
Invited Commentary

Orexins, feeding and the big picture

The number of hypothalamic neuropeptides that have been
implicated in the regulation of feeding has grown steadily
over recent years (Inui, 1999). Many of these reduce food
intake but some increase it. These are neuropeptide Y,
Agouti-related protein (a natural antagonist of the melano-
cortin-4 receptor), melanin-concentrating hormone, galanin
and the orexins. Neuropeptide Y and Agouti-related protein
are more powerful stimulants of feeding than melanin-
concentrating hormone, galanin or the orexins, but this does
not preclude a role for the weaker stimulants: strong
arguments can be made for all of them (Arch et al. 1999;
Kalra et al. 1999). None of these peptides is exclusively
involved in the regulation of feeding, however. Now 2
years after the first description of the orexins (Sakurai et al.
1998), significant new information allows us to review the
role of the orexins and their receptors in feeding and place
this in the context of their wider role.

Orexins-A and -B were identified in extracts of rat brain
and bovine hypothalamus by their ability to evoke transient
elevations of intracellular Ca concentration in cells
expressing an orphan 7-transmembrane, G-protein-coupled
receptor, now known as the orexin-1 or OX1-receptor.
Subsequently, a second (OX2) receptor was identified by its
homology (64 % at the amino acid level) to the OX1-
receptor (Sakurai et al. 1998). Both functional and binding
studies show that the OX1-receptor has greater affinity
(about 10-fold) for orexin-A than -B, whilst the OX2-
receptor has similar affinity for the two peptides (Smart
et al. 1999, 2000). Orexin-A is thirty-three amino acids
long and orexin-B twenty-eight amino acids long. They are
produced by processing of the same prepro-orexin peptide.
Hypocretins were discovered independently and are some-
times said to be synonymous with orexins, but hypocretin-1
was originally deduced to have five more N-terminal amino
acids than orexin-A and both hypocretins were shown in a
figure of the original paper (Sakurai et al. 1998) as having
C-terminal glycines. These are removed (as predicted in the
text) leaving C-terminal amides in the mature peptides (de
Lecea et al. 1998). Researchers should be aware that
commercial hypocretins corresponding to those shown in
the figure of de Lecea et al. (1998) are far less potent than
orexins (Smart et al. 2000).

The orexins were given their name because intracer-
ebroventricular injection increased food intake in rats
(Sakurai et al. 1998). A number of studies have reproduced
these findings, but some find that orexin-B has little or no
effect, or even that it may inhibit feeding (Haynes et al.
1999). The greater effect of orexin-A compared with -B
appears to implicate the OX1- rather than the OX2-receptor
in the regulation of feeding, but it is equally possible that

orexin-B has less effect because it is more rapidly cleared
from the area of injection: peripherally administered
orexin-B is known to be metabolised faster than orexin-A
(Kastin & Akerstrom, 1999). Moreover if the problem in
eliciting a feeding effect with orexin-B is simply that it is
10-fold less potent at the OX1-receptor, then it should be
possible to obtain an effect by increasing the dose of the
peptide. This is not what is found (Haynes et al. 1999).
Orexin-A and -B are clearly inadequate tools with which to
dissect the roles of OX1- and OX2-receptors in vivo.

Fortunately, there are now two tools which demonstrate a
role for the OX1-receptor in mediating the feeding effect of
orexin-A. SB-334867-A is an OX1-receptor antagonist that
is about 30-fold selective relative to OX2-receptor antag-
onism and has very little affinity for a wide range of other
receptors (Arch, 2000); there is also an OX1-receptor
antibody (Smith et al. 2000). The antagonist has been
shown to inhibit orexin-A-driven feeding when given
intraperitoneally at doses of 3±30 mg/kg (Arch, 2000;
Rodgers et al. 2000), suggesting that the OX1-receptor is at
least partly responsible for the orexigenic effect of orexin-
A. It would, however, be unwise to exclude a role of the
OX2-receptor without having investigated the effects of an
antagonist of this receptor. Suppression of feeding in
response to leptin is blocked by antagonists of the
melanocortin-4, glucagon-like peptide-1 and corticotro-
phin-releasing-hormone receptors (Cone, 1999): all three of
these pathways must be operational for leptin to have any
effect. Similarly, enhancement of a complex behaviour like
feeding may depend upon stimulation of both orexin
receptors.

It is one thing to demonstrate that a peptide can affect
feeding when injected into the brain and quite another to
show that it normally plays a role in the regulation of
feeding. In support of orexins playing a physiological role,
both the OX1-receptor antagonist and the antibody, as well
as an antibody to orexin-A (Yamada et al. 2000) have all
been reported to inhibit natural feeding. The sceptic might
argue that disruption of the orexin system is merely
disrupting behaviour in general: the rat might be driven to
indulge in other behaviours that preclude feeding. How-
ever, it is notable that the normal behavioural satiety
sequence (eating, grooming, resting) is preserved in rats
treated with the antagonist; what happens is that the
transition points between behaviours are advanced. Con-
versely, low doses of the agonist delay the transition point
so that more time is spent in feeding (Rodgers et al. 2000).
It can still be argued that the effect of orexins on feeding is
secondary to an effect on another behaviour. For example,
the primary effect may be to stimulate activity and reduce
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rest, allowing more time for food seeking behaviour. This
argument seems simplistic, however: many peptides and
drugs that increase activity do not increase feeding.

