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Abstract
To investigate the influences of cobalt (Co) and folic acid (FA) on growth performance and rumen fermentation, Holsteinmale calves (n 40)were
randomly assigned to four groups according to their body weights. Cobalt sulphate at 0 or 0·11 mg Co/kg DM and FA at 0 or 7·2 mg/kg DMwere
used in a 2 × 2 factorial design. Average daily gain was elevated with FA or Co supplementation, but the elevationwas greater for supplementing
Co in diets without FA than with FA. Supplementing FA or Co increased DM intake and total-tract nutrient digestibility. Rumen pHwas unaltered
with FA but reduced with Co supplementation. Concentration of rumen total volatile fatty acids was elevated with FA or Co inclusion. Acetate
percentage and acetate to propionate ratio were elevated with FA inclusion. Supplementing Co decreased acetate percentage and increased
propionate percentage. Activities of xylanase and α-amylase and populations of total bacteria, fungi, protozoa, Ruminococcus albus,
Fibrobacter succinogenes and Prevotella ruminicola increased with FA or Co inclusion. Activities of carboxymethyl-cellulase and pectinase
increased with FA inclusion and population of methanogens decreased with Co addition. Blood folates increased and homocysteine decreased
with FA inclusion. Blood glucose and vitamin B12 increasedwith Co addition. The data suggested that supplementing 0·11mg Co/kg DM in diets
containing 0·09 mg Co/kg DM increased growth performance and nutrient digestibility but had no improvement on the effects of FA addition in
calves.
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Rumen microbes require cobalt (Co) for the synthesis of vitamin
B12, a cofactor of methylmalonyl-CoA mutase and methionine
synthase, which is essential in the metabolisms of carbohydrate,
protein and lipid(1,2). The level of Co in diets was positively
related to rumen vitamin B12 synthesis in steers(3,4). The recom-
mended Co requirement by the National Research Council was
0·11 mg/kg DM for dairy cattle(1). However, some studies
reported that 0·2 mg Co/kg DM was required for growing cattle
to support growth, folatemetabolism and blood vitamin B12 con-
centration(5,6). Studies in vivo reported that dietary Co inclusion
increased DM intake (DMI), average daily gain (ADG) and
rumen propionate production in steers(3,4) and total-tract nutrient
digestibility in lambs(7). Studies in vitro demonstrated that vita-
min B12 was required for the growth and propionate production
of rumen Prevotella ruminicola(8,9). However, information
about the influences of dietary Co supplementation on nutrient
digestibility and rumen microflora was limited in dairy calves.

Folic acid (FA) functions in DNA synthesis and protein metabo-
lism and is necessary for rumen microbes and animals(1,10). Early
studies of in vitro reported that FAaddition increased cellulosediges-
tion(11), and that tetrahydrofolate (THF)or 5-methyl-THFwasneeded
forRuminococcus flavefaciensgrowth(12). Furthermore, studies have
also proven the inclusion of FA increased ADG, total-tract nutrient
digestibility, rumen total volatile fatty acids (VFA) content andmicro-
biota abundance in calves(13,14). Parnian-Khajehdizaj et al.(15)

reported increased post-ruminal and total-tract DM digestibility with
FA inclusion in vitro. These observed positive outcomes with FA
dietary inclusion influence one carbon metabolism(10,16). Vitamin
B12 dependent methionine synthase is required in the process that
5-methyl-THF donors a methyl group to homocysteine (Hcy) to
regenerate methionine(10). Preynat et al.(16) reported that milk pro-
duction of dairy cows was unchanged with intramuscular injection
of FA but tended to increase for FA and vitamin B12 injection.
Graulet et al.(17) reported that when vitamin supplements were
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top-dressed with the cowmorning meal, plasma glucose concentra-
tionwas higher and hepatic lipids content was lower for FA and vita-
min B12 addition than for FA addition. The data suggested that when
FAwas supplemented togetherwithvitaminB12, utilisationefficiency
of the two vitamins might be improved.

