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In this paper a novel nonlinear feedback control design methodology for incompress-
ible fluid flows aiming at the optimisation of long-time averages of flow quantities
is presented. It applies to reduced-order finite-dimensional models of fluid flows,
expressed as a set of first-order nonlinear ordinary differential equations with
the right-hand side being a polynomial function in the state variables and in the
controls. The key idea, first discussed in Chernyshenko et al. (Phil. Trans. R. Soc.
Lond. A, vol. 372, 2014, 20130350), is that the difficulties of treating and optimising
long-time averages of a cost are relaxed by using the upper/lower bounds of such
averages as the objective function. In this setting, control design reduces to finding
a feedback controller that optimises the bound, subject to a polynomial inequality
constraint involving the cost function, the nonlinear system, the controller itself and
a tunable polynomial function. A numerically tractable and efficient approach to
the solution of such optimisation problems, based on sum-of-squares techniques and
semidefinite programming, is proposed. To showcase the methodology, the mitigation
of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in
the laminar regime at Re = 100, via controlled angular motions of the surface, is
numerically investigated. A compact reduced-order model that resolves the long-term
behaviour of the fluid flow and the effects of actuation, is first derived using proper
orthogonal decomposition and Galerkin projection. In a full-information setting,
feedback controllers are then designed to reduce the long-time average of the resolved
kinetic energy associated with the limit cycle. These controllers are then implemented
in direct numerical simulations of the actuated flow. Control performance, total energy
efficiency and the physical control mechanisms identified are analysed in detail. Key
elements of the methodology, implications and future work are finally discussed.
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SOS approach to feedback control of laminar wake flows 629

1. Introduction
In the past decades, the coordinated efforts of laboratory experiments using

high-resolution flow diagnostics and large-scale direct numerical simulations (DNS)
have considerably progressed our understanding of key physical processes and
mechanisms in turbulent flows. Despite these new discoveries, progress in the
ability to effectively control their spatiotemporal evolution in complex geometries has
remained more elusive, owing to the nonlinear, multiscale nature of turbulent motion.
Interest in control is driven by the huge economic, societal and environmental benefits
that advances in the field would provide. Hence, the development of active control
strategies is commonly regarded as one of the key enablers for future advances
in efficient transportation, energy generation and distribution, and in many other
technologically relevant industrial sectors.

Controlling and mitigating large-scale velocity fluctuations in the flow around bluff
bodies, the problem that we discuss in this paper, is one such instance. When the
Reynolds number exceeds a critical value, the periodic generation and shedding
of organised vortical structures from the body produces intense fluctuations in the
aerodynamic forces, resulting in structural fatigue (Sarpkaya 2004), acoustic noise
production (Blevins 1984; Thomas, Kozlov & Corke 2008) and other undesirable
effects, such as vortex-induced vibrations (Williamson & Govardhan 2004). The
technological relevance of these flows has thus spawned significant interest in devising
control strategies to tame their evolution. A variety of actuation/sensing strategies and
control design methods have been proposed, as recently reviewed by Choi, Jeon &
Kim (2008).

Because of the simplicity of the geometry, the two-dimensional flow past a circular
cylinder has become the paradigmatic flow model to investigate vortex dynamics
around bluff bodies. The laminar, steady solution is characterised by two recirculation
eddies, whose length grows linearly with Re (Fornberg 1985) and becomes unstable in
a Hopf bifurcation at Re≈ 47 (Provansal, Mathis & Boyer 1987; Noack & Eckelmann
1994) due to a symmetry-breaking unstable global mode (Tang & Aubry 1997). The
ensuing nonlinear regime saturates in a sustained periodic motion, vortex shedding,
a stable periodic orbit attracting trajectories in an appropriately defined phase space
of the system (Rempfer 2000; Noack et al. 2003) before the occurrence of other
bifurcations at higher Re (Barkley & Henderson 1996).

Control of this specific regime became a useful benchmark problem to develop
and test novel feedback control design strategies (Lehmann et al. 2005). One of the
perspectives adopted in several investigations on control has been the stabilisation
by feedback of the unstable, steady, laminar wake flow. At low supercritical
Reynolds numbers, only one unstable global mode, the Kármán mode, exists. Hence,
proportional control strategies, where the signal from a single sensor located at some
point in the wake is multiplied by a constant gain and fed back to the actuator,
have been considered extensively (e.g. Berger 1967; Monkewitz, Berger & Schumm
1991; Roussopoulos 1993; Park, Ladd & Hendricks 1994). In the light of DNS and
reduced-order modelling techniques for linear systems, Illingworth, Naito & Fukagata
(2014) review succinctly some of these efforts and discuss the ‘gain window effect’
observed in previous numerical and experimental works, i.e. when suppression of the
wake instability is achieved only if the gain is within a certain interval. They show
that such an effect does not result from the destabilisation by control of other unstable
modes, but rather that it is driven by the properties of the closed-loop system, in
particular by the time delays associated with the feedback arrangement. The authors
also showed that the window shrinks as Re increases and it does not exist any more
at Re= 80, reflecting the objective difficulty or impossibility of obtaining stabilising
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controllers as the Reynolds number increases. They concluded by suggesting that
better control strategies, with more complicated dynamics than proportional control,
might be required to improve performance.

Camarri & Iollo (2010) proposed a linear feedback design method, for the flow
past a square cylinder, based on linearised dynamics and global linear stability
analysis of the equilibrium solution, inspired by previous works on passive control
design methods (see Giannetti & Luchini 2007; Marquet, Sipp & Jacquin 2008, and
references therein). Camarri & Iollo (2010) proceed by examining the sensitivity of
the linear stability problem with respect to the controller parameters, in order to
displace the eigenvalues of the unstable and least stable modes to the left half of
the complex plane via control design. They pointed out that the performance of this
controller far from the design state, i.e. the control of the nonlinear saturated regime,
needs to be explored a posteriori. They show that their feedback strategy can stabilise
the fully nonlinear regime up to twice the critical Reynolds number of the natural
flow. At higher Reynolds number, in highly nonlinear regimes, performance worsens.
Interestingly, the authors point out that the basin of attraction of the stabilised wake
structure shrinks consistently as the Reynolds number increases.

Carini, Pralits & Luchini (2015) investigated feedback control in the framework of
linear optimal control theory, and designed and tested a full-dimensional minimum-
control-energy compensator, free from spillover effects induced by the excitation by
actuation of stable dynamics, often observed when control is designed on a reduced-
order model (Barbagallo, Sipp & Schmid 2009). Using the feedback from a single
sensor measuring the cross-stream velocity to control the rotation rate of the cylinder
around its axis, Carini et al. (2015) showed that complete stabilisation of the unstable
mode was possible only up to Re≈ 59, if the sensor was located in a narrow region
between 2 and 2.5 diameters downstream of the cylinder axis. The critical Re was
increased to 72 when a full-information controller was employed. They commented
on this difference by suggesting that better performance on the nonlinear saturated
flow could be obtained by adopting a nonlinear observer and ultimately a nonlinear
control strategy.

These and other investigations have demonstrated that, as the Reynolds number
increases, the flow dynamics becomes so strongly nonlinear to render linearisation of
the equations around the unstable equilibrium and linear design methods scarcely
effective. In the terminology of Brunton & Noack (2015), such systems are
‘irreducible’, in the sense that key nonlinear processes, such as vortex pairing/merging,
inter-modal energy transfers and advection of coherent structures, crucial to describe
the developed state of natural instabilities that arise progressively as the Reynolds
number increases, cannot be described by a linearised theory. Furthermore, the gradual
loss of linear stabilisability as the Reynolds number increases (Lauga & Bewley 2003),
coupled with sensing/actuation constraints of practical technological nature, suggest
that the developed nonlinear state of the flow needs to be addressed directly in the
design stage.

Strategies where the structure of the feedback controller is heuristically fixed a
priori and appropriate gains are obtained from optimisation or parameter exploration
over nonlinear controlled regimes have been proposed (e.g. Fujisawa, Kawaji &
Ikemoto 2001; Siegel, Cohen & McLaughlin 2006; Weller, Camarri & Iollo 2009;
Lu et al. 2011; Mehmood et al. 2014). Weller et al. (2009) introduced a feedback
structure consisting of a linear proportional controller relating several cross-flow
velocity measurements in the near wake to the signal driving the actuators, two
blowing/suction slots on the top and bottom walls of the square cylinder arrangement
driven in opposite phase. Optimisation of the gains, to reduce the short-time-averaged
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L2-norm of the difference between the instantaneous flow field and the unstable
steady solution, was then performed in a trust-region, reduced-order, adaptive setting.
The resulting feedback arrangement was able to stabilise the flow starting from the
saturated nonlinear regime at a Reynolds number almost twice the critical value.
However, because the optimisation involved a cost function defined over a finite
short horizon, the best controller resulted in excellent performance in this interval but
performance subsequently degraded, especially at larger Reynolds numbers. Weller
et al. (2009) concluded by pointing out that the asymptotic stability of the closed-loop
system cannot be ensured by their method, as the long-term behaviour of the system
is not considered in the design.

These investigations strongly relied on the ingenuity of the researchers, on heuristic
choices of sensor/actuation position and type, and on solid understanding of the flow
physics. Such heuristic strategies might show significant limitations when applied to
flows with more complex nonlinear dynamics. Recent model-free approaches, such as
genetic programming control (see e.g. Debien et al. 2016; Parezanović et al. 2016,
and references therein), use evolutionary strategies to automatically discover such
heuristics in experimental control studies, using a black-box optimisation approach.
These approaches can lead to the emergence of unexpected control solutions, as they
effectively explore large search spaces, and can uncover novel control mechanisms
(Gautier et al. 2015).

On the other side of the spectrum, optimal control theory (Abergel & Temam
1990) is probably one of the most versatile model-based control design methods
for nonlinear systems. Optimal control, in the predictive setting, consists in finding
and applying in a feed-forward fashion the control input that optimises a suitable
cost function defined as a definite integral spanning a predetermined finite horizon.
Although such a strategy is extremely computationally expensive, it is considered
to represent the upper limit on the achievable control performance (Bewley, Moin
& Temam 2001). Optimal control of a circular cylinder wake via rotary actuation
has been implemented by Protas & Styczek (2002) to minimise a cost function
involving the sum of the power associated with control and that associated with the
drag, using optimisation horizons up to roughly one vortex shedding period. More
recently, Flinois & Colonius (2015) implemented the same algorithm but significantly
extended the optimisation horizon, up to 100 convective time units, i.e. at least
10 times larger than previous efforts. The important observation is that long-time
horizons, representative of the long-term behaviour of the controlled system, were
necessary to suppress vortex shedding at Reynolds numbers between 75 and 200, and
achieved far better performance, with smoother control inputs, than the short-time
horizon approach of Protas & Styczek (2002), enabling the identification of physical
control mechanisms.

