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THE MEASURE SPECTRUM OF 
A UNIFORM ALGEBRA AND SUBHARMONICITY 

DONNA KUMAGAI 

Introduction. Let A be a uniform algebra on a compact Hausdorff 
space X. The spectrum, or the maximal ideal space, MA} of A is given by 

MA = {<!>£ 4* |0 (1) = l;Hfg) = 0 ( / ) 0 ( g ) ; / , g £ A}. 

We define the measure spectrum, SA, of A by 

5A = (MG C(X)*\v^O;Ifgdv=jfdnfgdv,f,ge A}. 

SA is the set of all representing measures on X for all <t> Ç MA. (A repre
senting measure for <j> £ itf A is a probability measure /x on X satisfying 
* ( / ) = /*/<*/* for e a c h / £ 4 . ) 

The concept of representing measure continues to be an effective tool 
in the study of uniform algebras. See for example [12, Chapters 2 and 3], 
[5, pp. 15-22] and [3]. Most of the known results on the subject of 
representing measures, however, concern measures associated with a 
single homomorphism. In this paper we treat the structure and behavior 
of the space consisting of all representing measures associated with a 
uniform algebra, i.e., the measure spectrum. 

The subharmonicity of a certain class of functions arising from a 
uniform algebra has been useful in exhibiting analytic structure in the 
maximal ideal space. See for example, [14, p. 139], [2, pp. 99-106]. These 
functions have the following form: Let g £ A. (By this we mean the 
Gelfand transform of g.) For X Ç C, let 

^ ( X ) = {</> e MA\g(<t>) = X}. 

If u is a set function mapping compact subsets of C into R U { — oo } 
and if / G A then we can associate a function U on a component of 
C\g(X) by 

(1) U:\-*u{f[g-(\)]\. 

Various techniques for proving subharmonicity of functions of this 
type have been developed recently [7], [10], [11]. In Section 1 of this 
paper we define functions of type (1) arising from / G CR(X) and g G A. 
Using the properties of measure spectrum we study the subharmonicity 
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of these functions. One example of U given by Wermer in [15] is 

Z(X) = max,- i (X) | / | . 

We define, for / <E CR(X) and g G A, 

(2) Hf{\) = max^ r i ( X ) /(( /)) 

where / denotes the extension of / into MA via 

/(</>) = min I fdn. 

Using Wermer's result, we show in Theorem 1.5 that the upper regulariza-
tion of Hf is subharmonic. We include an interesting example where Hf 

(without the upper regularization) is subharmonic. 
In Section 2 we construct the measure spectrum for two concrete 

examples: the annulus algebra and the generalized annulus algebra with 
two holes. (The results obtained here can readily be generalized to the 
case of n holes.) These algebras are prototypes of hypo-Dirichlet 
algebras whose measure spectrum can be regarded as a finite codimen-
sional extension of the maximal ideal space. Hence they provide a 
natural setting in which to begin our investigation of SA. Our com
putations for these examples are based on the classical results on the 
inner normal derivative of the Green's function [8] and Royden's work 
on annihilating measures [9]. 

In Section 3 we examine subharmonicity properties of the SA's con
structed in Section 2. Each n £ SA is assigned a unique set of coordinate (s) 
and for each <f> £ MA a notion of minimum measure is defined by the 
minimulty of the coordinate (s). In Theorem 3.2 we show that the 
coordinates of the minimum measures vary subharmonically in the 
interior of MA. Using the above results we prove in Theorem 3.3 that 
the extension,/, of/ £ CB(X) to MA by 

]'{z) = minM€mJ/JjLt 

is subharmonic in the interior of MA. 

1. We begin our exposition by describing some basic properties of 
SA. The measure spectrum, SA, of a uniform algebra A is a compact 
Hausdorff space when it is endowed with the topology it inherits as a 
subspace of the dual space, C(X)*, (given the weak-*topology). Let T 
be a restriction map of C(X)* onto A*. Then ir(SA) = MA. For each 
</> G ^4*, -K~X(<&) — {the set of all representing measures for </>}. X can be 
regarded as a subspace of SA by identifying each x £ X with dxi the point 
mass measure concentrated at x. Each / G CR(X) can be extended to 
CR(SA) by the Hahn-Banach theorem. 
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Suppose A is a Dirichlet algebra, i.e., that ReA is dense in CR(X). 
Then every element of MA has a unique representing measure. In this 
case 7T : C(X)* —> A* induces a homeomorphism of SA onto MA, and 5^ 
"inherits" the structures that MA has. For example, consider the 
Gleason parts for A. Every Gleason part for a Dirichlet algebra is either 
trivial or an analytic disc. Suppose P is a nontrivial Gleason part of MA. 
Then there is a continuous one to one function <i> from {\z\ < 1} onto P 
such that for a l l / £ A, f o 3> is holomorphic [4]. An analogous situation 
exists for SA: Suppose u £ CR(X). Extend u to û on 5A by defining 
u(m) = jxudm. Then it is not hard to see that u o 7r_1 o $ is harmonic. If 
P is an analytic disc ir~lP is a "harmonic disc". 

