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We present a statistical characterization of the interaction between a planar shock and a
finite-diameter, cylindrical column of dense gas based on three-dimensional, large-eddy
simulation results. In the simulation, the column of gas is initially inclined at an angle
α0 with respect to the shock plane. Effects of the initial column angle on the mixing
characteristics are examined at Mach number 2.0 for column incline angles 1◦, 5◦, 10◦
and 30◦. Mean velocity profiles show that the column angle affects the gas velocity
components in the vertical plane, but not in the spanwise direction. The gas undergoes
higher initial upward acceleration at larger initial column incline angles. With time,
the gas motion tends to become one-dimensional in the streamwise direction. Initially,
velocity fluctuations are most intense within the interior of the column, but concentrate
near the column leading edge over time. At high wavenumbers κ , the turbulent kinetic
energy spectra follow a power-law scaling of κ−1. The structure functions of the mass
fraction do not clearly demonstrate power-law scaling except at early times for α0 =
30◦, manifesting overall trends very similar to those observed in earlier experiments.
Probability distributions of the mass fraction show independence of the mean and
the standard deviation of the mixed gas on α0. The column angle was also found to
have little effect on the mixing efficiency characterized by the molecular mixedness.
Velocity components in the streamwise and transverse directions tend towards a bimodal
distribution for larger α0.
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1. Introduction

The Richtmyer–Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1969) is generated
when a shock passes through a perturbed interface separating two gases with different
densities. The instability is formed by misalignment of the pressure gradient across the
shock and the density gradient across the interface. This misalignment results in the
formation of baroclinic vorticity, which then leads to the growth of perturbations at
the interface, and mixing of the two gases (Brouillette 2002). As these perturbations
grow, secondary, shear-driven instabilities develop, which cause smaller-scale mixing to
occur (Vorobieff et al. 2004). See the review by Brouillette (2002) for a comprehensive
description of the basic physical processes involved in the RMI. The recent reviews
by Zhou (2017a,b) provide an extensive discussion on the applications, properties and
analytical methods for flows exhibiting the RMI as well as the Rayleigh–Taylor and
Kelvin–Helmholtz instabilities.

The process of shock-driven mixing by RMI occurs in flows at a range of scales.
At the largest scales, shocks from supernova explosions propagate through gas and
cosmic dust (Mendis & Rosenberg 1994; Woitke 2006; Bocchio, Jones & Slavin 2014),
leading to formation of structures on the scale of light-years (Chevalier, Blondin &
Emmering 1992; Kane, Drake & Remington 1999) and allowing for the creation of heavy
elements. In contrast, inertial confinement fusion experiments produce flows on the scale
of micrometres, where shock-driven mixing has the undesirable effect of dissipating
energy, thereby reducing fuel compression and lowering fusion yield (Lindl, McCrory
& Campbell 1992). The RMI can also be used to enhance the mixing of gaseous or liquid
fuels in scramjet engines (Yang, Kubota & Zukoski 1993) and is essential for the operation
of pulse detonation and rotating detonation engines (Huang et al. 2012).

Earlier experimental studies of the RMI have focused on the interaction of a planar
shock with a single, sinusoidally perturbed interface (Meshkov 1969). Variations from this
configuration include shock interactions with perturbed, planar interfaces such as those
in the experiments of Rasmus et al. (2019) and V-shaped interfaces that were studied
experimentally by Zhai et al. (2016). Experimental studies have also been conducted at
the Atomic Weapons Establishment on the interaction of a shock with a finite-width
interface featuring a ‘chevron’ shaped oblique perturbation by Smith et al. (2001), and
of half-height interfaces by Holder & Barton (2004). The related numerical work by Hahn
et al. (2011) studies the effect of additional perturbations on the oblique interfaces. These
configurations are essentially two-dimensional (2-D), and the presence of the oblique
interfaces leads to shock-driven deposition of vorticity on the interfaces, which leads to
shear-driven instabilities.

Additional variations of the RMI include experiments conducted at Los Alamos
National Labs, involving a shock interacting with one or more circular cylinders with their
axes oriented parallel to the shock (Tomkins et al. 2003; Vorobieff et al. 2003, 2004;
Kumar et al. 2005). These flow configurations do not feature shear-driven instabilities as
their primary mechanism, but they do result in the formation of strong counter-rotating
vortex pairs.

The variation of interest in this work has been studied in shock tube experiments at
the University of New Mexico conducted by Olmstead et al. (2017b), which involved
the interaction of a planar shock with an inclined circular cylinder of heavy gas. This
study found that the RMI caused a counter-rotating vortex pair in the cross-sectional
plane normal to the cylinder axis. However, on the column surface, it was discovered
that the shock caused a Kelvin–Helmholtz instability (KHI) to form. This type of
KHI, driven directly by the passage of the shock, has been named the shock-driven
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KHI (SDKHI). Olmstead et al. (2017b) described an apparent correlation between
the Mach number and the KHI wavelength, and proposed a scaling mechanism that
could be used to compare experiments at various initial column angles. An additional
study by Olmstead et al. (2017a) used the same experimental data to analyse structure
functions of scalar intensity maps. The power-law scalings exhibited by these structure
functions deviated from those proposed by the Obukhov–Corrsin and Kolmogorov
theories (Sreenivasan 1996; Villermaux, Innocenti & Duplat 2001; Celani et al. 2005).
However, in-depth characterization of the effects of the SDKHI on the transition to
turbulence and mixing was not performed in the previous studies due to limitations of
existing experimental techniques caused by the large range of scales involved and the
impulsive nature of the RMI and SDKHI.

Popular experimental techniques used to study flows exhibiting RMI and SDKHI
include planar laser-induced florescence (PLIF) and particle image velocimetry (PIV).
These techniques present challenges to detailed studies of transition and mixing because
they are limited to collecting data from a single plane at a given time. Certain important
quantities, e.g. pressure fields, also cannot be measured. PLIF requires diluting the test
gas with a suitable tracer and has limitations in quantifying planar velocity fields with
velocimetry techniques (Palmer & Hanson 1994). PIV can provide velocity measurements
but can suffer from particles not following the flow at high speed and interfering with
the flow physics (Martins et al. 2021): adding tracer-like particles to shock-accelerated
flow can produce shock-driven multiphase instability (Vorobieff et al. 2011), and may
not capture fine-scale fluctuating velocities. The experimental studies of Olmstead et al.
(2017a) in particular could not use PIV at higher Mach numbers due to both particle lag
and seeding effects, and could not extract velocity fields using appropriate techniques
specifically developed for PLIF, such as image correlation velocimetry (Tokumaru &
Dimotakis 1995; Asay-Davis et al. 2009) because of insufficient temporal resolution.

Numerical simulations are often used to complement experimental studies by providing
additional data inaccessible to experiments. Direct numerical simulations can produce
detailed flow quantities at all scales of interest, but such simulations are still unfeasible for
these types of flows due to their high computational costs. A more reasonable, commonly
used alternative is large-eddy simulations (LES).