Given the roles of FA and vitamin B12 in methionine cycle as
well as the results of studies above, it was hypothesised that
calves with combined supplementation of FA and Comight have
greater ADG than those receiving FA or Co supplementation
alone. Therefore, the present study was undertaken in an
attempt to elucidate the influences of dietary inclusion of FA
or/and cobalt sulphate on growth performance and rumen fer-
mentation in Holstein calves.

Materials and methods

Holstein calves, treatments and diets

Theprotocolwas approvedby theAnimal Care andUseCommittee
of Shanxi Agriculture University. Forty Holstein male calves (88·1
(SEM 13·3) kg of body weight (BW) and 63 (SEM 9·2) d of age) were
blocked by BW and randomly divided into four treatments. Cobalt
sulphate at 0 (Co−) or 0·11mg Co/kg DM (Coþ) and FA at 0 (FA−)
or 7·2 mg/kg DM (FAþ) were used in a 2× 2 factorial design.
Supplemented FA (980 g FA/kg) and cobalt sulphate
(CoSO4·7H2O, 210 g Co/kg) were purchased commercially, mixed
into the mineral and vitamin premix and then into the concentrate
before the trial. The supplementation dose of FA was ascertained
based on the results of Wang et al.(13), and Co was determined
on the results of Stangl et al.(5) and Schwarz et al.(6), where dietary
0·20mgCo/kgDMcould support themaximumgrowthandnormal
folate metabolism in growing bulls. Basal diets of calves (Table 1)
were formulated according to the recommendations of National
Research Council(1) and contained 0·09 mg Co/kg DM and 0·31
mg FA/kg DM. Calves were housed individually in a pen of 2·5
m× 3 m, fed at 07.30 and 19.30 hours daily and had free access
to diets and drinking water. The experiment included 20 d of adap-
tation period and 60 d of data collection period.

Sampling and analyses

During the data collection period, individual animal was weighed
before the morning feeding on days 0, 30 and 60. The feed offered
was weighted at 07.30 and 19.30 hours daily, and the refusals were
weighted at 07.30 the following day to calculate DMI of each calf.
Individual samples of feed offered and refusals were taken every 5
d, and faeces were collected from the rectum at 07.00, 13.00, 19.00
and 01.00 hours daily on days 54–57. Samples of feed, refusals and
faeces were dried at 60 °C to a constant weight, ground to pass a 1-
mm screen (Wileymill; Qingdao Ruixintai Instrument Co., Ltd.) and
then pooled by calve. These samples were analysed for DM and
organic matter (OM; method 942.05), crude protein (method
990.03) and acid-detergent fibre (ADF; method 973.18) based on
the procedures of AOAC(18). Heat stable α-amylase and sodium sul-
phite were used in the assay of neutral-detergent fibre (NDF)(19).
Acid-insoluble ash was used as an endogenous indicator in the
determination of nutrient apparent digestibility and measured
according toVan-Keulen andYoung(20). Dietary Co and folatewere

measured based on themethod of AOAC(18) and Alaburda et al.(21),
respectively. Individual samples of ruminal fluid (150 ml) were
obtained via the oesophagus using a stomach tube(22) at 06.30,
12.30, 18.30 and 00.30 hours daily on days 58 and 59. To avoid
the contamination of saliva, the first obtained 200 ml of fluid was
discarded. Samples of rumen fluid were determined for pH
(Sartorius Basic pH Meter PB-10, Sartorius AG) and then strained
using four layers of medical gauze. A 5-ml strained fluid was acidi-
fied with 1 ml H2SO4 (20 g/l) to measure ammonia N according to
AOAC(18). Another 5-ml strained fluid was deproteinised with 1 ml
meta-phosphoric acid (250 g/l) for the analysis of VFAbyGC (Trace
1300; Thermo Fisher Scientific Co., Ltd.) using 2-ethylbutyric acid as
an internal standard(23). Further 15-ml strained fluid was sonicated
at 4 °C and 20 s pulse rate for 10 min, centrifuged at 4 °C and
25 000 g for 15 min and separated the supernatant to determine
enzyme activities based on the procedures of Agarwal et al.(24).
All these samples above were stored at –20 °C until analysis.
Additional 5-ml strained fluidwas stored at –80 °C for the extraction
ofmicrobial DNA. These samples of rumen fluid fromdifferent time
were mixed in equal proportions by each calf. Microbial DNA was
extracted by the RBBþ C method from 1·0 ml homogenised rumi-
nal fluid(25). The quality and quantity of extracted DNA were
checked by agarose gel electrophoresis and spectrophotometer
(Thermo Scientific), respectively. The primer sequences of target
microbes are described in Table 2. The sample-derived DNA stan-
dard for each qPCR assay was generated from the treatment pool
set ofmicrobialDNAusing the regular PCR. The PCRproductswere
purified using the MiniBest DNA Fragment Purification on Kit
Ver.4.0 (Takara Biotechnology Co., Ltd.) and quantified by a
spectrophotometer. The copy number concentration of each stan-
dardwas calculated according to the length of the PCR product and
the mass concentration. Tenfold serial dilutions were used for
establishing standard curves of targeted microbes(26).
Amplification and detection of qPCR were carried out in a
StepOneTM system (Thermo Fisher Scientific Co., Ltd.). Samples
were assayed in triplicate. The reaction mixture (20 μl) included

