL−1
1 L2(γ)) + L2(γ)h( f (v1 + uL−1

1 L2(γ))).
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Namely, G(v1) = G(v1 + uL−1
1 L2(γ)). But G(x) is a permutation polynomial of Fqm .

So v1 = v1 + uL−1
1 L2(γ). Since L1(x) is a permutation polynomial and L2(γ) , 0, we

have L−1
1 L2(γ) , 0. Hence u = 0. Thus g(x) is a permutation polynomial of Fq. The

necessity part is proved.
This completes the proof of Theorem 4.2. �

Letting L2(x) = L1(x), Theorem 4.2 gives the main result of Kyureghyan in [4].

C 4.3 [4]. Let L(x) ∈ Fqm [x] be a linearised permutation polynomial of
Fqm . Let b ∈ Fq, γ ∈ Fqm , h : Fq→ Fq, f : Fqm → Fq be surjective and γ be a b-linear
translator of f . Then L(x) + L(γ)h( f (x)) is a permutation polynomial of Fqm if and
only if x + bh(x) is a permutation polynomial of Fq.
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