Applicability of LES to the flows with RMI was tested by Thornber, Groom & Youngs
(2018), including comparison of the results obtained with different codes. The study
found excellent agreement amongst all the codes at high grid resolutions for various
considered flow characteristics. Tritschler et al. (2014) determined that gas composition in
the mixing layer was predicted accurately with different LES approaches when compared
to experiments. Some of the highest resolution LES of RMI to date have been conducted
by Wong, Livescu & Lele (2019). In particular, they found that at late times, after re-shock,
the flow resembled that of the Batchelor-type decaying turbulence. The early development
of RMI was also considered in high-resolution simulations by Groom & Thornber (2019).

However, only a few simulations of RMI appearing in the shock–gas column interaction
have been conducted previously (Palekar, Vorobieff & Truman 2007; Yang et al. 1993).
These studies have mostly analysed large-scale flow features such as the interface width
and the growth rate for 2-D circular gas clouds.

In our group, implicit LES (ILES) have been conducted for 2-D curtains (Romero et al.
2021a,c) and three-dimensional (3-D) heavy-gas columns (Romero et al. 2021b, 2022)
to verify the mechanism leading to SDKHI and to analyse the effect of the flow
dimensionality on the shock–column interaction. Simulations were run at Mach numbers
ranging from 1.13 to 2.0. The gas curtains and columns were inclined at angles varying
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from 10◦ to 45◦ with respect to the shock. The simulation results showed that the vorticity
field produced by the shock after it passed through the gas column is consistent with a
shear-driven flow, proving that the waves formed on the column surface were, in fact,
Kelvin–Helmholtz waves. These wavelengths were found to be sensitive to the post-shock
column diameter and were thus influenced implicitly by parameters such as the Mach
number and the initial column/curtain angle. Furthermore, while SDKHI was observed
to occur in both 2-D and 3-D simulations, 3-D effects were found to be important for
the correct reproduction of the flow morphology and the interface growth rates seen in
experiments.

The grid resolutions used in our previous simulations were not sufficient to conduct a
detailed statistical characterization of the effects of SDKHI on transition to turbulence and
mixing. The present study aims to overcome this limitation by conducting high-resolution
ILES for the shock passing through a 3-D inclined cylindrical column of heavy gas. The
simulation results are used to investigate the effect of SDKHI on the turbulent transition
and mixing that occur in such a flow. In the simulations, a column of heavy gas (sulfur
hexafluoride, SF6) surrounded by air is inclined at a range of angles α0 = 1◦, 5◦, 10◦, 30◦
with respect to an oncoming shock with Mach number 2.0. The considered range of
angles and the Mach number are chosen to facilitate comparison with the experiments of
Olmstead et al. (2017b). The ensuing analysis compares mixing statistics with an emphasis
on the mixing width and other integral mixing metrics. Energy spectra and anisotropy are
also analysed for each case. In addition, scalar statistics in the vertical plane are compared
to published experimental data to investigate the anomalous scaling reported by Olmstead
et al. (2017a).

Simulations were performed with FIESTA, a graphics processing unit (GPU)
accelerated flow solver developed at the University of New Mexico (Romero 2021) for
multi-species compressible flows.

2. Numerical method and set-up

2.1. Numerical method
In this study, results were obtained using the 3-D, two-species, compressible, viscous
transport equations in their conservative form. These equations consist of the continuity
equations for each gas species, equations for each momentum component, and the
conservation equation for specific total energy. The resulting system is represented by the
following three equations:

∂ρYi

∂t
+ ∇ · (ρuYi) = 0, (2.1)

∂ρu
∂t

+ ∇ · (ρuuT + pδ) = ∇ · τ , (2.2)

∂ρet

∂t
+ ∇ · [

(ρet + p)u
] = ∇ · (τ · u − q). (2.3)

Here, ρ is the density of the mixture; Yi is the mass fraction of species i, where Yi is
Ya for air and Ys for SF6; u is the 3-D velocity vector u = [u1, u2, u3], where 1, 2 and
3 are the streamwise (x), vertical (y) and spanwise (z) directions, respectively; p is the
static pressure; et is the specific total energy; τ is the viscous stress tensor; and q is the
conductive heat flux vector.
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The pressure of the gas mixture is computed with Dalton’s mixing law (Dalton 1802)
assuming ideal gas behaviour:

p = ρ (YsRsT + (1 − Ys)RaT) . (2.4)

The mixture temperature is obtained from the internal energy as follows:

T = e
Cvmix

, (2.5)

where e is the internal energy, and the mixture specific heat Cvmix is computed from the
species specific heats and mass fractions as

Cvmix = YsCv,s + (1 − Ys)Cv,a. (2.6)

Expressions for the specific heats of individual species are

Cv,a = Ra

γa − 1
, Cv,s = Rs

γs − 1
. (2.7a,b)

The gas constants for each individual species are

Ra = R
Ma

, Rs = R
Ms

, (2.8a,b)

where R is the universal gas constant, Ma is the molecular weight of air, and Ms is the
molecular weight of SF6.

The viscous stress tensor τ is

τ = 2μS + 1
3 μδ(∇ · u), (2.9)

where μ is the mixture viscosity computed as μ = Yaμa + Ysμs, and the strain rate tensor
is given by

S = 1
2

[∇u + (∇u)T]
. (2.10)

Subsection 3.1 presents a detailed discussion of the relevant viscous and scalar
dissipation length scales. Analysis of the results from the simulations indicates that the
viscous length scales may be resolved partially by the grid, while length scales relevant
to mass diffusion are not resolved. Therefore, the omission of mass diffusion terms
in the governing equations presented above is appropriate for the flow regime under
consideration.

The code solves fully dimensional equations. The specific values of parameters
utilized in the code are R = 8.314462 J kg−1 mol−1, Ma = 0.028966 kg mol−1, Ms =
0.14606 kg mol−1, μa = 2.928 × 10−5 kg m−1 s−1, μs = 1.610 × 10−5 kg m−1 s−1,
γa = 1.402 and γs = 1.092.

Advective terms are approximated with the fifth-order weighted essentially
non-oscillatory (WENO5) finite difference scheme (Jiang & Shu 1996; Ramani, Reisner &
Shkoller 2019a,b). The pressure gradient term and the strain rate tensor are approximated
using a fourth-order central difference scheme. The time scheme used is a low-storage,
second-order, explicit Runge–Kutta integrator (Williamson 1980).
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(b)(a)

Figure 1. (a) Domain dimensions and boundary conditions for the inclined gas column simulations.
(b) Illustration of the shock, the gas column, and the key cross-sectional planes.

2.2. Computational domain and discretization
Figure 1(a) depicts the computational domain used for the inclined gas column
simulations. In the figure, Lx = 0.4 m is the length of the domain, Ly = 0.08 m is its
height, and Lz = 0.05 m is its width.

The simulations used a uniform 10 000 × 2000 × 1250 Cartesian grid with dx = dy =
dz = 4.0 × 10−5 m. This resolution exceeds that of the simulations of Palekar et al.
(2007), and is similar to the values used in Wong et al. (2019) and Groom & Thornber
(2019).

The time step dt = 1 × 10−8 s was chosen so that the CFL number, based on the
maximum wave speed, did not exceed 0.1. Simulations were conducted for 80 000 time
steps, which is equivalent to 0.8 ms, similar to the experiments of Olmstead et al. (2017b).