1.1. Objectives and structure of the paper
The main purpose of this paper is to present a novel paradigm for model-based
feedback control of fluid flows, in an effort to address some of the outstanding issues
discussed in the introduction. Firstly, the proposed control paradigm applies directly
to nonlinear Galerkin-type models of incompressible fluid flows. No linearisation
around an operating point is performed and the only dynamical approximation is the
truncation of the Galerkin velocity expansion. Hence, important nonlinear processes
that can be described by such models can be controlled, if not exploited. Secondly,
the long-term behaviour of the system is central in the design, as the optimisation
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targets long-time averages, defined over infinite horizons. The key step to overcome
the objective difficulty of treating and optimising such averages is to replace it by
estimation/optimisation of bounds, as first proposed by Chernyshenko et al. (2014).

The theoretical and algorithmic backbone of this approach is a recent breakthrough
in control theory and optimisation, i.e. the discovery that the sum-of-squares (SOS)
decomposition of a polynomial can be found, if it exists, via the solution of a
semidefinite program (SDP) (Parrilo 2003). These advances have recently emerged
as a promising basis to solve many computationally hard analysis/design problems
for systems whose dynamics are described by polynomial functions, such as the
estimation of the attraction region of equilibria (Valmorbida, Tarbouriech & Garcia
2013) as well as the simultaneous optimisation of a stabilising controller and a
high-degree Lyapunov function certifying the stability of the controlled system (Zhao
& Wang 2010; Nguang, Krug & Saat 2011). These new paradigms of design and
analysis provide us with numerically tractable methods to take a new perspective of
many fundamental problems in fluid dynamics as reviewed in Chernyshenko et al.
(2014), such as nonlinear control design, the objective of this paper, or nonlinear
stability analysis, as in Huang et al. (2015).

The paper is organised as follows. In § 2, a concise presentation of SOS techniques
is reported. Numerous references to this technology are presented for the more
interested reader. Section 3 describes the control design methodology, using a
relatively general notation. More specifically, it discusses the technique used to
estimate bounds on long-time averages and its application to control design via
bounds optimisation. In § 4 these ideas are applied to the benchmark control problem
of regulation of vortex shedding past a circular cylinder at a Reynolds number equal
to 100, via rotary oscillations of the surface. This problem was extensively discussed
in this introduction to put our results in a more focused context and was chosen as
a pretext to describe a methodology that applies independently of the specific case,
i.e. from the details of the flow, the actuation/sensing arrangement and the modelling
approach. The numerical set-up is discussed first. The model order reduction strategy,
based on proper orthogonal decomposition (POD) and Galerkin projection, is then
introduced. State-feedback controllers are further designed and performance is assessed
by implementation in DNS in a full-information setting. Conclusions and future work
to be addressed are summarised in § 6.

2. The sum-of-squares decomposition

We provide in this section a succinct overview of SOS techniques, in order
to convey the general underlying ideas. In this section, we favour clarity over
mathematical rigour, with the hope of bridging the gap between the mathematical
aspects and fluid mechanics. We refer the interested reader to our previous work
(Chernyshenko et al. 2014), where a broader overview of the SOS technique and its
applications in fluid mechanics is given.

Despite the complexity of the underlying mathematical framework, the idea of the
SOS decomposition of a polynomial is rather simple. As an example, one might be
interested in checking the non-negativity of a given multivariate polynomial function
P(a1, . . . , aN)=P(a), of even degree 2dP, that is, if P(a)> 0 for all a∈RN . Checking
non-negativity for a general multivariate polynomial is NP-hard, hence intractable from
a computational perspective (Papachristodoulou & Prajna 2002). However, a sufficient
condition for P(a) to be non-negative is that it can be decomposed into the sum of
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the squares of M polynomial functions p1(a), . . . , pM(a), of lower degrees as

P(a)=
M∑

i=1

p2
i (a). (2.1)

Finding such a decomposition is equivalent to finding a positive semidefinite matrix
R, which can be assumed symmetric without loss of generality, and a suitable vector
v(a) containing monomials in the variables ai up to degree dP such that

P(a)= v(a)TRv(a). (2.2)

If one can find a positive semidefinite R, then a linear transformation of coordinates
can reduce it to a diagonal form, with non-negative entries on the main diagonal,
reducing P to a linear combination of squares of polynomials, clearly being equivalent
to non-negativity. However, the converse is not necessarily true, that is, not all non-
negative polynomials admit an SOS decomposition, a famous counter-example being
the Motzkin polynomial.

In a design problem, it might be of interest to construct a non-negative polynomial
function subject to a set of constraints, rather than checking non-negativity of an
existing one. This problem, which we will deal with in what follows, can be
treated essentially using the same approach. It is worth noting that, in practice,
the decomposition (2.2) is only approximate, and the error

e(a)= P(a)− v(a)TRv(a) (2.3)

is non-zero. However, by Theorem 4 in Löfberg (2009), the polynomial P(a) is still
certifiably non-negative if

λmin − dim(R)× |r|> 0, (2.4)

where λmin is the smallest eigenvalue of R, dim(R) denotes the dimension of the
matrix R, and r is the coefficient of e(a) that has the largest magnitude.

From a computational perspective, finding the SOS decomposition of a polynomial
amounts to finding a positive semidefinite matrix R, subject to a set of linear equality
constraints, arising from the equality in (2.2). This problem can be reformulated as an
SDP (Parrilo 2003), a convex and tractable problem to solve. Several freely available
software tools that can formulate and solve efficiently this kind of problem exist, such
as the Matlab toolboxes SOSTOOLS (Papachristodoulou et al. 2013) and YALMIP
(Löfberg 2004).

3. The control design method
3.1. Problem statement

We consider finite-dimensional dynamical systems given as a set of nonlinear coupled
ordinary differential equations, as

da
dt
= f (a, u), (3.1)

where a∈RN is the state-variables vector, u∈R is the control, and f :RN ×R→RN is
assumed to be a polynomial function in the state variables and in the control. For the
sake of reducing clutter, we discuss a single input case, but the multiple input case
can be treated with minor revisions in the derivation. For incompressible fluid flows,
this is the formulation that results naturally from Galerkin projection of the governing
equations onto a finite-dimensional orthonormal set of basis functions (Fletcher 1984).
It is well known that, for such systems, the vector field f can have constant, linear
and quadratic terms, and the latter conserves energy for a large class of boundary
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conditions of the original partial differential equations. The way the control appears
in f depends on the type of actuation: for volume forces, the right-hand side is affine
with the input u; whereas for actuation via the boundary, a ‘lifting’ procedure results
in the dynamics of the system being dependent on du/dt and u2.

Suppose that for system (3.1) it is of interest to control the value of a turbulent
quantity Φ(t), the cost. This could express, for instance, the instantaneous turbulent
kinetic energy, or the energy dissipation rate. Suppose further that the cost can be
expressed as a positive-definite polynomial function of the state variables and of
the control, i.e. Φ(t) = Φ(a(t), u(t)). In general, but more specifically for systems
exhibiting turbulent behaviour, long-time statistics of Φ(t), for example, long-time
averages,

Φ = lim
T→∞

1
T

∫ T

0
Φ(a(t), u(t)) dt, (3.2)

are of primary interest, where a(t) is the solution of (3.1) with u= u(t) and for some
initial condition. Denoting first by Φ

0
the long-time-averaged cost without control, the

objective is to design a state-feedback controller

u(t)= g(a(t)) (3.3)

that manipulates the long-term behaviour of (3.1) such as to reduce, or increase
depending on the problem, the long-time-averaged cost to Φ

∗
. Here, we also restrict

g :RN→R to be an initially undetermined polynomial function of arbitrary degree dg
in the state variables, in order to leverage SOS techniques. Such a restriction imposes
a high degree of smoothness on the control, but highly nonlinear controllers can be
designed, as dg can be regarded as a design parameter. Note that the controller (3.3)
makes the closed-loop system (3.1) an autonomous system. We assume here that
complete and exact information on the instantaneous state of the system is available;
hence, we avoid the necessity of designing an observer. This step would be required
in a practical application, but it is beyond the scope of this paper, which focuses on
control design only.

Ideally, the controller could be designed by solving the optimisation problem

Φ
∗ =
{

min
g
Φ

subject to ȧ= f (a, g(a)),
(3.4)

where ȧ = da/dt. The non-convexity of (3.4), but most importantly the fact that the
minimisation of long-time averages are considered, makes (3.4) difficult to solve. The
key step, previously suggested in Chernyshenko et al. (2014), is illustrated in figure 1.
Instead of treating a long-time average directly, we replace the original problem with
the analysis of an upper bound of the average, i.e. a value C for which an algorithm
exists proving Φ 6 C for system (3.1), where the equality holds when the bound is
tight. Hence, instead of attempting to reduce the long-time average, we reformulate
(3.4) into the problem of designing a controller minimising the upper bound, from
C0, the bound on Φ

0
, to C∗, the bound on Φ

∗
. This reads as

C∗ =
{

min
g

C

subject to Φ̄ 6 C, ȧ= f (a, g(a)).
(3.5)

The hope is that, under the action of such a controller, the actual time average Φ
∗

will
also decrease. This is not guaranteed to happen in a general case. As a trivial, yet
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FIGURE 1. (Colour online) Illustration of the general idea behind the proposed control
methodology. Instead of designing a controller that reduces the time average from Φ

0
to

Φ
∗
, a controller that reduces the upper bound from C0 to C∗ is sought. Under the action

of such a controller, the time average is also expected to decrease, although this cannot
be guaranteed in a general case.

representative, example, consider a system having multiple stable equilibria ai, each
with its own basin of attraction. In such a case, the long-term behaviour of trajectories,
hence the time average, depends on the particular choice of the initial conditions. An
upper bound on the time average of some cost Φ(a) is simply maxiΦ(ai). The crucial
point is that a controller designed to reduce the upper bound is guaranteed to decrease
the actual time average only in a ‘worst-case scenario’, i.e. when the trajectory starts
from the basin of attraction of the steady solution associated with the bound. Should
this not be the case, it is perfectly possible that the actual long-time average will
increase.