The above example suggests the possibility of extending the properties 
of MA such as the Gleason part, the Shilov boundary, etc. to SA when A 
is an arbitrary uniform algebra. In particular, the concept of SA may 
prove to be useful in the problems of analytic structure in the maximal 
ideal space. 

Using the method of Oka, J. Wermer proved the following theorem 
[15], which has become a key tool in the study of the analytic structure. 

THEOREM 1.1. Let A be a uniform algebra on X. Suppose g Ç A and 
let 12 be an open subset of G\g(X). Choose f £ A. Define on 12, 

Z,(f) = sup,-i(f) | / | . 

Then Zf is logarithmically subharmonic. 

We define a function Hf modeled after Zf for / £ CR(X) and g £ A. 
In Theorem 1, which is our main theorem, we prove using the properties 
of SA that the upper regularization of Hf is subharmonic. We shall need 
the following lemmas. 

LEMMA 1.2. Let 12 be an open subset of G\g(X). Then for each h Ç Re^4, 
f —̂» supç,ç0-i(n h(<p) is subharmonic on 12. 

Proof. eh+ik G A for some k £ CR(X). By Theorem 1.1, 

sup,6„-i(r) log|^+**| = sup,€„-i(r)ft(*>) 

is subharmonic. 

LEMMA 1.3. Using notation as above, 

sup min I fd\x = sup { sup &(̂ ?) r . 

Proof. First, note that 

sup \ sup \ = sup ") sup /K<p) | • 
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It is well known [3, p. 32] that 

min I fdfj, = sup h((p). 
M€m^ * X h€ReA 

* hgf 

Hence Lemma 1.3 follows. 

Let 12 be a domain in C. Suppose u maps 12 into [ — 00,00]. The upper 
regularization u* of u is a function on 12 defined by 

z/r(s0) = Hm sup u(z). 
5-^0 | 2 - 2 0 | < 5 

z€ft 

Clearly u is upper semicontinous. 

LEMMA 1.4. For an arbitrary index set, I, let {ua\açi be a bounded right 
directed set of subharmonic functions on 12. Let u = sup« ua. Then the upper 
regularization, u\ of u is subharmonic on 12. 

Proof. See [6, p. 68]. 

We are ready to prove our main theorem. 

THEOREM 1.5. Let A, X, and MA be as in Theorem 1.1. For f Ç CR{X) 
let f be the extension off to MA given by 

f(4>) = min I fdfi. 
M € M 0

 J X 

Fix g G A and let 12 be an open subset of C\g(X). Define: 

Hf{£) = m a x 0 f , - i ( o / ( 0 ) , f G 12. 

The upper regularization of Hf is subharmonic. 

Proof. Let ( w a [ a a consist of functions in Re A with ua S f for all 
a £ I. Set 

Ua($) = sup0 € , - i ( n ua(<t>). 

By Corollary 1.2, Ua is subharmonic for each a. Let 

Ĵ ~ = {mdix{ua}a€F\F: SL finite subset of / } . 

It is easy to see t h a t ^ is right directed. Each element of Ĵ ~, being the 
maximum of a finite number of subharmonic functions, is subharmonic. 
Note that Hf = sup^c/J^". By Lemma 1.4 the upper regularization, 
Hf\ of Hf is subharmonic. 

Although i f / is subharmonic for arbitrary uniform algebras, Hf fails 
to be subharmonic in general. We exhibit an interesting example of a 
uniform algebra which gives rise to subharmonic Hf (without the upper 
regularization). 
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Example. 

r = {*€ c | * £ |*| g 1} 

i = a 7 x [o,i]. 

A = {g € CPOI for each /, g(z, t) is a uniform limit of polynomials in 
z and z~l \. 

Note MA = F X [0, 1], Choose/ G C«(X) a n d / £ 0. Let g(s, /) = z. 
Then 

ff/(f) = max min I fd/j, 

is subharmonic on 12, an open subset of G\g(X). 
Let (20, h) £ if^. We shall show that every representing measure for 

(20, to) is supported on dY X t0. Set w(z, t) = 1 — \t — t0\. Then, w £ A 
and w(z, /0) = 1. 

1 = w
n(z, to) = I |w|nd/i 

9FX 
'"(2, h) = f 

= 1 |1 - \t-t0\\
nd»+ f 

5FX 

We have 

|1 - \t-t0\\
ndfM. 

while 

im I |1 -
u*» J dYXtn 

lim I |1 - \t - tQ\\ndn = fi(dY X *o) 

lim I |1 - |/ - t0\\
ndfjL = 0. 

n-400 J dYXl\{tQ) 

Hence, M (dF X *0) = 1 = M ( 3 F X / ) = /t(Z). 

/(«, t) = min I /rfju = min I jd\x. 
nem(z,t) J X ^m(z,t) d Y x t 

Denote the uniform algebra, R(dY), by B. Any continuous real valued 
function / on X can be expressed as 

f(z,t) = <p(t)-{h(z)+(3\og\z\} 

for some h £ Re B and for some jS Ç R. /x £ S 4 representing (2, /) is also 
an element of 5 B representing z. For simplicity of notation denote 

h(z) + 0 l o g | z | = v(z). 