2.3. Initial conditions
Solution of (2.1)–(2.3) requires defining pre-shock and post-shock initial states. In this
study, the pre-shock state was defined as atmospheric pressure and room temperature
similar to the conditions observed in the experiments (Olmstead et al. 2017b). The
post-shock conditions in air were determined from the inviscid normal shock relations for
Mach number M0 = 2.0. Table 1 lists the pre- and post-shock conditions used to initialize
these simulations. Throughout this paper, post-shock quantities are indicated with the
subscript ‘post’ where necessary to remove ambiguity.

The gas column is positioned ahead of the shock at an angle α0 to the shock, with the
distribution of SF6 mass fraction, Ys, across the diameter of the gas column described by a
Gaussian-based distribution with maximum concentration 1.0 at x = x0: Ys = exp[−(x −
x0)

2/2σ 2], where x0 is the location of the centre of the cylindrical column. In experiments,
steady-state initial conditions were established and well characterized (Wayne et al. 2015;
Olmstead et al. 2017a,b), allowing value σ = 1.71 to be chosen so that the initial gas
distribution used in the current simulations matched closely that seen in experiments. In
the absence of well-characterized experimental initial conditions, or when steady-state
initial conditions cannot be established experimentally, an alternative technique would be
to pre-compute an appropriate interface, such as was done in the gas curtain experiments
of Gowardhan & Grinstein (2011). The heavy-gas column diameter δ0 is 10.4 mm as

971 A26-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

66
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.660


Statistics of a shock/inclined gas column interaction

Pre-shock Post-shock

u1 0.0 m s−1 0.0 m s−1

u2 0.0 m s−1 434 m s−1

u3 0.0 m s−1 0.0 m s−1

et 2.14 × 105 J kg−1 4.56 × 105 J kg−1

ρ 1.16 kg m−3 3.09 kg m−3

Ya 1.0 1.0
Ys 0.0 0.0

Table 1. Pre- and post-shock values for the initial conditions on the primary variables in (2.1)–(2.3).
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Figure 2. Comparison of the gas species distribution used in the simulations with the experimental data from
Olmstead et al. (2017b). The location of the column diameter δ is indicated by vertical dashed lines.

measured at the location where the mass fraction of SF6 has value 0.01. Figure 2 compares
the gas distributions used in the simulations and in the experiments.

2.4. Boundary conditions
Boundary conditions for (2.1)–(2.3) include inflow/outflow boundaries (BCIO) at x = 0,
x = Lx, z = 0, z = Lz, and the reflective wall conditions (BCW ) at y = 0 and y = Ly as
seen in figure 1(a).

BCIO conditions are defined as

∂xρ(x, t) = 0, ∂xρ u(x, t) = 0, ∂xρ v(x, t) = 0, ∂xρ et(x, t) = 0, (2.11a–d)

where ∂x = ∂/∂x and ∂y = ∂/∂y.
BCW conditions are defined as

∂yρ(x, t) = 0, ∂yρ u(x, t) = 0, ρ v(x, t) = 0, ∂yρ et(x, t) = 0. (2.12a–d)

3. Results

The initial density distribution in the domain is shown in figure 3 for the centreline and
vertical planes (as defined in figure 1a). The green region to the left corresponds to the
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3.5

Density

1.2 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 5.9

(a)

(b)

(×100)

Figure 3. Initial conditions of the density in (a) the centreline plane and (b) the vertical plane used for
simulations of a shock interacting with the gas column initially inclined at α0 = 30◦.

T

R

1

Density (kg m–3)
10

(e)(b)(a) (d )(c)

Figure 4. Density plots of the vertical plane at various dimensionless times τ for a Mach 2.0 shock interacting
with an inclined circular column of heavy gas at initial angle α0 = 30◦ to the plane of the shock. Arrows
indicate the transmitted (T) and reflected (R) shocks. Times are (a) τ = 5.7, (b) τ = 20.7, (c) τ = 35.7,
(d) τ = 50.7 and (e) τ = 110.8.

shock wave and post-shock conditions, while the ambient, pre-shock conditions are seen
in blue. Pressure is distributed uniformly within each of the two regions. The inclined
gas column is seen to the right of the shock in the ambient region. The gas column is
inclined at angle α0 = 30◦ relative to the shock, similar to the experimental set-up used by
Olmstead et al. (2017b).

As the simulation progresses, the shock travels to the right through the heavy-gas
cylinder. Figures 4 and 5 depict the interaction of the shock with the cylinder at various
times. The dimensionless time is defined as τ = κAupost(t − t0) (Olmstead et al. 2017b).
Here, κ = 2π/δ0 is the wavenumber based on the cylinder diameter in the experiments δ0,
A = (ρSF6 − ρair)/(ρSF6 + ρair) is the Atwood number, upost is the post-shock velocity,
and t0 is defined as the time when the shock interaction is halfway down the length of the
initial column and corresponds to τ = 0.
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1 × 105 5 × 105

Pressure (Pa)

(e)(b)(a) (d )(c)

T

R

Figure 5. Pressure plots of the vertical planes at various dimensionless times τ for a Mach 2.0 shock
interacting with an inclined circular column of heavy gas at initial angle α0 = 30◦ to the plane of the shock.
Arrows indicate the transmitted (T) and reflected (R) shocks. Times are (a) τ = 5.7, (b) τ = 20.7, (c) τ = 35.7,
(d) τ = 50.7 and (e) τ = 110.8.

At τ = 5.7, the shock has changed the inclination of most of the column to be αpost =
16.2◦. Due to differences in the density of the heavy gas and the air, the shock is refracted
and bent inwards where it intersects the column (figures 4a and 5a). The shock becomes
planar again after passing through the column. The column remains at this angle, αpost =
16.2◦, defined as the post-shock angle, for the remainder of its development.

High-pressure regions are seen behind the main shock and behind a reflected shock as
seen in figure 5(a). These high-pressure regions intersect at the foot of the column and are
likely to be responsible for an instability observed to form at the foot of the column. The
instability is more evident by τ = 20.7 (figure 4b). Similar phenomena were observed in
2-D simulations of SDKHI (Romero et al. 2021a). In the 3-D flow, this phenomenon still
occurs, but is less pronounced.

After passage of the shock through the column, variations in the pressure field diminish
until later times where pressure variations are coincident with spots of high vorticity.

The surface of the gas column begins to move upwards along its axis at τ = 20.7. At
a later time, τ = 35.7, perturbations appear on the leading edge of the column. These
perturbations first appear near the top of the column and progress quickly downwards
towards the column foot. These perturbations are similar to the Kelvin–Helmholtz (KH)
waves observed in the experiments of Olmstead et al. (2017b). In the experiments, the KH
perturbations formed first on the column leading edge as they do in the 3-D simulations.
The KH waves in 3-D simulations and in the experiments also have similar wavelengths
and develop at the same times. The KH wavelengths λKH were identified by measuring
the average distance between wave peaks. Wavelengths are well defined and have regular
spacing for each column angle between τ = 20 and τ = 25 before additional secondary
instabilities begin to appear. See Romero et al. (2022) for a detailed description of
wavelength measurements and comparisons with experiments.