The occurrence of such a behaviour depends on the particular choice of the cost
function Φ(a) and on the topology of the system’s phase space, i.e. the attractors
and/or repellors that populate it. Nevertheless, manipulating and analysing bounds is
much easier than doing so with long-time averages directly. SOS techniques can be
employed exactly for such a purpose, as we show in the next section. In the case when
the algorithm used to calculate the upper bound does not guarantee that the bound is
tight, the outcome of the optimisation depends also on the algorithm, which, therefore,
should be specified. This is done in the following section.

3.2. Bounds estimation

The first step is to derive an upper bound C0 on the average Φ
0
, for uncontrolled

dynamics. We define a polynomial function in the state variables, V(a), of degree
dV , containing unknown decision variables as its coefficients. We assume that
trajectories of the system (3.1) are bounded in some set, as one would expect in
a dissipative system such as a fluid flow, both in the infinite-dimensional case, and
for non-degenerate finite-dimensional representations thereof.

The function V is also bounded in this set, as it is a polynomial. The total time
derivative of V along trajectories of the system,

dV(a)
dt
= ∂V
∂a
· da

dt
=∇aV(a) · f (a), (3.6)
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is then also bounded, where ∇aV , ∂V/∂a is the gradient of V with respect to the
coordinates of the phase space. Now, suppose one can find some V such that the
following polynomial inequality

∇aV(a) · f (a)+Φ(a)6 C (3.7)

is satisfied for all a in RN , for a given C. Then, it is straightforward to show that C
is an upper bound for Φ

0
, i.e. Φ

0
6C. This is because, when taking the time average

of (3.7) with a= a(t), the term

∇aV(a) · f (a)= dV(a)
dt
= lim

T→∞
1
T

∫ T

0

dV(a)
dt

dt= lim
T→∞

1
T
[V(a(T))− V(a(0))] (3.8)

vanishes identically under the above assumption of boundedness. Hence, the upper
bound C0 can be obtained by minimising C over all possible polynomials V of a given
degree under the polynomial constraint (3.7), i.e. by solving

Φ
0
6 C0 =

{
min

V
C

subject to −(∇aV(a) · f (a)+Φ(a)−C)> 0.
(3.9)

Because verifying positive-definiteness of a given polynomial, as well as constructing
one as in the present case, is a notoriously difficult problem, we replace the constraint
in (3.9) such as to have

Φ
0
6 C0 6 C0

SOS =
{

min
V

C

subject to −(∇aV(a) · f (a)+Φ(a)−C) ∈Σ, (3.10)

where Σ is the set of all polynomials that have an SOS decomposition. From a
numerical point of view, this optimisation problem is solved by trial and error by
reducing C until a V satisfying the polynomial inequality cannot be found. For a
given C, the search for the function V is numerically reformulated into an SDP using
standard software tools (Löfberg 2004; Papachristodoulou et al. 2013). It is a convex
problem, hence can be solved efficiently, and the solution, if it exists, is unique.
In general, a hierarchy of bounds can be obtained by increasing the degree of the
polynomial function V . Note that the same procedure can be used to estimate a lower
bound, when maximisation of the time average is of interest, by reversing the sign
of the inequality in (3.7), and change (3.10) to a maximisation problem.

Strengthening the non-negativity constraint to an SOS constraint adds conservative-
ness in the optimisation, in the sense that the upper bound found from (3.10) can
be, in principle, lower than the bound that could be found if one was able to solve
(3.9) directly, so the tightness of the obtained bound may not be guaranteed. This
is because not all positive-definite polynomials can be decomposed into the sum of
squares of other polynomials, although this appears to be a special case (Tan 2006).
However, the second problem is numerically tractable, whereas the former is not.

It is worth pointing out that finding a finite upper bound of a long-time average on
a positive-definite cost, with the method defined above, does not automatically prove
the boundedness of the trajectory of the system. Bounds on long-time averages are
determined by the invariant sets that populate the phase space of the system, no matter
what their stability is, because they define the permanent regime. The bound could be
given by an unstable set, e.g. a repellor, and, in the absence of other information,
it is not possible to assert boundedness of the trajectories. A modification of the
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polynomial inequality (3.9), based on the idea of adding stochastic noise to (3.1), to
include only stable invariant sets, is discussed in Chernyshenko et al. (2014). However,
with this modification, a finite upper bound only proves boundedness of trajectories
for almost all initial conditions. In fact, there might still exist an unbounded unstable
set, which might allow a trajectory with a particular initial condition, on this set, to
escape to infinity. The inability to find an upper bound does not prove that trajectories
are unbounded. This is because the SOS constraint in (3.10) is stronger than the
non-negativity constraint in (3.9), resulting in C0 6 C0

SOS. Hence, one could probably
formulate a corner-case problem where a finite C0

SOS cannot be found, whereas C0

exists and is finite.
A recent discussion on such issues is given by Schlegel & Noack (2015). These

authors proposed a computational procedure that can be used to prove boundedness
of the trajectories. It is based on the idea of finding a globally attracting ‘trapping
region’, i.e. a closed set in the phase space such that all trajectories converge
to this region and remain inside it once they have entered it. Their procedure is
based on finding an appropriate shift in the phase space, such that the perturbation
energy in this translated reference frame possesses the mathematical properties of a
Lyapunov function for large deviations from the shifted origin. From a computational
perspective, they employed a simulated annealing algorithm, or ad hoc searches along
particular directions in the phase space, to identify the appropriate shift. However,
this algorithm can only prove the existence of a trapping region – it cannot disprove
it. In appendix A we report an alternative and rigorous SOS-based procedure that can
be used to prove the existence of a monotonically trapping region.

3.3. Bounds optimisation
As for the bound estimation problem, we consider a tunable polynomial function V(a),
and assume initially that trajectories remain bounded under closed-loop control. The
optimisation problem equivalent to (3.10) is now

C∗ 6 C∗SOS =
{

min
V,g

C

subject to −(∇aV(a) · f (a, g(a))+Φ(a)−C) ∈Σ,
(3.11)

where the minimisation of the upper bound is now performed over all possible
polynomial functions V(a) and state-feedback polynomial controllers g(a), of given
degree dV and dg, respectively. The additional degrees of freedom associated with g
can allow, unless one is dealing with certain pathological cases, a further reduction of
the upper bound, that is, C∗SOS < C0

SOS. As previously anticipated, it is not guaranteed
that the feedback controller obtained using this procedure will reduce the actual value
of the time average of the cost in closed-loop simulation of the system, that is, the
inequality Φ

∗
<Φ

0
cannot be guaranteed to hold.

The bounds C0 and C∗ solely depend on the analytic definition of the vector field f ,
hence on the structure of the system’s phase space. Because the system’s invariant sets
determine the long-term evolution, hence the bound, one can see this design scheme
as finding the vector field induced by g(a) that moves/reshapes the set associated with
the bound such as to reduce favourably the long-time-averaged cost.

The bound optimisation problem is still non-convex, because one needs to optimise
simultaneously the tunable function V(a) and the controller g(a), and so the tuning
variables in V are multiplied by those in g. This problem is not directly reducible
to an SDP and convex optimisation techniques cannot be readily applied. This is a
well-known problem in the SOS community, and is similar to that encountered when
optimising simultaneously a globally stabilising feedback controller and a polynomial
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Lyapunov function certifying the global stability of an equilibrium (Zhao & Wang
2010; Nguang et al. 2011). Alternative iterative algorithms need to be used (see e.g.
Henrion & Garulli 2005, for an overview).

In this paper we have developed a similar iterative algorithm, which is described in
detail in appendix B and used to solve (3.11). The details are as follows.

(1) For a given upper bound C and an initial controller g(a), whose derivative can
be calculated in a certain way, e.g. equation (5.1) when g(a) is linear, check
the feasibility of the resultant SOS problem, namely, equation (2.4), by tuning
V(a). Here, the feasibility of SOS optimisation implies that the controller g(a) is
effective in reducing the upper bound to C.

(2) Fixing the optimised V(a) and still keeping dg/dt as in (1), further minimise
the upper bound C by solving the resulting SDPs in the decision variables of
g(a). Note that the Schur complement technique will be adopted to resolve the
nonlinearity of the SOS problem, as demonstrated in (B 3). In addition, only a
reduction of δC is considered at each step.

(3) Update dg/dt using the optimised g(a) in (2) and repeat the procedure (1)–(2)
until C cannot be decreased any more.

(4) Output the optimised C and the corresponding controller g(a).
The non-convexity implies that it is not guaranteed that these iterations will arrive

at the global minimum of the bound. Our experience suggests that this is indeed the
case and the optimum will typically depend on the initial guess.

It is worth mentioning that, using this bound optimisation procedure, globally
stabilising controllers can also be designed. In particular, an SOS globally stabilising
controller for an equilibrium point a0 is that for which the upper bound optimisation
(3.11) has solution C∗SOS = Φ(a0), provided that Φ reaches the global minimum on
this point. In other words, if the bound can be made tight to Φ(a0) via control design,
then all trajectories of the controlled system must eventually converge to a0, to make
the long-time average equal to the bound. Note that here V does not possess the
mathematical properties of a Lyapunov function as in the Lyapunov-based method
discussed in the previous paragraphs. It is also worth saying that the optimisation
stops when the bound cannot be further reduced, resulting in a controller that can
still favourably modify the dynamics. Possible reasons for a premature stop include
conservativeness of the SOS constraint or a degree of V or g lower than necessary.

4. Application to a fluid flow
In this section the control design methodology described in § 3 is applied to a fluid

flow. The mitigation of fully developed vortex shedding, i.e. the nonlinear dynamics
of the two-dimensional unsteady wake flow past a circular cylinder at low Reynolds
number, Re= 100, using a controlled rotary motion of the cylinder, has been selected.