Table 1. Ingredient and chemical composition of the basal diet used

Ingredients Contents (g/kg DM)

Maize silage 500
Maize grain, ground 259
Wheat bran 30
Soyabean meal 140
Cottonseed meal 40
Calcium carbonate 5·0
Salt 5·0
Calcium biphosphate 15
Sodium bicarbonate 5·0
Mineral and vitamin premix* 1·0
Chemical composition
Organic matter 935
Crude protein 129
Neutral-detergent fibre† 331
Acid-detergent fibre 194
Ca 6·5
P 4·6
Cobalt (mg/kg) 0·09

* Contained per kg premix: 1600mg Cu, 8000mgMn, 7500 mg Zn, 120 mg I, 1600mg
vitamin A, 600 mg vitamin D and 5000 mg vitamin E.

† Non-fibre carbohydrate calculated by 1000-CP-NDF-Fat-Ash.
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10 μl SYBR Premix Ex TaqTMII (TaKaRa Biotechnology Co., Ltd), 2
μl templateDNA, 0·8 μl of each primer, 0·4 μl ROXReferenceDye II
and 6·0 μl double standard sterile water. The conditions were 1
cycle of 50 °C for 2 min and 95 °C for 2 min for initial denaturation,
followed by 45 cycles of 95 °C for 15 s, at annealing temperature for
1 min, and then product elongation at 72 °C for 30 s. Specificity of
amplification was performed via dissociation curve analysis of PCR
end products by increasing the temperature at a rate of 1 °C every
30 s from 60 °C to 95 °C.

Individual blood samples were collected by the coccygeal
vessel at 10.30 hours on day 60 using 10 ml evacuated tubes
(Jiancheng Biological Engineering Co., Ltd), centrifuged at
2500 g and 4 °C for 10 min to separate serum, and then stored
at –20 °C. Serum glucose, albumin, total protein, Hcy and
folate were measured by the Infinite F50 Microplate reader
(Tecan Austria GmbH) with ELISA kits (Shanghai Meilian
Biology Science and Technology Co., Ltd). Serum vitamin
B12 was analysed using the HPLC (Agilent 1100 VWD) accord-
ing to the method of Hasnat et al.(27).

Calculation and statistical analyses

The feed conversion ratio for each calfwas calculated as dailyDMI
divided byADG.Data forDMIwere firstly averagedby every 30 d,
and then data for DMI, ADG and feed conversion ratio were ana-
lysed by the mixed procedure of SAS (Proc Mixed; SAS, 2002)(28)

with a 2 (FA addition)× 2 (CoSO4 addition) completely rando-
mised block design, the model as follows:

Yijklm ¼ �þ Biþ Fj þ Ck þ ðFCÞjk þ Tl þ ðTFÞjl þ ðTCÞkl
þ ðTFCÞjkl þ Rm:ijk þ "ijklm

Other measurements were analysed using the model:

Yijklm ¼ �þ Biþ Fj þ Ck þ ðFCÞjk þ Rm:ijk þ "ijkm

where Yijklm is the dependent variable, μ is the overall mean, Bi

is the random effects of the ith block, Fj is the fixed effects of FA
addition (j=with or without), Ck is the fixed effects of CoSO4

addition (k=with or without), (FC)jk is the FA × CoSO4 interac-
tion, Tl is the fixed effect of time, (TF)jl is the time × FA interac-
tion, (TC)kl is the time × CoSO4 interaction, (TFC)jkl is the
time × FA × CoSO4 interaction, Rm is the random effects of the
mth calf and ϵijklm is the residual error. Initial measures were
used as a covariate to improve identifying effects associated with
dietary treatment of Co and FA. Mean separations using proba-
bility of difference tests (PDIFF in SAS) were conducted only for
effects that were significant at P< 0·050. Significant differences
were declared at P< 0·050.

Results

Performance

As shown in Table 3, the significant FA and Co interaction was
observed for BWof 60 d andADGwhich increasedwith FA or Co
supplementation, but the increased magnitude was greater
when Cowas supplementedwith diets without FA addition com-
pared to diets with FA addition. DMI of calves increased with Co
or FA inclusion. The BW of calves were similar among four
groups at the beginning of the trial and were increased by Co
supplementation during the trial. Feed conversion ratio reduced
with Co supplementation but was unchanged with FA inclusion.

Digestibility and rumen fermentation

There was no significant FA × Co interaction for total-tract
nutrient digestibility and rumen fermentation parameters
(Table 4). Digestibility of DM, OM, crude protein, NDF and
ADF increased for FA or Co addition. Rumen pHwas not affected
by FA but reduced with Co supplementation. Ruminal total VFA
concentration was elevated with the inclusion of FA or Co.

Table 2. PCR primers for real-time PCR assay

Target species Primer sequence (5’–3’) GenBank accession no. Size (bp)

Total bacteria F: CGGCAACGAGCGCAACCC
R: CCATTGTAGCACGTGTGTAGCC

CP058023.1 147

Total anaerobic fungi F: GAGGAAGTAAAAGTCGTAACAAGGTTTC
R: CAAATTCACAAAGGGTAGGATGATT

GQ355327.1 120

Total protozoa F: GCTTTCGWTGGTAGTGTATT
R: CTTGCCCTCYAATCGTWCT

HM212038.1 234

Total methanogens F: TTCGGTGGATCDCARAGRGC
R: GBARGTCGWAWCCGTAGAATCC

GQ339873.1 160

R. albus F: CCCTAAAAGCAGTCTTAGTTCG
R: CCTCCTTGCGGTTAGAACA

CP002403.1 176

R. flavefaciens F: ATTGTCCCAGTTCAGATTGC
R: GGCGTCCTCATTGCTGTTAG

AB849343.1 173

B. fibrisolvens F: ACCGCATAAGCGCACGGA
R: CGGGTCCATCTTGTACCGATAAAT

HQ404372.1 65

F. succinogenes F: GTTCGGAATTACTGGGCGTAAA
R: CGCCTGCCCCTGAACTATC

AB275512.1 121

P. ruminicola F: GAAAGTCGGATTAATGCTCTATGTTG
R: CATCCTATAGCGGTAAACCTTTGG

LT975683.1 74

Rb. amylophilus F: CTGGGGAGCTGCCTGAATG
R: GCATCTGAATGCGACTGGTTG

MH708240.1 102
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Supplementing FA in diets did not affect propionate percentage
but increased acetate percentage and the ratio of acetate to pro-
pionate. Dietary Co inclusion elevated propionate percentage
and reduced acetate percentage and acetate to propionate ratio.
Butyrate percentage was unaltered with FA inclusion but
elevated by Co addition. Percentages of valerate, isobutyrate
and isovalerate as well as concentration of ammonia N were
not influenced by treatments.