When results from the current 3-D simulations (figure 6a) are compared to those from
the 2-D simulations of Romero et al. (2021a) (figure 6b), there are notable differences.
The lengths of KH waves are much smaller in the 3-D case (table 2), and they form
at first near the top of the column. In the 2-D case, the wavelengths are larger and
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(b)(a)

Figure 6. Comparison of the KH waves in the vertical plane of (a) the 3-D heavy-gas column at τ = 28.7,
and (b) a quasi-2-D heavy-gas curtain at τ = 73 from Romero et al. (2021a).

10◦ 20◦ 30◦

2-D 1.41 1.49 1.65
3-D 0.066 0.092 0.168

Table 2. 2-D and 3-D average KH wavelengths normalized by pre-shock diameter λKH/δ0 for different
angles.

appear first near the column midpoint and at later times (figure 6b). The 3-D case also
contains finger-like features downstream of the column. These features are caused by
the counter-rotating vortex pair moving material into the vertical plane. Thus while 2-D
simulations are important to emphasize or isolate certain flow features, 3-D simulations
provide a more accurate description of the flow.

The turbulent state of the flow continues to evolve to τ = 50.7. At later time τ = 110.8,
larger structures begin to dominate the flow.

Figure 7 depicts experimental results from Olmstead et al. (2017b). This image shows
pixel intensity measurements collected with PLIF diagnostics of the gas column seeded
with an acetone tracer; it can be compared to those in figure 4. In particular, the qualitative
similarities near τ ≈ 20 and τ ≈ 35 are noted and show the similar timing of simulations
with experiments.

Quantitative comparisons of KH wavelengths with experiments can be made using the
wavelength selection mechanism introduced in Olmstead et al. (2017b):

λKH = DC tan(α2) M1/2A1/2, (3.1)

where DC ∝ δ0 is the compressed column diameter defined in Olmstead et al. (2017b), α2
is the post-shock angle of the column, M is the Mach number, and A is the Atwood number.
Figure 8 compares mean wavelengths normalized by (3.1) for each column angle to mean
wavelengths from experimental data. There is exceptional agreement at α0 = 30◦ where
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Pre-shock Shock wave
77.6 µs

τ = 21.3
137 µs

τ = 37.4

940 µs

τ = 260

Figure 7. Experimental data for a Mach 2.0 shock interacting with a cylindrical column of heavy gas with
initial tilt angle 30◦, reproduced with permission from Olmstead et al. (2017b).
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Figure 8. Normalized KH wavelengths at different angles for experiments (×) and simulations (•).

the data points overlap. However, this particular scaling does not seem to hold for smaller
angles. For the cases α0 = 1◦ and α0 = 5◦, the wavelengths measured in simulations
were identical and were resolved only by about five grid cells. This may indicate that the
simulation resolution is insufficient to resolve the short wavelengths that occur at smaller
initial tilt angles and is not necessarily a failing of the proposed wavelength selection
mechanism. For detailed comparisons of simulations to experiment, see Romero et al.
(2021b, 2022).

3.1. Statistics
Time averaging is not applicable in this flow to collect statistics for turbulence
characterization. However, the central portion of the column appears to be homogeneous
in the direction of the column tilt. This portion of the flow is used in the current study for
collecting statistical data. Data are averaged at the vertical plane through the column axis
and in the direction of the mean post-shock tilt angle of the column. For the analysis below,
the flow field was cropped vertically to retain the centre third of the column. Horizontally,
the domain was cropped to include the area where the SF6 mass fraction first exceeds
0.001. Figure 9 shows the cropped flow field in the vertical plane for the 30◦ column at
τ = 20.7, along with an axis indicating the direction in which averages were taken.

Favre averaging (Favre et al. 1976) is used when extracting statistics. In this flow
representation, the velocity field is decomposed into the mean and fluctuating components:
ui = ũi + u′′

i , where ũi = 〈ρui〉/〈ρ〉 is the Favre-averaged mean velocity, and u′′
i is the
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3.1 3.7

SF6 density (kg m–3)

Figure 9. Vertical cross-section of the cropped density field for a 30◦ column used for collecting statistics at
τ = 35.7. The dashed line indicates the mean post-shock tilt angle along which averages were taken.

Favre-averaged velocity fluctuation. The spatial average of a variable φ is defined by

〈φ〉 = 1
N

∑
i

φi, (3.2)

where N is the number of computational cells in the direction of the column tilt. For these
simulations, N = 650 for the statistical region described above.

Below, data are presented with respect to the x-coordinate normalized as

x∗( y) = x − x0( y)
w

, (3.3)

where x0( y) is the location of the leading edge of the column and depends on the
y-coordinate due to the post-shock angle, and w is the width of the column defined by
the locations at the leading and trailing edges where the mass fraction is 0.001.

Profiles of the mean mass fraction 〈Ys〉 and of the mean velocity components ũi were
computed at different times in the streamwise direction and are shown in figure 10. In the
figure, the mean velocity components are normalized by the post-shock velocity upost.

Figure 10(a) shows that at early time, the concentration of SF6 is highest on the leading
edge. As time progresses, the SF6 concentration becomes more uniform inside the column.

Figures 10(b)–10(d) show that the flow motion in the vertical plane of the gas column
occurs mainly in the x- and y-directions. In the streamwise direction, the shock accelerates
the gas near the edges of the column to a higher velocity than the gas in the interior of the
column. With time, the minimum value of u1 moves within the column, finally localizing
between the column centre and the leading edge, as shown in figure 10(b) at τ = 50.7.
After that time, the profile of this velocity component tends to the post-shock velocity (the
value 1.0 in figure 10b) at all locations (not shown here).

In the y-direction, the gas column inclination causes the dense gas to accelerate upwards
almost everywhere through the column width (figure 10c). The less dense gas at the
column edges moves downwards. As time progresses, the dense gas motion in the area
between the column centre and its trailing edge reverses its direction, with all gas moving
downwards. At τ = 20.7, only the gas near the leading edge is still moving upwards. By
τ = 50.7, there is almost no gas motion in the vertical direction.
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ũ 3
/u

po
st

1.0

0.5

0

0 0.5 1.0 0 0.5 1.0

0 0.5

x∗
1.0 0 0.5

x∗
1.0

(b)(a)

(d)(c)

Figure 10. Mean mass fraction and mean velocity profiles for a column with initial tilt α0 = 30◦ at different
times τ : 5.7 (solid line), 20.7 (dashed line), and 50.7 (dotted line).
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Figure 11. Mean (a) x-velocity and (b) y-velocity at τ ≈ 5.7 for columns with different initial angles: 1◦
(solid line), 5◦ (dashed line), 10◦ (dash-dotted line), and 30◦ (dotted line).

The velocity in the z-direction, u3, is close to zero at all locations within the column
and at all times (figure 10d). This is due to the column cross-sectional symmetry being
preserved with time for the chosen sample plane.

The column inclination angle was found to affect the gas x- and y-velocity components
(figure 11), but not the velocity component in the z-direction. Specifically, in the
x-direction, columns with initial angles up to α0 = 10◦ have similar profiles (figure 11a).
The gas is accelerated mostly at the column leading edge and in an area behind the trailing
edge. At angle 30◦, the areas of high gas velocity are more narrow, with the second peak
shifting closer to the column trailing edge. At any column angle, the gas at the trailing
edge accelerates less than the rest of the column when experiencing a shock.