Persuasive evidence that orexins directly regulate feed-
ing has come from immunohistochemical studies. The
original reason for investigating the effects of the orexins
on feeding was that the cell bodies of the neurones that
produce them were found exclusively in the lateral
hypothalamus (the classical `feeding centre') and nearby
regions (perifornical nucleus, dorsal hypothalamus). Sub-
sequently it has been shown (Elias et al. 1998; Horvath
et al. 1999) that orexin neurones both send fibres to, and
receive them from, neurones in the arcuate nucleus that
express either neuropeptide Y and Agouti-related protein,
or proopiomelanocortin mRNA (from which a-melanocyte-
stimulating hormone, a neuropeptide that reduces food
intake, is derived). These findings imply that orexins
directly influence neurones that regulate feeding behaviour.
Moreover, it has recently been reported that the orexins and
their receptors are present in the enteric nervous system,
and endocrine cells of the gut and pancreas. Orexin-A
stimulates gut motility, insulin secretion and (when given
centrally) gastric acid secretion (Kirchgessner & Liu, 1999;
Takahashi et al. 1999; Nowak et al. 2000). Taken together,
these findings are beginning to develop a strong case for a
role for the orexins, at least orexin-A, in the regulation of
feeding (Table 1).

This is far from being the whole story, however. Orexin
neurones in the hypothalamus send fibres to many parts of
the brain that have never been implicated in the regulation
of feeding behaviour. Moreover, functional correlates have
been discovered for some of these neuroanatomical
findings. Orexin-A, and in some studies orexin-B, stimu-
lates arousal, locomotor and sympathetic activities; corti-
costerone and growth hormone levels are raised, whilst
prolactin and luteinising hormone levels are depressed
(Hagan et al. 1999; Shirasaka et al. 1999; Tamura et al.
1999). Emerging evidence points to there being subpopula-
tions of orexin neurones, but it is nevertheless probable that
activation of orexin neurones often triggers more than one
behavioural, autonomic or endocrine response. What do
these responses have in common?

One way to approach this question is to investigate the
physiological stimuli that activate orexin neurones. So far
the only situations that have been reported to enhance the
expression of hypothalamic or gut prepro-orexin mRNA
are fasting for 48 h and insulin-induced hypoglycaemia:
both are situations in which the demand for food is high
(Cai et al. 1999; Kirchgessner & Liu, 1999). Intriguingly,

if insulin-injected animals have access to food there is no
change in the hypothalamic prepro-orexin mRNA level,
although hypoglycaemia is almost as severe as when
access to food is denied. It is as though a signal from the
gut is telling the animal that the fuel crisis is almost
over.

Could it be then that the orexins activate a range of
responses needed to respond to a fuel crisis? After all, in a
crisis the animal must be alert to seek out food, and
activation of the sympathetic nervous system, whilst in
itself leading to an increased fuel demand, may be a risk
that has to be taken to support food-seeking behaviour.
Furthermore, it is well known that reproductive activity is
suppressed by poor nutritional status. More studies are
needed to investigate the physiology of orexin neurone
activation: what influence does sleep deprivation or
manipulations that influence reproductive or autonomic
function have, and if they do affect orexin neurones, how
does this influence feeding behaviour? The interaction of
leptin with the orexin system is a further puzzle that needs
to be untangled. The current evidence is that orexins play
no part in mediating the obesity of animals that have a
defective leptin system, but reduced orexin synthesis may
play a role in the hypophagic response to leptin (Arch et al.
1999; LoÂpez et al. 2000).

A strong case can therefore be made for a role for at least
orexin-A and the OX1-receptor in the regulation of feeding,
though this feeding role is only part of a bigger picture. The
roles of orexin-B and the OX2-receptor in feeding are less
well established. It must be emphasised that this pairing of
ligands and receptors regarding evidence for their role in
feeding is in no way intended to suggest that the OX1-
receptor is the orexin-A receptor and the OX2-receptor is
the orexin-B receptor: orexin-A stimulates both receptors
equally and orexin-B is only marginally more potent at the
OX2-receptor. Why there are two orexins, both derived
from the same precursor, and two receptors is a question
which this commentary cannot begin to address in our
current state of knowledge.
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Director Vascular Biology

SmithKline Beecham Pharmaceuticals
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Table 1. Evidence that orexins stimulate feeding

Neuroanatomy
Cell bodies in perifornical nucleus, lateral and dorsal hypothalamus, eneteric nervous system
Prepro-orexin and receptor mRNA in intestinal enterochromaffin cells
Neurones project to NPY+AGRP and POMC neurones in arcuate nucleus

Physiology
Orexin-A (and in some reports orexin-B) stimulates feeding, gut motility, gastric acid secretion, insulin secretion
Antibodies to orexin-A and the OX1-receptor and an OX1-receptor antagonist inhibit feeding
OX1-receptor mRNA is upregulated by fasting and hypoglycaemia

NPY, neuropeptide Y; AGRP, Agouti-related protein; POMC, proopiomelanocortin; OX1, orexin-1.
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