Rumen enzyme activity and microbial population

Rumen enzyme activity andmicrobial population were summar-
ised in Table 5. Significant FA × Co interaction was not observed.
Activities of carboxymethyl-cellulase and pectinase increased
with FA inclusion but were not influenced by Co supplementa-
tion. Dietary inclusion of FA or Co did not affect activities of cel-
lobiase and protease but increased activities of xylanase and

α-amylase. Dietary inclusion of FA or Co increased populations
of total bacteria, fungi, protozoa, R. albus, Fibrobacter succino-
genes and P. ruminicola but did not influence populations of
Butyrivibrio fibrisolvens and Ruminobacter amylophilus. Total
methanogens population was unchanged with FA inclusion
and decreased with Co supplementation. In contrast, R. flavefa-
ciens population increased with FA inclusion and was
unchanged with Co supplementation.

Blood metabolites

Blood metabolites were shown in Table 6; there was no signifi-
cant FA and Co interaction for blood metabolites in calves.
Dietary inclusion FA did not influence concentrations of blood
glucose, total protein, albumin and vitamin B12, but increased
folates and reduced Hcy. Dietary inclusion of Co increased

Table 3. Effects of folic acid (FA) and cobalt sulphate (CoSO4) addition onDM intake (DMI), average daily gain (ADG) and feed conversion ratio (FCR) inmale
calf studies groups*
(Mean values with their standard errors of the mean)

FA−† FAþ P‡

Item Co− Coþ Co− Coþ SEM FA Co FA ×Co

DMI (kg/d) 3·84 4·23 4·26 4·44 0·069 0·044 0·045 0·378
Body weight (kg)
0 d 109 110 110 108 2·04 0·578 0·662 0·704
30 d 139 147 144 144 2·25 0·326 0·027 0·084
60 d 166 181 178 179 2·94 0·017 0·019 0·028

ADG (kg/d) 0·96 1·18 1·14 1·20 0·024 0·048 0·008 0·041
FCR (kg/kg) 4·01 3·58 3·74 3·71 0·066 0·222 0·040 0·088

* The P value of time for DMI, ADG and FCR was 0·005, 0·081 and 0·019. The time × FA, time ×Co and time × FA ×Co interaction for all the studied variables were not significant
(P> 0·05).

† FA−, without FA; FAþ, with 7·2 mg FA/kg DM; Co−, without Co; Coþ, with 0·11 mg Co/kg DM as cobalt sulphate.
‡ FA: FAþ v. FA−; Co: Coþ v. Co−; FA ×Co: the interaction between FA and Co addition.

Table 4. Effects of folic acid (FA) and cobalt sulphate (CoSO4) addition on total-tract nutrient digestibility and ruminal fermentation inmale calf studies groups*
(Mean values with their standard errors of the mean)

FA−† FAþ P‡

Item Co− Coþ Co− Coþ SEM FA Co FA ×Co

Digestibility (%)
DM 60·2 61·7 61·7 63·7 0·41 0·034 0·034 0·745
Organic matter 63·1 64·2 64·1 66·1 0·19 0·006 0004 0·381
Crude protein 64·3 65·6 66·6 68·6 0·23 0·001 0·003 0·456
Neutral-detergent fibre 56·3 58·1 57·4 60·9 0·31 0·001 0·001 0·107
Acid-detergent fibre 52·6 53·9 53·4 55·8 0·33 0·031 0·005 0·354

Ruminal fermentation
pH 6·78 6·68 6·73 6·62 0·023 0·201 0·024 0·887
Total VFA (mM) 98·3 104 102 109 0·99 0·036 0·003 0·856
Mol/100 mol

Acetate 66·1 63·6 68·0 64·5 0·22 0·031 0·022 0·712
Propionate 18·8 20·7 17·3 19·7 0·21 0·263 0·019 0·410
Butyrate 9·18 9·21 8·97 9·63 0·124 0·316 0·041 0·629
Valerate 2·23 2·39 2·32 2·57 0·069 0·133 0·214 0·966
Isobutyrate 1·18 1·27 1·09 1·13 0·031 0·812 0·330 0·225
Isovalerate 2·51 2·63 2·32 2·57 0·016 0·910 0·708 0·335

A:P 3·53 3·07 3·93 3·26 0·043 0·039 0·030 0·420
Ammonia N (mg/100 ml) 13·4 12·5 12·6 12·0 0·45 0·447 0·386 0·851

* TheP value of time for digestibility of CP, NDFandADFwas 0·008, 0·011 and 0·020. TheP value of time for other variables, time × FA, time ×Coand time × FA ×Co interaction for all
the studied variables was not significant (P> 0·05).