In the y-direction, the gas was found to accelerate upwards to a higher velocity for larger
initial angles α1, as shown in figure 11(b). At any angle, the gas velocity in the y-direction
is less than in the x-direction.
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Figure 12. Evolution of the Reynolds stresses with time for a column with initial tilt α0 = 30◦ at different
times τ : 5.7 (solid line), 20.7 (dashed line), and 50.7 (dotted line).

Overall, we can infer that the gas motion in such a flow geometry is mainly 2-D in the
vertical plane, and with time becomes predominantly one-dimensional (in the x-direction).

Normalized Reynolds stresses are presented in figure 12 as
√

Rii/upost, where the
Favre-averaged Reynolds stresses are defined as

Rij =
〈
ρu′′

i u′′
j

〉
〈ρ〉 . (3.4)

These figures show that initially, the intensities of all fluctuating velocities and of the
shear stresses have a maximum near the trailing edge of the column. Over time, the peak
values of all Reynolds stresses move towards the leading edge of the column (x∗ = 0),
with stresses generally growing in time across the entire column.

The Reynolds number describing this flow must be defined using the most physically
relevant velocity and length scales. The flow features observed and characterized
in this work evolve after the shock interaction with the density interface produces
baroclinic vorticity. Therefore, neither the piston velocity of the shocked flow nor the
shock front speed are relevant – the patterns observed are produced by the fluctuating
components of the velocity field due to the deposition of baroclinic vorticity. Here, this
characteristic velocity is represented by the average magnitude of fluctuating velocity,
uturb = √

R11 + R22 + R33. The appropriate length scale can be determined from the
same considerations. According to Richtmyer (1960), the initial (linearized) perturbation
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Statistics of a shock/inclined gas column interaction

amplitude growth a(t) is proportional to the instability wavenumber κ and to the initial
instability amplitude. For a fixed amplitude, the instability growth is faster for higher
wavenumbers (and smaller wavelengths). The feature that is associated with the highest
initial amplitude and the lowest wavelength in the centreline plane is the heavy-gas column
diameter δ0, and in the vertical plane it is the KH wavelength λKH (which is related to δ0
via (3.1)).

For the cases considered, the characteristic velocity is uturb = 65.1 m s−1, the
mean post-shock density is ρpost = 3.6 kg m−3, and the mean mixture viscosity is
μmix = 2.65 × 10−5 kg m−1 s−1. For the characteristic length δ0, the Reynolds number
Reδ = ρmix uturb δ0/μmix can be estimated as ∼90 000. This is perhaps the most realistic
estimate, because it is associated with the scale that also produces the strongest vorticity
deposition in the form of counter-rotating vortex pairs in the centreline plane. In direct
experimental measurements of the flow field in a similar geometry (periodically perturbed
gas curtain with wavelength λ = 6 mm) but at an appreciably lower Mach number 1.2, the
Reynolds number varied in the range 10 000 < Re < 22 500 (Prestridge et al. 2000).

However, the present study is concerned with the flow evolution in the vertical plane, so
the scale λKH , varying in our simulations from 0.66 mm to 1.68 mm, becomes relevant. An
estimate for the Reynolds number based on such a length scale, Reλ = ρmix uturb λKH/μmix,
is in the range between 6000 and 17 000.

Information about the Reynolds number range can be used further to estimate
characteristic length scales for viscous and mass diffusion processes. For viscous
processes, the Taylor and Kolmogorov length scales can be approximated by
λT = λKH Re−1/2

λKH
and η = λKH Re−3/4

λKH
, where λT is the Taylor microscale, and η is the

Kolmogorov microscale. For the range of Reynolds numbers ReλKH identified above (going
with the more conservative estimate), this results in λT = 10 μm to 40 μm, and η = 1 μm
to 10 μm. The grid spacing is dx = 40 μm, which indicates that the viscous dissipation
range may be partially resolved, so viscous effects must be accounted for.

The scalar dissipation length scale is relevant to the mass diffusion process and can be
computed as ηD = η Sc−3/4, where Sc is the Schmidt number (Sreenivasan 2019). The
Schmidt number is defined as Sc = μmix/(ρmix D), where D = 2.23 × 10−6 m2 s−1 is the
mean diffusion coefficient between air and SF6 at the post-shock temperature and pressure,
resulting in Sc = 2.8. These estimates give a range for the mass diffusion length scale ηD
between 0.5 μm and 5 μm. This is smaller than the grid resolution dx = 40 μm, so the
length scales at which mass diffusion processes occur are not resolved. Notably, the Péclet
number Pe = Sc ReλKH ranges from 17 000 to 48 000, which is much larger than unity,
indicating that the effects of mass diffusion occur on a significantly larger time scale than
those of the advective transport. For these reasons, the effects of mass diffusion are not
included in this study and can be disregarded safely on the time scales of interest.

3.2. Anisotropy
In this subsection, the flow anisotropy is studied. For this purpose, the anisotropy tensor is
defined as

bij = Rij

Rkk
− 1

3
δij, (3.5)

where δij is the Kronecker delta, and Rij is the Favre-averaged Reynolds stress tensor
defined above.
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Figure 13. Anisotropic tensor components for columns with initial angles (a) 1◦, (b) 5◦, (c) 10◦ and (d) 30◦.
The components are b11 (solid line), b22 (dashed line) and b33 (dotted line).

The diagonal components of the anisotropy tensor give an estimate of the contribution
of each fluctuating velocity component to turbulent kinetic energy. These values range
from −1/3, corresponding to zero energy from that component, to 2/3, corresponding to
all energy coming from that component. If all three diagonal components of the anisotropy
tensor bij are zero, then the flow is isotropic.

Figure 13 shows diagonal components of the anisotropy tensor for different initial
column angles at approximately the same time τ = 85.1. Turbulent energy is distributed
non-uniformly through the column at each angle. For the smaller angles (≤10◦), the flow is
anisotropic throughout, dominated by the streamwise velocity fluctuations near the leading
and trailing edges of the column, and by the spanwise fluctuations in the column interior.
For the 30◦ column, the flow becomes more isotropic in the interior of the column, with the
transverse and vertical fluctuations having equal contributions to turbulent kinetic energy.

In addition to examining the components, invariants of the anisotropy tensor can be
plotted to examine the turbulence state over time. The anisotropy tensor invariants η and ξ

are defined as

6η2 = bijbji, (3.6)

6ξ3 = bijbjkbki, (3.7)

where b is the anisotropy tensor defined in (3.5), and repeated indices indicate summation.
For realizable turbulence, η and ξ fall within the Lumley triangle, with the sides and
vertices of the triangle representing special states of the Reynolds stress tensor (Pope
2000).

Anisotropy-invariant maps are plotted for each column initial angle in figure 14.
Figure 14(a) provides an overview of the Lumley triangle with an invariant map at three
locations (x∗ = 0.1, 0.5, 0.9) within the 30◦ column. For all cases, the trajectories are
contained within only a small portion of the Lumley triangle, so figures 14(b–e) are
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Figure 14. Reynolds-stress-invariant maps with (a) an overview of the Lumley triangle and (b–e) columns
with different initial angles for three locations within the column: (b) 1◦, (c) 5◦, (d) 10◦ and (e) 30◦. Circles
indicate x∗ = 0.1, triangles indicate x∗ = 0.5, and squares indicate x∗ = 0.9.

restricted to the region indicated by the dotted box in figure 14(a). Arrows indicate the
direction of the invariant trajectories with time.