4.1. Numerical set-up
The formulation used to solve the flow problem is based on the Navier–Stokes
momentum and continuity equations for a two-dimensional incompressible viscous
fluid,

∂u
∂t
+ u · ∇u=−∇p+ 1

Re
∇2u, (4.1a)

∇ · u= 0, (4.1b)
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jy

ix

FIGURE 2. Schematic of the problem configuration for the circular cylinder flow.
Boundary conditions on the outer domain boundaries are also indicated.

where p is the reduced pressure and u = ui + vj is the velocity vector defined on
a two-dimensional Cartesian space x= xi+ yj, centred on the centre of the cylinder,
located at x= (0, 0), and oriented such that the x axis is aligned with the free stream,
as sketched in figure 2. Normalisation of the governing equations, resulting in (4.1), is
done using the cylinder diameter and the free-stream velocity. This yields the standard
definition of the Reynolds number as Re= u∞D/ν, where D is the cylinder diameter,
u∞ is the free-stream velocity and ν is the kinematic viscosity of the fluid.

The Navier–Stokes problem (4.1) is solved on a triangular unstructured mesh with
a finite volume formulation provided by the open source software OpenFOAM (Jasak,
Jemcov & Tukovic 2007). The application icofoam, implementing the well-known
PISO algorithm, has been used to solve the velocity–pressure coupling (Ferziger
& Perić 2002). Preliminary validation and grid convergence studies, not reported
in this paper because of the standard problem type, have been conducted to assess
the reliability of the solver, showing good agreement between present and previous
numerical results. A mesh of intermediate fineness with size of the elements adjacent
to the cylinder equal to 0.02 has been chosen, for a total of approximately 17 000
triangular cells.

The computational domain has the same size as the one used in Bergmann, Cordier
& Brancher (2005). It is rectangular and extends for 10 and 20 diameters upstream
and downstream of the cylinder, respectively, and spans a total vertical size of 20
diameters in the crossflow. The boundary conditions associated with the problem are
also sketched in figure 2. At the inflow, the Dirichlet condition u = (u∞, 0) is used
for the velocity, while the Neumann condition ∂p/∂x= 0 is used for the pressure. On
the upper and bottom boundaries, a free-slip condition is used for the velocity, such
that ∂u/∂y= 0 and v = 0. A zero-normal-gradient condition is used for the pressure
on these two boundaries. On the cylinder surface, the no-slip condition u= (0, 0) is
enforced, while the standard zero-normal-pressure-gradient condition is used for the
pressure. At the outflow boundary, good numerical results, without spurious reflections,
were obtained by using a zero-normal-gradient condition for the velocity, i.e. ∂u/∂x=
(0, 0), while the Dirichlet condition p= 0 was set to fix uniquely the pressure field.

The time step was constant and equal to 1t = 0.005 for the mesh used to obtain
all the results reported in the rest of the paper. This choice was adopted to achieve
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satisfactory temporal resolution and a maximum Courant number in the flow field of
the order of 0.7.

In the following we will make use of a standard inner product between vector fields,
defined as

〈v,w〉 =
∫

Ω

v ·w dΩ, (4.2)

where Ω is the flow domain, and the associated norm ‖v‖ = 〈v, v〉1/2.

4.2. Proper orthogonal decomposition and reduced-order modelling
The SOS-based design methodology requires a finite-dimensional representation of
the system dynamics, available explicitly as a set of first-order ordinary differential
equations with right-hand side being a polynomial function of the state variables
and of the control. Spatial discretisation of (4.1), an infinite-dimensional system
modelled by partial differential equations, leads formally to such a system, but the
extremely large dimension leads to problems that are not tractable numerically, even
for moderately complex flows. Specifically, the computational cost of the solution
of the SOS problems discussed above, e.g. equation (3.11), grows extremely quickly
with the system size, as will be discussed later. Hence, a model reduction strategy is
used in this paper to reduce the size of the dynamical system and allow a numerically
tractable solution.

We adopt a standard Galerkin projection method, whereby the full dynamics are
projected onto a low-dimensional linear subspace, spanned by appropriately selected
basis functions. To begin with, the velocity vector field is assumed to be approximated
by the ansatz

uN(x, t)= u(x)+ γ (t)u(x)+
N∑

i=1

ai(t)ui(x). (4.3)

The velocity field is decomposed into a solenoidal steady base flow u(x) satisfying
homogeneous boundary conditions on the cylinder, a ‘control flow’ γ (t)u(x) (see e.g.
Graham, Peraire & Tang 1999; Kasnakoğlu, Serrani & Efe 2008) used to lift the time-
dependent inhomogeneous boundary conditions on the oscillating cylinder surface and
to include control via the boundary in the dynamic model, and the weighted sum of
N solenoidal vector fields ui(x), the basis functions, which are assumed to form an
orthonormal set.

Because the dynamics of a high-dimensional system are compressed into few
degrees of freedom, the choice of the basis functions ui is often crucial. Growing
interest in model-based control of fluid flow has resulted in different selection
strategies, which are far too numerous to discuss here (see e.g. Noack et al. 2003;
Barbagallo et al. 2009). In this work we used POD (Sirovich 1987; Berkooz, Holmes
& Lumley 1993; Holmes, Lumley & Berkooz 1998) to identify the low-dimensional
subspace. The motivating observation for the choice of POD in the current context
is that, when data used in the POD algorithm are specifically obtained by sampling
the system after the developed regime has established, i.e. any transient has died out,
the basis functions describe approximately the axis of inertia of the attractor of the
system. Hence, a reduced-order model (ROM) that describes accurately the long-term
behaviour of the system is extremely important in the present case, because the focus
of the present SOS paradigm in on the estimation and optimisation of a bound for
the developed regime.
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0
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100 200 300
t

FIGURE 3. Time history of the signal used to generate snapshots of the actuated
velocity field.

With the idea of exciting transient flow structures and obtaining a richer snapshot
set (Bergmann et al. 2005), a first set of snapshots of the velocity vector field,
U = {u(x, tk)}Mk=1, is sampled from a DNS in which the angular motion of the
cylinder is driven by a random actuation signal. The discrete-time actuation signal
is obtained from samples of a zero-mean Gaussian distribution. It is then digitally
filtered, such that its power spectrum has zero energy outside the band of reduced
frequency St = fD/u∞ = [0.1, 0.25]. The amplitude of the filtered signal is then
modulated by a low-frequency mode, Stmod = 0.005, in order to actuate the flow at
different intensities, and it is then normalised to have unitary maximum magnitude,
resulting in a standard deviation equal to approximately 0.25. One-third of the total
control signal is shown in figure 3. The total duration of the simulation is T = 1000,
approximately 150 oscillation cycles of the uncontrolled flow, and a total of M= 900
snapshots is sampled, from t > 100, at intervals of one non-dimensional time unit.
We have verified that such a number of snapshots is sufficient to provide convergence
of the second-order statistics associated with POD, such as the energy distribution
among individual POD modes.

The time-dependent inhomogeneous boundary conditions on the cylinder are lifted
from the snapshots by subtracting, with appropriate amplitude, the control function,
obtaining the set

U ′ = {uh(x, tk)= u(x, tk)− γ (tk)uc(x)}Mk=1. (4.4)

A radially symmetric solenoidal control function uc(x), with circumferential velocity
decaying as e−λ(r−0.5), was used. The decay factor λ= 8 was selected from a numerical
simulation where the cylinder is oscillated harmonically, in quiescent fluid, with
frequency equal to the shedding frequency, and monitoring the decay with r of the
amplitude of the velocity fluctuations in the circumferential Stokes flow.

The arithmetic average

u(x)= 1
M

M∑

k=1

uh(x, tk) (4.5)

is used as the base flow for the ansatz (4.3). Finally, the snapshot set

U ′′ = {uh(x, tk)− u(x)}Mk=1 (4.6)

is used for the POD algorithm. As is common practice, the ‘snapshot’ method of
Sirovich (1987) is used.
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FIGURE 4. Normalised cumulative energy associated with the POD modes obtained from
snapshots sampled from DNS with random actuation. Nine POD modes are selected,
capturing 91 % of the total fluctuation kinetic energy associated with the snapshots.

The selection of the number of basis functions used for the projection, and hence
the dimension of the state vector a, is driven by the trade-off between accuracy
and cost of computations. The key aspect in this selection is that the computational
cost associated with the solution of SOS problems (3.10)–(3.11) increases quite
dramatically with the state dimension N and the degrees of the function V and the
controller g, dV and dg. For example, the SOS constraint in (3.10) is a polynomial
in N variables of degree dV + 1 = 2d, assuming that Φ has lower degree than this,
and because f is at most quadratic in a for models of incompressible fluid flows.
For such a polynomial, the vector of monomials equivalent to v in (2.2) consists of
D= (N + d)!/(N!d!) individual terms, whereas the cost for solving the SDP problem
in each iteration increases in practice as O(D3) (for more details, see Goulart &
Chernyshenko 2012, and references therein).

As a compromise between computational cost and model performance, we selected
the first nine POD modes for the Galerkin projection, capturing approximately 91 %
of the total fluctuation kinetic energy in the snapshots, as illustrated in figure 4,
which shows the normalised cumulative energy associated with the POD modes. In
addition, this model is augmented with a tenth, shift mode (Noack et al. 2003), a
particular mode spanning the direction from the mean flow u(x) to the unstable,
steady and symmetric solution u0(x) of (4.1). The symmetric flow is obtained
numerically as the steady-state solution using the half upper grid of the original
problem, with free-slip boundary condition on the symmetry plane, sufficient to
suppress the symmetry-breaking unstable normal mode that grows and saturates into
the periodic von Kármán street (Protas & Wesfreid 2002; Bergmann et al. 2005). The
shift mode is then constructed as

u∆(x)= u− u0

‖u− u0‖ , (4.7)

and it is then made orthogonal to the remaining nine POD modes using a Gram–
Schmidt procedure.

It is well recognised (Tadmor et al. 2010) that the inclusion of shift modes in
Galerkin models of natural and actuated wake flows past a circular cylinder improves
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transient dynamics over larger changes in base flow. However, a more important result
is that inclusion of such a mode results in a dynamical system for which a finite
upper bound on the long-time average of energy Φ(a) = aTa/2 can be found using
the procedure presented in § 3.2, similarly to what was observed in Schlegel & Noack
(2015). On the other hand, the nine-mode POD-based system does not appear to have
such a property, as we have been unable to find an upper bound for the same quantity.
Even though the inability to find an upper bound using SOS does not prove that a
finite upper bound does not exist, as discussed in § 3.2, it prevents the application of
the control methodology proposed in this paper, entirely based on bounds estimation
and optimisation.