† FA−, without FA; FAþ, with 7·2 mg FA/kg DM; Co−, without Co; Coþ, with 0·11 mg Co/kg DM as cobalt sulphate.
‡ FA: FAþ v. FA−; Co: Coþ v. Co−; FA ×Co: the interaction between FA and Co addition.
A:P was the ratio of acetate to propionate.
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concentrations of glucose and vitamin B12 but did not influence
total protein, albumin, folates and Hcy.

Discussion

That supplementing Co at 0·11 mg/kg DM in diets including 0·09
mgCo/kgDM increasedDMI ofmale calveswas in agreementwith
Schwarz et al.(6), in which feed intake of growing bulls increased
when dietary Co level increased from 0·07 to 0·20 mg/kg. The
increase in DMI was a reason for the increase in ADG and was
probablydue to an increase inbloodpropionate clearance ratewith
Co addition(3). Blood propionate concentration was negatively
related to feed intake(29). Vitamin B12, as a cofactor of methylma-
lonyl-CoA mutases, is involved in the entry of propionate into
the Krebs cycle for providing energy or being used as a gluconeo-
genesis substrate(2). Marston et al.(30) reported that low level of
dietary Co impaired propionate metabolism, causing the remove

rate of blood propionate to reduce. Likewise, studies in finishing
steers observed increased DMI and ADG when supplementing
0·10 or 0·15 mg Co/kg DM in diets containing 0·04 mg Co/kg
DM(3,4). The increase in total-tract nutrient digestibility in calves
receiving 0·11mg Co/kgDM addition showed a stimulatory impact
of Co or vitamin B12 on nutrient digestion and was another reason
for the increase in ADG. Dietary Co is essential for rumenmicrobial
vitamin B12 synthesis(1). Moreover, the divalent Co cations from
CoSO4 could form a bridge between microbes and feed particles
which are negatively charged(31). Therefore, dietary Co inclusion
promoted feed degradation as reflected by the increase in rumen
total VFA concentration. Furthermore, the positive response of
nutrient digestibilitywas likely associatedwith an increase in rumen
vitamin B12 synthesis as reflected by the higher blood B12 concen-
tration for calves receiving Co supplementation. Studies indicated
that Co supplementation increased rumen and plasma vitamin
B12 concentrations in steers(3,4), and that digestibility of DM, OM
and crude protein increased with sub-cutaneous injection of

Table 5 Effects of folic acid (FA) and cobalt sulphate (CoSO4) addition on ruminal microbial enzyme activity and microflora in male calf studies groups*
(Mean values with their standard errors of the mean)

FA−† FAþ P‡

Item Co− Coþ Co− Coþ SEM FA Co FA ×Co

Microbial enzyme activity
Carboxymethyl-cellulase 0·14 0·15 0·18 0·20 0·014 0·023 0·263 0·842
Cellobiase 0·13 0·15 0·14 0·16 0·013 0·110 0·324 0·966
Xylanase 0·78 0·85 0·88 0·92 0·022 0·012 0·015 0·875
Pectinase 1·44 1·47 1·51 1·53 0·014 0·031 0·252 0·939
α-amylase 1·79 1·88 1·84 1·98 0·024 0·037 0·012 0·750
Protease 0·74 0·78 0·79 0·84 0·042 0·209 0·238 0·345

Microflora (copies/ml)
Total bacteria, ×1011 7·21 7·99 8·06 8·85 0·267 0·033 0·031 0·946
Total anaerobic fungi, ×107 3·78 4·37 4·36 5·07 0·242 0·047 0·046 0·950
Total protozoa, ×105 2·18 2·60 2·39 3·33 0·226 0·035 0·015 0·574
Total methanogens, ×109 8·94 7·42 8·79 7·76 0·190 0·243 0·003 0·519
R. albus, ×108 3·39 4·88 4·54 5·44 0·341 0·048 0·033 0·820
R. flavefaciens, ×109 2·50 2·96 2·87 3·20 0·346 0·639 0·563 0·921
F. succinogenes, ×1010 5·86 7·08 6·80 8·67 0·580 0·028 0·020 0·782
B. fibrisolvens, ×109 2·18 2·54 2·55 2·94 0·221 0·400 0·418 0·969
P. ruminicola, ×109 3·99 4·57 4·59 5·79 0·163 0·010 0·011 0·354
Rb. amylophilus, ×108 1·66 1·40 1·43 1·47 0·124 0·728 0·663 0·554