For each case, the initial values of η and ξ are near the limit of single-component
turbulence as fluctuations are initially present in only the x-direction (figure 13). As time
progresses, the flow behaviour changes in the direction of isotropy while maintaining a
state close to that of axisymmetric turbulence.

3.3. Mixedness
The molecular mixedness ratio over time can also be compared for columns with different
initial angles. In the current study, molecular mixedness is defined as

θ = 〈χs(1 − χs)〉V

〈χs〉V 〈(1 − χs)〉V
, (3.8)

where 〈·〉V is the volumetric mean defined below, and χs is the mole fraction of SF6. The
mole fraction is given by χs = ns/(ns + na), where ni = ρYi/Mi is the molar count of
species i in a given grid cell with mass fraction Yi and molecular mass Mi. The volumetric
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Figure 15. Volume mean molecular mixedness ratio of SF6 over time for different initial column angles.

mean is defined as

〈φ〉V = 1
NxNyNz

∑
i

∑
j

∑
k

φijk, (3.9)

where Nx, Ny and Nz are the numbers of grid cells in the x-, y- and z-directions,
respectively, and φijk is the value at the grid cell with coordinates (i, j, k).

A value θ = 1 means that the flow is mixed as much as possible within the volume,
which means that the SF6 is distributed uniformly.

Figure 15 shows the molecular mixedness ratio over time for different initial column
angles. For each angle, the column has initial molecular mixedness θ = 0.62 due to the
diffuse interface across the column defined by the initial conditions (see figure 2). Over
time, the mixedness tends to value 1 for each initial angle, while the initial angle has very
little effect on the mixing rate. At times beyond τ = 60, large-scale structures begin to
impact the statistical region, and this may affect the mixedness behaviour. The apparent
deviation for the 10◦ column near τ ≈ 0 is a numerical artefact due to the presence of the
shock wave within the statistical region under consideration that happens in this particular
case. The shock is not parallel to the column tilt angle and disrupts the averaging procedure
in (3.8). In other cases, solution data files do not capture the shock wave within the
statistical region due to the I/O frequency of the simulation.

3.4. Spectra
Figure 16 shows energy spectra at different times for heavy-gas columns with various

initial tilt angles. Here, spectral energy is defined as E =
〈

1
2 ν̂i

∗ν̂i

〉
, where νi = √

ρ u′′
i ,

ˆ(·) is the one-dimensional Fourier transform in the homogeneous direction, and (·)∗ is
the complex conjugate. The non-dimensional time τ depends on t0, which itself depends
on initial tilt angle α0. Simulation data files may not capture t0 exactly for each angle,
resulting in slightly different values of τ for each solution file set, so spectra for different
initial column angles are compared at close, but non-equal times.

At every angle, an apparent power-law scaling may be observed between wavenumbers
κ = 30 and κ = 100 (indicated by the arrows in figure 16). These wavenumbers
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Figure 16. Mean turbulent kinetic energy spectra in the vertical plane at different times for columns with
initial angles (a) 1◦, (b) 5◦, (c) 10◦ and (d) 30◦.

τ 1◦ 5◦ 10◦ 30◦

35.7 −1.01 −1.05 −1.04 −0.98
65.7 −0.94 −0.98 −1.01 −0.93
110.8 −0.88 −0.85 −0.96 −0.90

Table 3. Energy spectra power-law exponents at different times for different initial column angles.

correspond to length scales 0.4 mm and 0.12 mm, respectively. The values for the
power-law exponent p were computed by fitting a line through the apparent power-law
region of the energy spectra. These values are presented in table 3. These power-law
exponents are all close to −1 at early times, but decrease slightly in magnitude over
time for all considered angles. These values are in agreement with the power-law scalings
observed by Olmstead et al. (2017a) for scalar structure functions. In ideal Kolmogorov
turbulence, exponents of the energy spectrum and the spectrum of a diffusive scalar
(passive or even reactive) should be equal, provided that the same conditions are met as
those necessary for the equivalence between spectral and structure function representation
of the flow (Monin & Yaglom 2013).

3.5. Structure functions
To examine further the power-law behaviour of this flow, second-order, scalar structure
functions were assembled for the SF6 mass fraction in a manner similar to those presented
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Figure 17. Structure functions of mass fraction at various initial inclination angles: (a) α0 = 1◦, (b) α0 = 5◦,
(c) α0 = 10◦ and (d) α0 = 30◦.

in Olmstead et al. (2017a):

Ys2(r) =
〈
[Ys(x) − Ys(x + r)]2

〉
, (3.10)

where r = |r| is the magnitude of radius vector r, and 〈·〉 denotes averaging over all
pairs of points in the same region as the statistics defined previously. The structure
function computations have quadratic efficiency, O(n2), and can be prohibitively costly
for high-resolution datasets. An algorithm was developed for the current study to produce
structure function data that utilized the Kokkos framework (Edwards, Trott & Sunderland
2014) to take advantage of the performance benefits of GPU systems.

Structure functions evolving in time are shown in figure 17 for different initial gas
column angles. For reference purposes, two lines are added to each plot: one corresponds
to the power-law exponent 2/3 that is expected theoretically in homogeneous isotropic
turbulence (Celani et al. 2005; Monin & Yaglom 2013), and the other corresponds to
the power law with the exponent close to unity observed in some experimental runs of
Olmstead et al. (2017a). As the figure demonstrates, numerical results resemble a power
law with the exponent close to unity only at the inclination angle α0 = 30◦ at early times,
and for large scales only. There is no single power-law exponent fitting all scales at any
given inclination angle at any time. Overall, the results are remarkably similar to the
experiment (figure 3 of Olmstead et al. 2017a): the plots can be interpreted as showing
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the transfer of energy from large scales (here, the integral scale would be related to the
geometry of the initial conditions – representative gas column size after compression) to
small scales, but an inertial range spanning multiple orders of magnitude does not develop.

This is not surprising as, strictly speaking, this flow is transitioning to turbulence (at
least in the phenomenological sense) in a non-canonical case that is distinct from the
homogeneous, isotropic, fully developed classical Kolmogorov turbulence.

First, the entire energy input driving the turbulent transition is provided by the shock
interaction with density interfaces over a finite time. Accordingly, the spectral properties
of kinetic energy fluctuations in RMI-driven mixing differ from those of Kolmogorov
turbulence (Abarzhi & Sreenivasan 2022).

Second, it is important how the flow is driven on the injection scale. For the flows
considered here, a reasonable assumption is that the driver is shear on several scales
(dictated by the initial conditions geometry) due to RMI. A recent theory of shear-driven
turbulence suggests that the second-order velocity structure function is affected by both
the isotropic (r2/3) and non-isotropic (r4/3) contributions (Kumar, Meneveau & Eyink
2022), whose respective roles may also be scale- and time-dependent. This could explain
some of the behaviours observed in figure 17. A different way to look at decaying
turbulence involves considering how the effective length scale varies with time, producing
an unsteady cascade (Goto & Vassilicos 2016). A somewhat similar approach in an earlier
theory (George 1992) considers the possibility that a universal scaling for spectra may
exist not for the wavenumber κ , but for a different object (κl, where l is the time-dependent
length scale, in the George theory). The best theoretical approach to the flow considered
in this work could be one taking into consideration the influence of the initial conditions
(irrelevant for the fully developed turbulence case) on scalings. Whether the turbulence is
affected by how it is driven in time, in space, or both, the appearance of the spectra (in
terms of κ) or structure functions (r) may change.