Standard Galerkin projection is then performed by inserting the expansion (4.3) in
(4.1), and setting the inner product with each of the modes to zero in turn. Neglecting
the small contribution arising from the projection onto the pressure gradient field, as
commonly done for this fluid flow (e.g. Noack et al. 2003; Bergmann et al. 2005),
results in the nonlinear system of first-order coupled ordinary differential equations,
the ROM:

dai

dt
= ci+

N∑

j=1

Lijaj+
N∑

j=1

N∑

k=1

Qijkajak+mi
dγ
dt
+ eiγ + biγ

2 +
N∑

j=1

F ijajγ , i= 1, . . . ,N.

(4.8)
The definitions of the coefficients ci, Lij, Qijk, mi, ei, bi and F ij arising from the
projection are standard and are reported in appendix C. Numerical time integration of
the ROM is performed using a standard fourth-order Runge–Kutta scheme with time
step equal to 10−3.

4.3. Choice of the cost function
It has been pointed out in the literature (Homescu, Navon & Li 2002) that the choice
of the quantity to be minimised by control can sometimes determine the performance
of the resulting controller. Hence, several options have been proposed. For instance, in
the optimal control approach of Protas & Styczek (2002), using full-order simulations
of the Navier–Stokes equations and their adjoint, the chosen cost was the sum of the
work needed to resist the drag force and the work needed to control the flow. These
two quantities could be computed exactly for that case, but for reduced-order Galerkin-
type models, such a level of detail is typically not available, or requires extension
of the POD basis to pressure (Bergmann, Bruneau & Iollo 2009). In some works
(Graham et al. 1999; Bergmann et al. 2005), the unsteadiness in the wake is typically
used as a proxy for drag, and an additional penalisation on the control magnitude is
added for regularisation purposes. In the present work, we adopted this formulation,
where the cost to be reduced is the domain integral of the kinetic energy of the
velocity fluctuations resolved by the ansatz (4.3), plus a penalisation on the control,
i.e. the quantity

Φ(a(t))= 1
2 a(t)Ta(t)+ Rγ 2(a(t)), (4.9)

where the orthonormality of the basis functions has been used. The penalisation factor
R does not have an immediate physical meaning, but it is used as a design parameter
as a means to artificially limit the amplitude of the control. This is necessary because
increasingly large control inputs will drive the ROM increasingly far from the region
of the phase space where accurate and realistic dynamical behaviour can be expected.
As a result, performance in DNS can be affected, as will be shown later.
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FIGURE 5. (Colour online) (a,b) Time histories of states a3 and a5 from numerical
integration of the ROM obtained directly from Galerkin projection (black dashed line) and
of the calibrated ROM (red solid line), compared with the time history of the projections
of the corresponding POD modes onto the DNS solution. (c) Time histories of system
energy for the original and calibrated ROMs, and from projections on the DNS of the
uncontrolled flow.

4.4. Model calibration
The 10-mode ROM obtained directly from Galerkin projection is able to represent the
dynamics of the full-order system only over a short time scale, i.e. about one shedding
cycle, and the long-term behaviour is not correctly represented. This phenomenon is
illustrated in figure 5. Figure 5(a,b) shows time histories of the projections of the third
and fifth POD modes, respectively, onto the DNS of the uncontrolled flow, i.e. the
quantities

ãi(t)= 〈ui(x), u(x, t)− u(x)〉, i= 3, 5. (4.10)

These are compared with the time histories of the same quantities obtained from
numerical integration of the original ROM, with initial condition a(0) = ã(0) (black
dashed line). It is clear that the predictions of the model quickly diverge and become
essentially useless. The energy of the system aTa/2 (figure 5c) grows significantly
and its long-time average is 12 times larger than the mean resolved energy obtained
from projections of the modes onto the DNS solution. The attractor of the ROM is
thus significantly different from the projection of the stable limit cycle associated with
vortex shedding onto the 10-dimensional phase space. This is a recurrent problem in
reducing the order of nonlinear dynamical systems (Cordier et al. 2013) because the
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high sensitivity to perturbations, such as the truncation of low-energy modes, can have
a profound effect after a sufficiently long time (Marion & Temam 1989). A crucial
point is that time averages, and bound estimation/optimisation, depend strongly on
the geometry of the phase space. It is then very important for an effective application
of the proposed control design methodology to have a ROM matching as precisely
as possible the long-term behaviour of the original full-order system.

Hence, we apply an eddy-viscosity model calibration scheme, which has become
standard practice to correct the effects of unresolved truncated modes (Sirisup &
Karniadakis 2004; Couplet, Basdevant & Sagaut 2005; Noack et al. 2008; Bergmann
et al. 2009; Protas, Noack & Östh 2015). Following previous work (Cordier et al.
2010), we add to (3.1) a linear calibration term Lc

ijaj, where the matrix Lc
ij has non-zero,

initially undetermined, entries only on the main diagonal and the first upper/lower
diagonals. Adding the contribution from the two off-diagonals, as opposed to previous
work where only the diagonal elements are identified (Galletti et al. 2004), was
necessary to achieve satisfactory tracking of the reference limit cycle. Optimal entries
are obtained from the solution of the optimisation problem

min
Lc

ij

∫ t1

t0

‖a(t; Lc
ij)− ã(t)‖2 dt (4.11)

subject to the state equation (4.8) with γ (t) = 0, with initial condition a(t0) = ã(t0).
In (4.11), the time integral of the norm of the error between the calibrated ROM
trajectory a(t; Lc

ij) and the projection of the trajectory of the full-order system onto
the selected subspace ã(t) is minimised. This trajectory is obtained from numerical
simulation of the uncontrolled flow, after transients have died out, in order to force
the calibrated ROM to describe correctly the stable limit cycle associated with vortex
shedding. A sequence of optimisation problems with increasing t1 − t0 is formulated
to improve convergence of this non-convex problem, with the final interval amounting
to approximately 20 shedding cycles. This procedure is not guaranteed to result in
successful identification in the general case, but was successful in this case.

Once calibrated, the ROM shows a more realistic behaviour, as the time-averaged
energy on the attractor is only 4 % greater than that associated with the limit cycle
of the full-order system, as illustrated in figure 5 (solid red lines). However, poor
controllability was observed, as opposed to larger models that do not present this
behaviour, suggesting that the rotary actuation of the cylinder affects via viscosity the
large-scale motions, i.e. the resolved modes, through linear/nonlinear interaction with
the truncated modes. To mitigate this poor controllability, we added two additional
calibration terms ec

i ai and mc
i dγ /dt in (4.8). Optimal values are obtained from an

optimisation problem similar to (4.11), where the numerical simulation used to
determine the POD modes is used as reference. Although the trajectory of the ROM
remains bounded when integrated using the same actuation signal of DNS, it quickly
diverges from the reference trajectory and rapidly becomes uncorrelated. Hence, we
adopted a more robust multiple-shooting identification scheme (Peifer & Timmer
2007; Protas et al. 2015). The idea is to consider a set of K blocks, each of length
T equal to the shedding period, and minimise the sum of all deviations, i.e. solving

min
ec

i ,m
c
i

K∑

k=1

∫ tk+T

tk

‖a(t; ec
i ,mc

i )− ã(t)‖2 dt, (4.12)

subject to the state equation (4.8), with identical notation as in (4.11), and where the
initial condition a(tk)= ã(tk) is used for numerical integration of the calibrated ROM
over the kth block.
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5. Results
The SOS-based methodology discussed above has been used to derive a set of linear

state-feedback controllers, i.e. the degree dg has been set to one, with dV = 4 in
all cases, for various penalisation factors. Additional tests have been performed with
dV = 6 with no difference, except for additional computational costs, as all bounds
are tight to the actual average from simulation with dV = 4. Linear controllers have
the form γ (t)=∑N

i=1 kiai(t), where all the gains have to be identified. The constant
term is manually set to zero, i.e. the gains ki are the only decision variables in the
SOS calculations. This is done explicitly to avoid naturally occurring spurious control
solutions with large non-zero mean rotation, a result probably exploiting unrealistic
dynamics described by the ROM far away from the operating regime. It is possible
to get rid of the term mi dγ /dt in (4.8), by noting that dγ /dt =∑N

i=1 ki dai/dt and
using the state equation to get

dγ
dt
= 1

1−
N∑

l=1

klml

N∑

i=1

ki(ci + Lijaj +Qijkajak + eiγ + biγ
2 + F ijajγ ), (5.1)

which is substituted back into the state equation (4.8). This method cannot be used
for nonlinear controllers, as the denominator of the fraction in (5.1) would contain
an expression in a, making the resulting system non-polynomial in the state variables.
A different approach is required as described in appendix D. The degree of the
polynomial-type feedback controller can be regarded as a design parameter, and it
is just for the sake of simplicity that we consider linear controllers only in this
paper, leaving the derivation and testing of nonlinear controllers as future work. It is
worth pointing out that, even though the feedback is a linear function of the state,
the control design process is aware and exploits the fully nonlinear dynamics of the
ROM. No linearisation is performed, unlike in Aleksić-Roessner et al. (2013), who
studied a similar feedback control configuration.

Feedback control results are reported for the ROM first, and then for the
implementation in DNS.

5.1. Bound estimation and optimisation
An estimate of the long-time-averaged cost (4.9) was obtained by long numerical
integrations of the ROM without control, starting from several random initial
conditions. All trajectories converged to the same stable limit cycle and the associated
long-time-averaged cost was Φ

0 = 3.07. Trajectories never exhibited blowup, nor
converged to a different attractor, although these numerical experiments cannot, of
course, be considered as a proof that another stable attractor does not exist in the
phase space of the ROM.

The estimation of the upper bound via SOS is performed by trial and error. For
a given C we try to find V satisfying the constraint in (3.10). If this is successful
in the sense that the resultant SOS decomposition satisfies the feasibility-checking
condition (2.4) (Löfberg 2009), we decrease C by δC, which is 0.01 here, and repeat
the trial. In checking the feasibility of the problem, it is important to consider that
SOS problems such as (3.10) lead quickly to large SDPs, typically becoming strongly
ill-conditioned as the size increases, although the numerical algorithms are based on
convex programming. As discussed in detail in Löfberg (2009), the equality constraints
associated with (2.2) are only satisfied in the limit of the solution process, as a result
of finite-precision arithmetic and various termination criteria.
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2.9

3.0

3.1

FIGURE 6. Performance of linear feedback controllers for various penalisation factors R
in closed-loop simulation of the ROM: crosses, upper bound of the long-time-averaged
cost; open circles, converged value of the long-time-averaged cost; closed circles, long-
time average of the resolved fluctuation kinetic energy. The horizontal line denotes the
time average/upper bound for the uncontrolled system.