* The P value of time, time × FA, time ×Co and time × FA ×Co interaction for all the studied variables was not significant (P> 0·05).
‡ FA−, without FA; FAþ, with 7·2 mg FA/kg DM; Co−, without Co; Coþ, with 0·11 mg Co/kg DM as cobalt sulphate.
† FA: FAþ v. FA−; Co: Coþ v. Co−; FA ×Co: the interaction between FA and Co addition.
Units of enzyme activity are: carboxymethyl-cellulase (μmol glucose/min per ml), cellobiase (μmol glucose/min per ml), xylanase (μmol xylose/min per ml), pectinase (μmol D-gal-
actouronic acid/min per ml), α-amylase (μmol glucose/min per ml) and protease (μg hydrolysed protein/min per ml).

Table 6 Effects of folic acid (FA) and cobalt sulphate (CoSO4) addition on blood metabolites in male calf studies groups
(Mean values with their standard errors of the mean)

FA−* FAþ P†

Item Co− Coþ Co− Coþ SEM FA Co FA ×Co

Glucose (μmol/l) 307 363 320 370 11·1 0·978 0·036 0·991
Total protein (μg/ml) 882 835 817 865 27·8 0·756 0·990 0·413
Albumin (μg/ml) 334 316 310 314 10·4 0·183 0·389 0·225
Folates (μmol/l) 13·2 12·7 21·3 24·7 2·31 0·003 0·874 0·374
Homocysteine (μmol/l) 11·3 9·41 7·38 8·69 0·354 0·016 0·713 0·341
Vitamin B12 (ng/ml) 1·78 2·39 1·46 1·98 0·266 0·267 0·034 0·857

* FA−, without FA; FAþ, with 7·2 mg FA/kg DM; Co−, without Co; Coþ, with 0·11 mg Co/kg DM as cobalt sulphate.
† FA: FAþ v. FA−; Co: Coþ v. Co−; FA ×Co: the interaction between FA and Co addition.
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vitamin B12 in goats(32). Similar to the present study, Wang et al.(7)

found increased apparent digestibility of DM, OM, crude protein,
NDF and ADF with dietary supplementation of 0·25, 0·50 or 0·75
mg Co/kg DM in lambs. The increase in rumen total VFA concen-
tration and propionate molar percentage was in line with the
increase in α-amylase activity and populations of total bacteria,
fungi, protozoa and P. ruminicola. The decrease in acetate to pro-
pionate ratio suggested that rumen fermentation mode was altered
to more propionate formation and should be the reason for the
decrease inmethanogenspopulation and increase in bloodglucose
content with Co supplementation. The increment of propionate
production increased the substrate for gluconeogenesis but caused
a decrease in rumen hydrogen which is required by methanogens
to synthesise methane(2,33). These results suggested that dietary Co
inclusion was required for the growth of microbes responsible for
non-structural carbohydrates digestion and propionate production.
It has been demonstrated that vitamin B12 participates in bacteria
DNA synthesis and propionate production(3). Likewise, some stud-
ies showed that vitaminB12 supplementation stimulated the growth
and propionate production of some strains of P. ruminicola
in vitro.(8,9), and that dietary Co inclusion decreased acetate to pro-
pionate ratio and increased propionate proportion in steers(3,4).
However, others reported that molar percentages of SCFA were
not influenced by increasing dietary Co level from 0·17 to 0·29
mg/kg in cows(34) or from 0·09 to 0·14 mg/kg in growing steers(4).
Since the amount of rumen vitamin B12 synthesis depended on lev-
els of Co, sugars and NDF in diets(3,35), the divergent responses of
rumen fermentation parameters to Co supplementation were likely
due to the differences in diets and Co level in these studies.