Third, there is the possibility of a mismatch between numerics and experiment due to
diagnostics. In experimental PLIF results, imaging shows the laser-induced fluorescence
intensity from the tracer gas that usually closely follows mass concentration; however,
possibilities for several diagnostic-related discrepancies remain (Melton & Lipp 2003).
An example of such a discrepancy is discussed in § 3.6. Some subtler differences between
experiment and numerics could also be attributable to differences in initial conditions: in
the experiments, the diffuse gas column always has small perturbations that the numerical
initial conditions do not attempt to reproduce. In a sense, this would mean that in the
experiments, there is an additional initial contribution to disorder in the flow.

For possible future studies, it might be worthwhile to consider the approach described
by Vorobieff et al. (2003), where ensembles of velocity fields from multiple experimental
realizations were collected for the same experiment with nominally identical initial
conditions. This made it possible to produce ensemble-averaged velocities and then extract
velocity fluctuation fields for each individual experiment. Notably, while the structure
functions for the full velocity fields manifested steeper slopes, the fluctuation field slopes
were closer to 2/3. In numerics, small fluctuations could be added to the initial conditions
to produce similar ensembles (Palekar et al. 2007).

3.6. Probability density functions
In this subsection, we present probability density functions (p.d.f.s) for mass fraction,
vorticity components and velocity components in order to further characterize the flow
development.
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Figure 18. P.d.f.s of SF6 mass fraction Ys for columns with different initial tilt angles α0, at different times τ :
5.7 (solid line), 35.7 (dashed line), and 110.8 (dotted line). Angles are (a) 1◦, (b) 5◦, (c) 10◦ and (d) 30◦.

To construct discrete p.d.f.s, a bin size is defined to be �φ = (φmax − φmin)/Nb for some
quantity φ, where Nb is the number of bins. A bin count Nb = 96 was selected to produce
smooth p.d.f. profiles with an adequate number of samples within each bin. Values of φ

are then distributed into the Nb bins, yielding the sample count of Nk per bin. The p.d.f.
is then defined by P(φ) = Nk/�φN, where N is the total number of samples of φ. This
definition results in

∑Nk
k=1 P(φ)�φ = 1.

The p.d.f.s of the SF6 mass fraction Ys (figure 18) were constructed using the mass
fraction data from the same region as the statistics discussed in previous subsections. That
is, the vertical cross-section is cropped vertically to retain the central one-third of the
column using Ys = 0.001 as a criterion to determine the upstream and downstream edges
of the column. Within this region, Ys falls between 0.0 and 0.27 at all times for each initial
tilt angle.

At early times, immediately after passage of the shock, lower values of the mass fraction
(≈ 0.0–0.15) are approximately equally likely at all tilt angles of the gas column, while the
probability of higher mass fractions decreases rapidly (figures 18a–d). At later times, the
p.d.f.s take on a bell-like shape. Tables 4(a)–4(d) present the mean, standard deviation
(SD), skewness and kurtosis over time for each initial column angle. These values were
computed using the mean(), std(), skewness() and kurtosis() subroutines from the pandas
Python library (pandas development team 2020).

With time, the distribution becomes more narrow at all considered column angles. The
mean, corresponding to the peak of the distribution, decreases with time for all initial
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τ Mean SD Skewness Kurtosis τ Mean SD Skewness Kurtosis

5.7 0.106 0.066 1.463 3.647 5.7 0.111 0.075 1.461 2.499
35.7 0.087 0.031 −0.310 −0.218 35.7 0.089 0.032 −0.269 −0.194
110.8 0.061 0.025 0.094 0.283 110.8 0.063 0.024 −0.323 −0.553

(a) 1◦ (b) 5◦

τ Mean SD Skewness Kurtosis τ Mean SD Skewness Kurtosis

5.7 0.107 0.077 1.805 3.828 5.7 0.133 0.121 2.516 7.612
35.7 0.085 0.028 −0.359 0.170 35.7 0.086 0.026 −0.654 0.189
110.8 0.064 0.024 −0.186 −0.187 110.8 0.064 0.019 −0.567 −0.153

(c) 10◦ (d) 30◦

Table 4. Mass fraction p.d.f. statistics over time for different initial column angles.
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Figure 19. P.d.f.s of vorticity ωz for columns with different initial tilt angles α0, at different times τ : 5.7
(solid line), 35.7 (dashed line), and 110.8 (dotted line). Angles are (a) 1◦, (b) 5◦, (c) 10◦ and (d) 30◦.

column angles and approaches nearly the same value (≈0.063) for each column angle.
That is, at later times, most gas exists in a lower concentration independent of the initial
gas column angle. Similar tendencies are observed for the standard deviation.

More variation is observed with time and at different column angles in the skewness and
kurtosis values (table 4). As time progresses, the skewness tends towards negative values,
and more so as the column angle increases. Somewhat similar dynamics are observed for
the kurtosis.
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Figure 20. P.d.f.s of the x-component of velocity normalized by the post-shock velocity upost at different
times τ : 5.7 (solid line), 35.7 (dashed line), and 110.8 (dotted line). Angles are (a) 1◦, (b) 5◦, (c) 10◦
and (d) 30◦.

Figure 19 shows p.d.f.s of the z-component of vorticity that were constructed in the same
way as the p.d.f.s of mass fraction. As the figure demonstrates, the column angle has little
effect on the p.d.f. of this parameter and how its shape changes with time. At any time,
the mean vorticity value is located around zero, with the p.d.f. shape being symmetric.
With time, the distribution widens. However, at the largest column angle, 30◦, the range of
vorticity values does not change much between τ ≈ 35.7 and τ ≈ 110.8, which explains
the larger mean value at τ ≈ 110.8 to compare with those at the other angles at the same
time.

Plots of p.d.f.s of the x-component of the gas velocity are presented in figure 20. At all
considered gas column angles, a bimodal distribution emerges over time with two peaks:
an upper peak corresponding to u/upost = 1, and a lower peak between 0.90 and 0.95.
The positions of the peaks are not influenced significantly by the column angle, and have
similar behaviour over time for each initial column angle. However, their amplitudes vary
with time and depend on the column angle. In particular, smaller column angles have a
higher initial concentration of velocity around the lower peak, but over time, the higher
column angles have a larger concentration of velocity around the lower peak. The opposite
is observed for the upper peak.

P.d.f.s of the y-component of the gas velocity are shown in figure 21. At the smallest
column angle, there is a single peak value for y-velocity around v/upost = 0. With time,
the distribution widens slightly, with gas starting to move in the vertical direction.