R C∗ Φ
∗ aTa/2 Rγ 2

√
γ 2

50 2.88 2.876 2.678 0.198 0.063
100 3.01 3.008 2.699 0.309 0.056
150 3.03 3.028 2.724 0.304 0.045
200 3.06 3.054 2.751 0.303 0.039
Uncontrolled 3.07 3.070 3.070 — —

TABLE 1. Linear feedback control results for the ROM for different penalisation
factors R.

Several linear controllers have been designed for increasing values of the
penalisation factor R. Large values of R have been used, as these lead to better
performance in DNS. In figure 6 the performance of these controllers in closed-loop
simulation of the ROM is summarised. Long-time averages of the cost are computed
from numerical simulations started from an initial condition on the ROM’s limit
cycle and by discarding initial transients as control is activated. Figure 6 reports the
upper bound C∗ (crosses), the actual time average Φ

∗
from simulation (open circles)

and the long-time average of the resolved fluctuation kinetic energy aTa/2 (closed
circles), with the difference between the latter two quantities being the average cost
of control. The horizontal line is the value for the uncontrolled system. Numerical
values of the points displayed in figure 6 are also reported in table 1, together with
other quantities of interest. The SOS-based control design successfully reduces the
upper bound of the system. The reduction is larger for small R, as larger control
magnitudes are allowed, as can be deduced by the last column of table 1, which
shows the root-mean-square value of the control input. The maximum reduction of
the bound is relatively small, i.e. approximately 6 % for R= 50; larger reduction can
be found for smaller penalisation factors, although these controllers performed poorly
in DNS. A significant part of the total time-averaged cost comes, artificially, from
the control. In fact, the time-averaged resolved fluctuation kinetic energy decreases
by as much as 13 % for R= 50 and by 11 % for R= 200.
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FIGURE 7. (Colour online) Transient dynamics of the controlled ROM for R = 150.
(a,c) The trajectory of the ROM projected onto two relevant subspaces. The long-term
behaviour of the system is indicated by the uncontrolled and controlled limit cycles.
(b) The time histories of the total cost and of the resolved fluctuation kinetic energy.
(d) The time history of the control input.

Repeated integration of the controlled ROM, from several random initial conditions,
shows that the time average Φ

∗
is always below the upper bound, and no instability

of the closed-loop system has been observed. The upper bound is tight to the actual
average, within the uncertainty of the numerics involved in solution of the SOS
problems, as for the estimation of the bound for the uncontrolled case. The upper
bound and the average from simulation appear to converge asymptotically to the
bound of the uncontrolled system as R increases.

Figure 7 shows the effects of control on the dynamics of the ROM, for the
linear controller with R= 150, reported as an example, as the other controllers have a
qualitatively similar impact on the dynamics. Figures 7(a) and 7(c) show the trajectory
of the ROM projected in the (a1, a2) and (a3, a4) planes, respectively. The red/blue
‘controlled’/‘uncontrolled’ orbits denote the limit cycle before/after the activation
of control. The transient between the two is indicated in light grey. The actuated
dynamics converge to a controlled limit cycle, over which the mean resolved kinetic
energy is reduced. Under the action of control, the energy of the first two modes
decreases, whereas that of modes a3 and a4 increases slightly. Physically, such a
shift is interpreted as a restructuring of the wake, as both pairs of modes correspond
spatially to velocity fluctuations oscillating at the shedding frequency. Figure 7(b)
shows time histories of the resolved energy (solid black line) and of the total cost
(dashed red line). Feedback control is started at t= 10. As soon as control is activated,
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the total cost Φ jumps up to approximately 5.5, because the control input, shown in
figure 7(c) quickly jumps to approximately 0.15. As anticipated, the penalisation in
the control in the cost function does not limit the instantaneous value of the control,
as a hard saturation would, but limits only its long-time-averaged contribution.

The resolved kinetic energy decreases substantially in a short transient that takes
approximately 10 time units, i.e. just less than two shedding cycles. On the other hand,
the total cost takes a longer time to settle to the steady state, approximately 70 time
units after activation of control, because the peak-to-peak variation of the control input
γ (t) decreases slowly during the transient.

5.2. Feedback control in DNS
The four linear controllers derived are implemented in DNS. Because the governing
equations are marched forward in time, at the beginning of the kth time step, at time
tk, the current state vector is obtained from the projections of the POD modes on the
current fluctuating velocity field as

ai(tk)= 〈ui(x), u(x, tk)− u(x)− γ (tk)uc(x)〉, i= 1, . . . ,N. (5.2)

The control action γ (tk), the tangential velocity on the cylinder surface, is calculated
from the control law (2.2) and is then set as constant boundary condition for the time
step tk+1 − tk.

Figure 8 shows time histories of three key quantities obtained from DNS of
the closed-loop system: the fluctuation kinetic energy resolved by the Galerkin
expansion (4.3),

Ku′G(t)=
1
2
‖u′G(x, t)‖2 = 1

2

∥∥∥∥∥
N∑

i=1

ãi(t)ui(x)

∥∥∥∥∥

2

= 1
2

ã(t)Tã(t), (5.3)

obtained from the projections (5.2), in figure 8(a); the total fluctuation kinetic energy,

Ku′(t)= 1
2‖u(x, t)− u(x)− γ (t)uc(x)‖2, (5.4)

in figure 8(b); and the kinetic energy of the residual fluctuation ur(x, t) = u′(x, t) −
u′G(x, t),

Ku′r(t)=Ku′(t)−Ku′G(t), (5.5)

normalised with the total fluctuation kinetic energy Ku′ , in figure 8(c). Note that the
cost of the control Rγ (t)2 is not added to panel (a). The lower panels (figure 8d–f )
show the same quantities in the interval t ∈ [110, 155], in the initial transient after
activation of feedback control at t= 112.

As soon as control is activated, the resolved and total kinetic energy decrease
substantially, in a transient lasting for approximately 10–12 time units, similarly to
that exhibited by the ROM in figure 7. The initial time rate of change of the energy
and the maximum reduction are larger for smaller penalisation factors, as the control
is more aggressive. Subsequently, the cost remains approximately constant for a short
period, in the interval t ∈ [125, 140]. For R = 200, Ku′G has an average value in
this window roughly equal to that obtained in simulation of the ROM in figure 6.
For the lower penalisation factors, the reduction of the resolved energy is larger
than that obtained in simulation of the ROM, suggesting that the ROM significantly
underestimates the effects of control on the dynamics. The reduction of the resolved
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FIGURE 8. (Colour online) Performance of linear feedback controllers in DNS: (a) time
history of fluctuation kinetic energy resolved by the ansatz (4.3); (b) time history of
the total fluctuation kinetic energy; (c) time history of the unresolved residual energy,
normalised with the total fluctuation kinetic energy. (d–f ) The same quantities as (a–c),
respectively, in the interval t ∈ [110, 155].

and, most importantly, of the total fluctuation energy suggests that control design has
successfully identified the control mechanism to attenuate vortex shedding.

In figure 8( f ), the fraction of unresolved kinetic energy grows significantly in
this first interval, from a value of approximately 4 %, up to approximately 20 % for
the smaller R. This shows that, under the effects of control, the full-order system
explores regions of the high-dimensional phase space not included in the initial
low-dimensional subspace chosen for the projection, especially for larger control
inputs. Taking into account the slow deformation of the wake structure unaccounted
for in the original POD basis, using, for example, deformable modes (Tadmor et al.
2011) or updating the mode set (see Bergmann et al. 2009, and references therein),
might be beneficial to limit this behaviour and achieve improved performance.

After these initial stages, the character of the solution depends strongly on the
penalisation R. For R = 150 and 200, the long-term behaviour of the system is
a controlled limit cycle with a reduced fluctuation kinetic energy, as predicted
by the ROM in figure 7. By contrast, for the two lower penalisation factors, the
structure of the long-term behaviour is significantly different. The time history of
the total fluctuation kinetic energy (figure 8b), undergoes a periodic low-frequency,
large-amplitude modulation, with a period of approximately 18 time units, not clearly
visible from the resolved energy in figure 8(a).

Insight into this phenomenon can be gained by analysing in more detail the
behaviour of the system from approximately t = 135 onwards, indicated with a
dashed vertical segment in figure 8(d–f ). The total kinetic energy, panel (e), and the
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FIGURE 9. (Colour online) The top six panels show snapshots of vorticity from DNS of
the controlled flow with linear controller with R= 50. The bottom panel shows the time
history of the total fluctuation kinetic energy. Vertical lines denote the time instants at
which snapshots are extracted, at t= 112, 121, 136, 142, 156 and 162.

normalised unresolved energy, panel ( f ), increase significantly for R = 50 and 100.
The resolved fluctuation energy is practically constant in the interval t ∈ [135, 140],
panel (d), and only when this growth saturates does the quantity Ku′G begin to increase.
The physical mechanism responsible for this behaviour is illustrated in figure 9, for
R= 50. The upper panels of figure 9 show six snapshots of the vorticity field, with
the colour map clipped at ±3 to visualise the structure of the actuated wake, although
the maximum vorticity magnitude can be as high as 25 in the boundary layer on
the cylinder. The bottom panel shows the time history of the total fluctuating kinetic
energy, also reported in figure 8(b). The vertical lines denote the times ti at which
the snapshots are extracted.