In accordance with the results of Wang et al.(13), the increase in
DMI and ADG was found with dietary FA inclusion in calves. The
change of ADG could be ascribed to the increment of DMI and
nutrient digestibility with FA inclusion. In addition, results that
blood folates increased andHcy decreased suggested that FA inclu-
sion probably promoted the conversion of Hcy to methionine, and
this should be another reason of the increase in ADG. FA, in
the form of 5-methyl-THF, donors a methyl group to Hcy to regen-
eratemethionine, playing a crucial role in protein synthesismetabo-
lism(10). Studies with cows reported that B vitamins addition
enhanced protein metabolic efficiency, resulting in an increase in
milk performance(36), and that FA and vitamin B12 supplementation
increasedmethionine utilisation for protein synthesis(16). Moreover,
others observed increasedweight gain in calves with intramuscular
injections of FA(37). The elevation of total-tract digestibility of DM
and OM was in accordance with the results of Wang et al.(13)

and Liu et al.(14) in calves, suggesting that both ruminal and post-
ruminal nutrient digestion might be promoted by FA inclusion.
The changes of rumen total VFA concentration showed a stimula-
tory effect of FA on nutrient degradation. Furthermore, FA is
required for the growth and digestive juices secretion of pancreatic
cells(38). Parnian-Khajehdizaj et al.(15) observed that post-ruminal
and total-tract DM digestibility increased with FA supplementation
in vitro. The increment in rumen acetate percentage and acetate to
propionate ratio was in accordance with the changes of total-tract
digestibility of NDF and ADF and was associated with the increase
in activities of carboxymethyl-cellulase, pectinase and xylanase and
populations of total bacteria, fungi, protozoa, R. flavefaciens,
R. albus, F. succinogenes and P. ruminicola for FA inclusion.

Anaerobic fungi yields fibre-degrading enzyme and can penetrate
into plant tissues unaccessible for bacteria(39,40). Protozoa is respon-
sible for approximately 30% of fibre degradation and a synergistic
interaction existed between R. flavefaciens, F. succinogenes and P.
ruminicola in cellulose digestion(39,40). Therefore, the present
results showed that FA provision stimulated rumen microbial
growth, causing fibre digestion to increase and rumen fermentation
to alter to more acetate production. These results should be related
to the functions of FA in the one-carbonmetabolism. FA, in the form
of 5,10-methylene-THF, 10-formyl-THF and 5-methyl-THF, pro-
vides one-carbon units for thymidylate synthesis, purine synthesis
and methylation reactions and is essential for cell division and pro-
tein synthesis(10). Likewise, early studies of in vitro reported that
R. flavefaciens required THF or 5-methyl-THF for maximum
growth(12), and that rumen cellulose digestion was stimulated by
FA(11). Recent studies found that total-tract NDF and ADF digestibil-
ity, rumen acetate production and fibrolytic microbial populations
increased with FA inclusion in weaned calves(13,14).

Supplementary Co is used by microbes to synthesise vitamin
B12, and vitamin B12 dependent methionine synthase is essential
for the regeneration of methionine and THF, a biologically active
form of folates(1,41). Similar BW of 60 d and ADG were observed
for calves with addition of Co, FA as well as Co and FA together,
but the interaction of FA and Co for nutrient digestibility and
ruminal fermentation parameters was not significant. The results
suggested that supplementing Co in the FAþ diets probably did
not increase the utilisation efficiency of FA. Likewise, Graulet
et al.(17) found thatmilk yieldwas similar for dairy cows receiving
FA addition alone or FA plus vitamin B12 addition.

Conclusions

Dietary FA or Co inclusion increased ADG, nutrient digestibility
and rumen VFA production in calves. Addition of FA stimulated
rumen cellulolytic microbial growth, resulting in an increase in
fibre digestion and acetate production. Supplemented Co was
mainly used bymicrobes responsible for non-structural carbohy-
drates digestion and propionate production. Supplementing 0·11
mg Co/kg DM in calf diets containing 0·09 mg Co/kg DM prob-
ably did not increase FA utilisation efficiency, since no further
increase in ADGwas observed with FA and Co supplementation
compared with FA or Co addition alone.
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