As the column angle increases, the initial distribution widens. Over time, larger initial
column angles develop a bimodal distribution of velocity in the y-direction, with a positive
and negative mean. At α � 10◦, the second peak becomes obvious with time. Both
peaks have similar values at τ = 21.4, and their locations are shifted from 0 m s−1 to
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Figure 21. P.d.f.s of the y-component of velocity normalized by the post shock velocity upost at different times
τ : 5.7 (solid line), 35.7 (dashed line), and 110.8 (dotted line). Angles are (a) 1◦, (b) 5◦, (c) 10◦ and (d) 30◦.

negative and positive values. At the latest time, τ = 110.8, only one peak remains in the
p.d.f., corresponding to α = 10◦, with the peak value being positive (v/upost ≈ 0.003).
This again indicates gas moving upwards. At the largest column angle, α = 30◦, both
peaks are seen at τ = 110.8 (figure 21d), but the peak with the positive value is larger
(v/upost ≈ 0.013), showing that more gas is moving upwards than downwards.

The component of gas velocity in the z-direction (shown in figure 22) maintains a narrow
distribution around w/upost = 0 for all initial column angles. Over time, the distribution
widens slightly for smaller initial column angles. The zero mean is due to the symmetry
of the sample plane, as discussed previously.

It is informative to compare the p.d.f.s of the SF6 mass fraction (figure 18) with the
experimental p.d.f.s of PLIF intensity in a very similar flow (figure 16 of Olmstead
et al. 2017a). While the relationships of the overall trends for the mixing-driven p.d.f.
time evolution in the flow are clear, the PLIF intensity p.d.f.s are dominated by a peak
corresponding to the tracer-free (no fluorescence) flow, which is understandably absent
from figure 18.

4. Conclusion

High-resolution viscous simulations were conducted to model the 3-D interaction between
a planar shock and an inclined cylindrical column of heavy gas with an initially diffuse
density interface. The overall flow morphology was similar to the inviscid case presented
in our previous study (Romero et al. 2022). However, the increased resolution allowed for
more detailed statistics to be collected. The effects of initial column angle on statistical
properties of the flow were analysed.
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Figure 22. P.d.f.s of the z-component of velocity normalized by the post shock velocity upost at different times
τ : 5.7 (solid line), 35.7 (dashed line), and 110.8 (dotted line). Angles are (a) 1◦, (b) 5◦, (c) 10◦ and (d) 30◦.

In particular, the analysis of mean velocity profiles showed that the streamwise velocity
component is at the maximum near the column edges at all times. The magnitude
of the vertical component initially has a maximum in the interior of the column, but
approaches zero everywhere over time. The spanwise component is close to zero at all
times everywhere due to the symmetry of the cross-sectional plane.

The intensities of all fluctuating velocities and of the shear stresses initially have a
maximum near the centre (interior) of the column. Over time, the peak values of all
Reynolds stresses move towards the leading edge of the column. The trailing edge of the
column does not experience significant velocity fluctuations at any time.

Analysis of the anisotropy tensor shows that turbulent kinetic energy is non-uniformly
distributed through the column. At larger column angles, turbulence tends towards isotropy
in the column interior in the y- and z-components mainly. Anisotropy-invariant maps show
that the turbulent state is near to that of single-component turbulence at early times, and
that the flow moves in the direction of isotropy over time.

Analysis of the mixedness over time showed that the initial angle has very little effect
on the mixing rate.

A power-law scaling with the exponent close to −1 was observed in the turbulent kinetic
energy spectra at large wavenumbers. This scaling is similar to the power-law scaling for
scalar structure functions obtained in some experiments. However, the scalar structure
functions for the mass fraction based on the simulation data do not follow the power
law except for large initial column angles at early times. The scalar field (mass fraction)
structure function behaviour in our simulation is overall quite similar to that observed in
experiment (tracer fluorescence intensity fields).

The mean and the standard deviation of the mass fraction p.d.f.s were found to be
independent of the column angle, while both the skewness and the kurtosis generally
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Figure 23. KH wavelengths λKH at different grid sizes for a column with initial tilt angle 30◦. Error bars
indicate one standard deviation.

decrease as the initial column angle increases. Vorticity is distributed symmetrically
around 0 and does not have a significant dependence on initial column angle. Both
x- and y-components of velocity tend towards a bimodal distribution as the initial column
tilt angle is increased. The z-component of velocity maintains a narrow distribution around
zero, as expected due to the symmetry of the sample plane.
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Appendix A. Grid convergence

Here, grid sensitivity analysis results are presented for simulations of the gas column
initially inclined at 30◦ and with Mach number 2.0. The grid resolutions considered are
dx = 40 μm, 80 μm and 160 μm – that is, two additional grid resolutions, which are
coarser than the grid used for the results presented in the main text. Simulations on finer
grids could not be conducted due to insufficient computational resources.

The behaviour of the KH wavelengths with respect to grid cell size is shown in figure 23.
As described previously, the KH wavelength λKH was determined by visually identifying
wave peaks when they first become visible after shock passage, and measuring the
distance between them. For each case, at least ten consecutive wave peaks were identified.
The figure shows the average wavelength, along with error bars indicating one standard
deviation. As the plot shows, the two finest grids considered, 40 μm and 80 μm, agree
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Figure 24. Molecular mixedness over time for different grid resolutions.

SF6 mass fraction
0

5

10

15

20

P
.d

.f
.

0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

SF6 mass fraction
0

5

10

15

20Grid size

dx = 40 µm

dx = 80 µm

dx = 160 µm

(a) (b)

Figure 25. P.d.f.s of SF6 mass fraction Ys for different grid resolutions at (a) τ = 5.7 and (b) τ = 110.8.

with regard to λKH , while the 160 μm grid overpredicts wavelengths by a factor of about
two.

Effects of the grid cell size on the molecular mixedness were also considered and are
presented in figure 24. As the figure demonstrates, the coarser grids predict a higher
mixing rate than the finest grid at early times. This may be due to the averaging effect
of the larger grid cells, which are unable to resolve fine-scale concentration fluctuations.
At later times, however, the grid size has no distinguishable effect on the mixing efficiency.

P.d.f.s of SF6 mass fraction are shown in figure 25 for the grids at two different times.
At early times (τ = 5.7), there is a higher probability of SF6 mass fraction in the range
from 0.05 to 0.2 for the dx = 40 μm grid when compared to the coarser grids. This peak
at higher mass fractions results in the lower mixedness of the fine grid at early times, as
seen in figure 24. At τ = 35.7 (figure 25b), SF6 distributions for dx = 40 μm and 80 μm
are very similar, while the mass fraction distribution for the coarsest grid, though it has the
same mean, is much wider. Nonetheless, the coarse grid shows identical mixedness to the
finer grids despite the larger variance. The SF6 mass fraction distribution converges faster
with respect to grid size at late times than it does at early times, where it is more sensitive
to grid size.

A similar phenomenon is observed for energy spectra. At early times, in this case τ =
35.7 (figure 26a) after the flow has become turbulent, the coarse grids underestimate the
spectral energy when compared to the finest grid. At later times (τ = 65.7, figure 26b),
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Figure 26. Mean turbulent kinetic energy spectra in the vertical plane for different grid resolutions at
(a) τ = 35.7 and (b) τ = 65.7.

the spectra for the two finest grids are in better agreement, while the coarse grid severely
underpredicts spectral energy by an order of magnitude.

In general, the flow geometry, in terms of λKH , is well represented by the dx = 40 μm
grid, and late-time mixedness and mass fraction p.d.f.s are converged. Early-time statistics,
however, are more sensitive to grid resolution.
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