In the initial transient after activation of control, between t = 112 and t = 121
(snapshots (a) and (b) in figure 9), the controlled rotation of the cylinder reorganises
the generation and dynamics of vorticity in the near wake. The roll-up of the two
shear layers is delayed and the fluctuation energy decreases steadily. Shortly after time
tb, the fluctuation energy stops decreasing and during the interval [tb, tc] the wake
locks onto an actuated limit cycle, with reduced Ku′ . The structure of the wake in
this regime, panel (c), is significantly different from the unactuated wake of panel
(a). It is narrower, especially in 4 . x . 9, and the streamwise separation between
the structures is shorter. Shortly after tc = 136, the fluctuation kinetic energy grows
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FIGURE 10. (Colour online) Time history of the total cost Φ, as defined in (4.9). Panel
(b) shows a detail of the same time trace, in a small time interval at the early stages of
the simulation, indicated by the rectangle in panel (a).

rapidly. This event is connected to the breakdown of the wake structure of panel (c)
in figure 9, arising as a large-scale flapping of the entire near-wake flow. This effect
might be connected to the growth of an instability of this wake structure, or it might
be simply induced by the feedback. After Ku′ peaks, the restructuring of the wake
into the original uncontrolled state enables the control to reduce the fluctuation energy,
panel (e), although the same break-up as observed in snapshot (c) occurs shortly
after te. This mechanism repeats indefinitely originating the low-frequency modulation
visible in figure 8.

Although the total fluctuation kinetic energy is successfully reduced in DNS of the
closed-loop system, the long-time average of the total cost Φ(ã(t), γ̃ (t)), as defined in
(4.9), is not decreased. This result is shown in figure 10(a), whereas panel (b) contains
a zoom of the same quantity at the initial stages of the simulation, when control is
activated. The total cost initially spikes at quite large values, as the control input is
quite intense, similarly to what is observed for the ROM in figure 7 for R= 150. As
control modifies the wake structure, the fluctuations of the cost decrease substantially,
below the reference value of the uncontrolled system (horizontal line) approximately
in the interval t∈[120,125]. However, the loss of control performance described above
in figure 9 results in a strong increase of the total instantaneous cost, especially for the
two lower penalisation factors. As a result, the long-time-averaged cost Φ

∗
, reported

in table 2, is above the reference value of the uncontrolled system, Φ
0 = 2.95, also

for the two larger penalisation factors.
The ROM results, table 1, show that, for R= 200, the percentage reduction of the

cost is quite small, approximately 0.5 %, as a rather large contribution comes from the
control cost. In DNS, the same controller results in an increase of the total cost of
approximately 5 %. The discrepancy between these two values is certainly within the
accuracy of the ROM in describing the effects of actuation on the full-order dynamics.

A physically meaningful quantity is the long-time average of the total power spent
to sustain the motion of the cylinder (Bergmann, Cordier & Brancher 2006). This
quantity, expressed per unit of span, is the sum of the power PD spent to move the
cylinder at speed u∞ against the drag force D and the power required to control the
flow, i.e. the power PM required to rotate the cylinder at angular speed θ̇ (positive
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R Φ
∗ aTa/2 Rγ 2

√
γ 2 CD PSR

50 4.0 2.53 1.45 0.170 1.343 2.5
100 4.4 2.58 1.82 0.135 1.335 6
150 2.97 2.73 0.24 0.040 1.338 75
200 3.04 2.78 0.27 0.036 1.348 78
uncontrolled 2.95 2.95 0.00 0.000 1.400 0

TABLE 2. Linear feedback control results in DNS for different penalisation factors R.
For the uncontrolled system, Φ

∗ =Φ0 = aTa/2. PSR = power saving ratio.

when anticlockwise) against the viscous torque M exerted by the fluid on the cylinder
(positive when it induces a clockwise rotation).

The drag and viscous torque are determined by the dimensional pressure and
viscous stress surface distributions p(θ) and τ(θ) as

D=−
∫ 2π

0
p(θ) cos(θ)+ τ(θ) sin(θ) dθ, M =−D

2

∫ 2π

0
τ(θ) dθ, (5.6a,b)

where the viscous stress on the surface arises from the distribution of the tangential
velocity uθ as

τ(θ)=µ ∂uθ
∂r

∣∣∣∣
D/2

, (5.7)

where µ is the dynamic viscosity.
The first contribution to the total power spent is then simply

PD =Du∞ = 1
2ρu3

∞DCD, (5.8)

whereas the second reads as

PM =Mθ̇ = 2Mγ u∞D= ρu3
∞DCMγ , (5.9)

in which CD and CM are the coefficients of drag and moment, and γ is the normalised
surface velocity as introduced above. Note that PM is positive when the cylinder
transfers energy to the fluid and negative otherwise. In non-dimensional terms, the
total power spent is then expressed by the total power coefficient

CP = PD + PM

ρu3∞D/2
=CD + 2CMγ . (5.10)

The time histories of the total power coefficient obtained from DNS of the closed-
loop system are reported in figure 11, for the four controllers derived, with red dashed
lines. The drag coefficient is also reported as a black solid line, for reference. The
difference between the two, i.e. CP −CD, is the normalised energy per unit time and
unit span required to actively control the flow.

For R = 50 and R = 100, figure 11(a, b), the drag exhibits a low-frequency
modulation similar to the total fluctuation kinetic energy, with the ‘valleys’ of
these two quantities matching fairly well. The drag minima can be as low as
1.28, suggesting that the control design methodology is indeed effective, although
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FIGURE 11. (Colour online) Time histories of the total power and drag coefficients, CP(t)
and CD(t), obtained from closed-loop DNS for the four controllers, with R= 50, 100, 150
and 200, in panels (a), (b), (c) and (d), respectively. The difference between the two is
the energy per unit time transferred to the fluid by the control, i.e. the power spent for
actuation.

performance is periodically lost, as discussed above. Interestingly, the drag coefficient
associated with the steady laminar solution u0 is, in our set-up, 1.14. As a result,
the drag coefficient reduction, compared to the drag associated with vortex shedding
(Protas & Styczek 2002), can be, instantaneously, as large as 46 %. The time-averaged
drag is of course higher, as reported in table 2. A maximum percentage drag reduction,
normalised with the drag coefficient of the uncontrolled flow, of 4.6 % has been
obtained, at R = 100. This value is not as high as in previous closed-loop control
studies on this same configuration. Using optimal control theory, Protas & Styczek
(2002) and more recently Flinois & Colonius (2015) have achieved drag reductions of
7 % at Re= 75 and 15 % at Re= 150, and 19 % at Re= 100, respectively. However, in
these two works, Navier–Stokes equations were used directly for control design, and
not a reduction thereof, enabling an effective control strategy to be found. We believe
that developing controllers on larger and more accurate ROMs, that correctly describe
the change in dynamics as control is activated, will result in increased performance.

On some occasions, the total power coefficient is lower than the drag itself, because
the product CM(t)γ (t) is negative. These events indicate that the cylinder is being
driven by the viscous torque, corresponding to a passive mechanism where the flow
exerts a net work on the cylinder. Nevertheless, this product is positive for most of
the time, and indicates that the control is actively manipulating the flow.

For the two larger penalisation factors, the long-term cost of the control is extremely
small, with peaks of CP−CD not exceeding 0.002, practically invisible in figure 11(c,
d). The control strategy identified is quite efficient, because, in the long term, a small
amount of power is actively spent to reduce the total power by a significantly larger
amount. Following Protas & Styczek (2002) and Bergmann et al. (2005), and based on
the definition (5.10), the efficiency can be quantified by the power saving ratio (PSR)
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PSR= CP
u −CP

c

2CMγ
, (5.11)

i.e. the ratio between the power saved and the power spent for control, in a time-
averaged sense, where the superscripts u and c indicate the uncontrolled and controlled
cases, respectively. The PSR, reported in table 1, is remarkably large for the two
higher penalisation factors, when the feedback control operates close to the design
point for which it was constructed. For comparison, Protas & Styczek (2002) obtained
a PSR equal to 51 at Re= 150, and 122 at Re= 75, using optimal control theory in a
predictive setting. Various other open-loop-type control approaches, where the cylinder
is oscillated harmonically at an optimal frequency and amplitude, are significantly less
efficient (Bergmann et al. 2005). This is due to the fact that in the present case the
feedback controller trades inexpensive control power, scaling directly with the square
of the control amplitude and inversely with the square root of the Reynolds number
(Bergmann et al. 2006), with precious propulsion power mainly associated with the
pressure drag.

6. Discussion and conclusions
The main contribution of the present paper is the development of a novel feedback

control design paradigm for incompressible fluid flows. It applies to finite-dimensional
dynamical systems given as a set of first-order nonlinear ordinary differential
equations, with the right-hand side being a polynomial function in the state variables
and in the controls. Galerkin-type models of incompressible fluid flows, obtained
from projection of the governing equations on a finite low-dimensional subspace,
have exactly this form.

This paradigm of control is rooted on recent advances in control theory and
optimisation over polynomials, commonly known as SOS methods. At the core,
these methods leverage computationally efficient approaches to construct positive
polynomial functions, by formulating and solving convex SDPs.

The key distinguishing features are that (i) the long-term behaviour of the system,
the permanent regime, is central in the design stage, i.e. long-time averages of
fluctuating quantities can be optimised by control design, and that (ii) the nonlinearity
is taken directly into account in the design process. Furthermore, the present
SOS-based scheme allows the design of polynomial-type feedback controllers of
arbitrary degree, hence is not limited to the linear case discussed here. Further
research is required to understand if nonlinear feedback control can considerably
improve performance.

We have numerically investigated the problem of mitigating the kinetic energy of
velocity fluctuations in the unsteady wake of a circular cylinder at Re = 100, in the
laminar regime, via controlled rotary motions of the surface, in a full-information
state-feedback arrangement. A 10-mode POD–Galerkin ROM of the actuated wake
flow was derived. A crucial element is that the phase space of the ROM should
host an attractor whose structure is as similar as possible to that of the full-order
system when projected on the low-dimensional subspace. This necessity arises from
the fact that bound estimation and optimisation via control design target explicitly the
attractor of the system and control performance probably increases if the long-term
behaviour of the reduced- and full-order systems are similar. From this perspective,
model calibration schemes that ensure long-term stability of the reduced system, and
similarity of attractors, at least in a statistical sense, are desirable (see e.g. Östh et al.
2014, and references therein).
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Linear state-feedback controllers were derived using the ROM, using a penalisation
on the control as a design parameter, and were implemented in DNS. These controllers
effectively decreased the ‘size’ of the limit cycle associated with vortex shedding and
significantly reduced the long-time average of the total fluctuation kinetic energy, as
well as the time-averaged drag coefficient. The feedback system was energetically
efficient, as the power saved per unit control power spent was in the range of 75–80.
For lower values of the penalisation factor, the greater control input resulted in better
performance just after activation of control, but eventually performance worsened
significantly. This is not a limitation of the present SOS-based scheme, but rather
is driven by the POD–Galerkin modelling strategy used, which is known to lack
robustness. We expect that improvements in the modelling strategy will result in
increased performance in DNS.

Currently, the main drawback of this methodology is the unfavourable scaling
of the computational cost with the size of the system N, and the degree of the
polynomial function V . Limitations of existing computational tools to preprocess the
polynomial inequalities and solve the associated SDPs currently limit the methodology
to dynamical systems of size not greater than approximately 10–20, and the size
reduces considerably if high-degree polynomials V are used. However, these methods
are rather novel and the available computational software tools are designed for
generality. Hence, a large number of optimisations can be introduced by specialising
these tools to the peculiarities of hydrodynamic-type systems. A few illustrative
instances, towards which future efforts will be devoted, are the exploitation of more
efficient SDP solvers, sparsity patterns on the right-hand side of the dynamical system
as well as in the structure of the tunable function V .

It is worth pointing out that the improvement in our ability to solve the relevant
SDP problems necessary for achieving better results might actually be far less than
it might seem. In the case of global stability analysis, the scalability issue was
successfully dealt with in Huang et al. (2015) using the uncertain system method
proposed in Goulart & Chernyshenko (2012). This approach can be extended to certain
problems of flow control. It allows one to construct storage functionals for averaged
parameters of systems governed by partial differential equations, that is, systems
with an infinite number of degrees of freedom, while solving the SDP problems
corresponding to only a limited number of degrees of freedom. The method can also
be used to reduce the effective number of degrees of freedom in a finite-dimensional
dynamical system. Further details can be found in the cited papers. Here, we only
note that, when the bounds are constructed for an uncertain system, the corresponding
SDP problems have to deal with twice as many independent variables as in the case
of a standard (certain in our terminology) system. Hence, the way forward is to
construct a better ROM with, for example, 40 modes, reduce it to an uncertain
system with, for example, 15 modes, and then build a controller solving an SDP
corresponding to 30 independent variables. The required increase in the quality of
the SDP solver then corresponds to only three times increase in the number of
independent variables as compared to the case considered in the present paper. This
might indeed become possible in the foreseeable future.

A second limitation of the methodology is that the controller is formally guaranteed
to reduce only the upper bound of a long-time-averaged cost function. In a particular
realisation of the controlled flow, the actual time average might not decrease. The
essential motivation, discussed at length in this paper, is that control design targets
the attractor for which the time-averaged cost is the largest, i.e. the one with which
the upper bound is associated. If the system has, for instance, two different attractors,
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with separate basins of attraction, the control of a trajectory started from an initial
condition not in the basin of the attractor associated with the bound might result in
worsened performance. From this perspective, the controller is guaranteed to reduce
the time average only in the worst-case scenario, which might be different from the
most likely scenario. In practice, this limitation might be less important than it appears
here, although it represents a possibility in the general case.

A further observation is that in this paper we have investigated the control of a
dynamical system for which the permanent regime is given by a trivial attractor, i.e. a
stable periodic orbit. However, real turbulent flows usually have extremely complicated
attractors, and the long-term behaviour is usually chaotic. Reduced-order modelling
and long-time-average cost control of such a type of system via SOS optimisation
would be more interesting, but also would induce more difficulties. We would like to
address them in our future work.
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Appendix A

A globally attracting absorbing set T is a closed subset of RN for which if x(s)∈T
it follows that x(t) ∈ T for t > s (Temam 1990). The existence of such a set is a
sufficient condition for the trajectories to remain bounded, as for any x(0) it follows
that x(t)∈T for all sufficiently large t. For dissipative systems, such as fluid flows, the
existence of such a set follows from physical considerations. For truncated Galerkin
models this can be proven by the search algorithm proposed by Schlegel & Noack
(2015). Here, a variant of their approach based on SOS is proposed. We check whether
there exists a ball D={x | 1

2 xTx6β}, for a finite positive β and containing T , outside
of which the system’s energy K = 1

2 xTx is a Lyapunov function, i.e. its time rate of
change is negative-definite:

dK
dt
= xT dx

dt
= xTf (x) < 0, ∀ x *D. (A 1)

Restriction of this polynomial inequality outside of D can be enforced with
application of the S-procedure (Tan 2006) by introducing and finding a tunable
polynomial S(x) satisfying S(x)> 0 ∀ x ∈RN for which

−xTf (x)− S(x)
(

1
2 xTx− β) is SOS,

S(x) is SOS.

}
(A 2)

The feasibility of this problem for any finite β proves the existence of an absorbing
set. If problem (A 2) is solved for the minimum β, the radius of this set can also be
estimated. Note that minimising β is a convex optimisation problem, so the solution,
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if it exists, is unique. It is worth noticing that the infeasibility of the problem cannot
disprove the existence of the absorbing set owing to the fact that the positivity
constraint has been replaced by an SOS constraint.

Appendix B
Recall the ROM of the cylinder flow,

dai

dt
= ci +

N∑

j=1

Lijaj +
N∑

j=1

N∑

k=1

Qijkajak +mi
dγ
dt
+ biγ

2 + eiγ +
N∑

j=1

F ijajγ

i= 1, . . . ,N,

:= fi

(
a, γ ,

dγ
dt

)
, (B 1)

where the quadratic term in γ vanishes due to the radial symmetry of the control
function uc, as discussed in appendix C. Define the cost function Φ(a) = Φ0(a) +
Rγ 2(a(t)), where Φ0(a) = 1

2 a(t)Ta(t) and γ (a(t)) is assumed to be linear in a with
all the coefficients being undetermined decision variables. Now, the non-convex SOS
optimisation problem (3.11) is

min
V,γ

C

subject to −
(
∇aV(a) · f

(
a, γ (a),

dγ (a)
dt

)
+Φ0(a)+ Rγ 2(a)−C

)
∈Σ. (B 2)

The iterative design algorithm used to solve (B 2) is given in table 3, where equation
(B 3) is used:

zT


−

(
∇aV0(a) · f

(
a, γ (a),

dγ0(a)
dt

)
+Φ0(a)−C

)
γ (a)

γ (a) R


 z, ∀ z ∈R2. (B 3)

Appendix C
With ωi(x) being the scalar vorticity field associated with the mode ui(x), and

similarly for u and uc(x), Galerkin projection results in the following coefficients:

ci =− 1
Re

∫

Ω

ωi∇2ω dΩ −
∫

Ω

ui · (u · ∇u) dΩ, (C 1)

Lij =− 1
Re

∫

Ω

ωi∇2ωj dΩ −
∫

Ω

ui · (u · ∇uj) dΩ −
∫

Ω

ui · (uj · ∇u) dΩ, (C 2)

Qijk =−
∫

Ω

ui · (uj · ∇)uk dΩ, (C 3)

mi =−
∫

Ω

ui · uc dΩ, (C 4)

ei =−
∫

Ω

ui · (uc · ∇u+ u · ∇uc) dΩ − 1
Re

∫

Ω

ωiωc dΩ, (C 5)

bi =−
∫

Ω

ui · (uc · ∇uc) dΩ, (C 6)

F ij =−
∫

Ω

ui · (uj · ∇uc + uc · ∇uj) dΩ. (C 7)
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1: initial setting C0 =C0
SOS, γ0 = 0, I1 = 1, I2 = 1

2:
3: while I1 = 1 and I2 = 1 do
4: dγ0/dt← calculate the derivative of γ0 by (5.1)
5: V← construct a polynomial with variable coefficients
6: exp r1← construct the expression −(∇aV(a) · f (a, γ0(a), dγ0(a)/dt)+Φ0(a)+ Rγ 2

0 (a)−C0
)

7: if find a suitable V and an SOS decomposition exp r1 = v(a)TR1v(a) then
8: V, R1← round the coefficients of V and the entries of R1 to d decimal places
9: check (2.4) for the truncated V, R1 using rigorous numerics

10: if checks are verified then
11: I1 = 1, C=C0 − δC, V0 = V, CSOS =C0, γSOS = γ0

12: γ ← construct a polynomial controller with variable coefficients
13: exp r2← construct the expression as in (B 3)
14: if find a suitable γ and an SOS decomposition exp r2 = v(a, z)TR2v(a, z) then
15: γ , R2← round the coefficients of γ and the entries of R2 to d decimal places
16: check (2.4) for the truncated γ , R2 using rigorous numerics
17: if checks are verified then
18: I2 = 1, γ0 = γ , C0 =C
19: else
20: I2 = 0
21: end
22: else
23: I2 = 0
24: end
25: else
26: I1 = 0
27: end
28: else
29: I1 = 0
30: end
31: end
32:
33: output CSOS, γSOS

TABLE 3. The iterative algorithm used for solving (3.11) with the given ROM (4.8).

In the present case, all the coefficients bi are identically zero because of the radial
symmetry of the control function uc. Domain integrals are evaluated numerically on
the triangular unstructured mesh by using a linear approximation of the integrand
function based on nodal values. All derivatives, for gradients and vorticities, are
computed using a local quadratic interpolation scheme available in algorithm 624
from Renka (1984). Strictly, some of the above definitions do not contain the line
integrals on the boundary of the domain arising from the use of vector calculus
identities to eliminate the Laplacian, as in appendix 2 of Bergmann et al. (2005), as
these are found to be quite small and negligible in the present case with respect to
the domain integrals above. Appropriate symmetries in the tensor Qijk are numerically
enforced after the computations of the integrals to ensure that the nonlinear term is
energy-preserving – see e.g. Schlegel & Noack (2015) for a discussion on this topic
for the present case.
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Appendix D
For the ROM (B 1), or its compact form

da
dt
= f

(
a, γ ,

dγ
dt

)
, (D 1)

if a nonlinear polynomial state-feedback controller is considered, the iterative
algorithm shown in table 3 cannot be applied directly. This is due to the fact
that the derivative of γ , as given in (5.1), is not polynomial any more. The difficulty
can be overcome by regarding dγ /dt as the virtual control input u and setting a new
system state ã := [aTγ ]T. The new ROM is

dã
dt
= f 1(ã, u), (D 2)

where the first N equations are the same as in (D 1) while the last one is dγ /dt= u.
As such, the proposed iterative algorithm becomes applicable with minor revision.

REFERENCES

ABERGEL, F. & TEMAM, R. 1990 On some control problems in fluid mechanics. Theor. Comput.
Fluid Dyn. 1 (6), 303–325.
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