Then, 

f{z,t) = <^(0min I v(z)dfi = <p(2)#(2). 
M€m2 J dY 
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We shall show in Theorem 3.3 that v(z) is subharmonic. Note that 

nAÇ) l[min <p{t)] - «(*) it Hz) < 0; (s, 0 G ^ ( D -

Therefore, 

i//(f) = max jmax^W • t)(z), min ^(*)0(z)} ; (z, t) £ g_1(f) 

and i3/(f ) is subharmonic in £2. 

2. In this section we construct measure spectra for two spécifie algebras ; 
the annulus algebra and the generalized annulus algebra with two holes. 
While the measure spectrum of a Dirichlet algebra is homeomorphic to 
the maximal ideal space the measure spectrum of a hypo-Dirichlet 
algebra may be regarded as a finite dimensional extension of the maximal 
ideal space. Our computation will be based on the following observations. 
Consider a domain X Ç C , bounded by finitely many mutually disjoint 
smooth simple closed curves and let K be its closure. Denote by A (K) 
the algebra of all functions continuous on K and analytic on K. Algebras 
of this type are prototypes of hypo-Dirichlet algebras. For such algebras 
it is well known [13], that if z0 is an interior point of K, then, for all 
ft A{K) 

/(*o) =~~ f fj-G(z«A)ds, 
ZTT JSR on 

where: G is the Green's function for K singular at z0; dG/dn is its inner 
normal derivative on the boundary, and ds denotes the arc length. Since 
dG/dn is always positive, \/2TT [dG(z0, Ç)/dn]ds is a representing measure 
for ZQ. Any two representing measures for s0 differ by an annihilating 
measure for A(K). The annihilating measures for A(K) are the holo-
morphic differentials on K which are real on the boundary of K [1]. The 
dimension of the space of annihilating measures is N — 1 if N is the 
number of components in the complements of K. 

Example 1. Let X\ be two circles, {\z\ = 1} and {\z\ = p\, p < 1, in C. 
Let A i be the subalgebra of C(X\) consisting of all functions which are 
uniform limits on X\ of rational functions in z with poles off X\. Then, 
the maximal ideal space, Mi of A\ is: M\ = {p ^ |z| ^ 1}. E a c h / G Ai 
has a unique extension which is analytic in the interior of M\. It is well 
known [13, p. 59] that any representing measure for z in the interior of 
Mi is given by 

£ { g (,,t)+aT(!)}ds 
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where r ( f ) is an annihilating measure and a is a real number for which 

g (z, f ) + aT(£) è 0 

for all f G Xi. The set of such a's forms an interval. Denote this interval 
by \am(z), aM(z)]. Using Cauchy's theorem T can be computed to be 

( 1 on |f | = 1 
T = { 1 

- - on |f | = p. 
\ P 

If z G Xi then the point mass measure, <52, is the only measure repre
senting z. Thus, we have 

J 1 dG X 
SA= U \7T\~r <*'*") + aTtt) <*S\am(z) ^a^ aM(z) > U U i 

2€Mi» l^^r L a n J ; 2 ç y i 

5^x is, therefore, a solid torus. 

Example 2. Consider three circles in C: T0 = {|z| = 1}, I \ = 

{|« - il = P}; r2 = {|z + è| = P};0 < p < i L e t x 2 = r 0 u r x u r2 
and let A2 = R(X2). I.e., ^42 consists of all functions which are uniform 
limits on X2 of rational functions in z with poles off X2. Then, the maximal 
ideal space, M2f of A 2 is 

M2 = {s Ç C| |Z| ^ 1}\[{|Z + i | < pj U {|Z - | | < P}}. 

Let 2 be an interior point of M2. By the preceding remarks any repre
senting measure for z is expressed as 

(4) £|j>rtd, + or- + M'- ds 

where Tu and 7\ are linearly independent annihilating measures for A2 

and a, 5 are real numbers such that (4) is nonnegative. The space of 
annihilating measures for ^42 can be obtained as follows. Set 

Tu = — *du + idu and Tv = —*dv + idv 

where u and v are the harmonic functions on M2 with the boundary 
values: 

JO on Ti , JO on T2 
M S t i Q n r 0 u r , and ^tionrour, 

Clearly, Tu and Tv are holomorphic differentials which are real on X2. 
It is not hard to see that Tu and Tv are linearly independent. By the 
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preceding remark Tu and Tv generate the space of annihilating measures 
for A 2. Denote 

Kz = | (a, 6) G R2 

5 . is, then, given by: 

~^(z,C)ds + aTu + bTv^o\ 

SA2 = U {~- " ^ («, ?)ds + aTn + bT,\ (a, 6) G # z U W «,. 
2€X9 

Thus, SA2 can be identified with a subset of C X R2. 
More generally, if A is a generalized annulus algebra with n holes, 

then S A can be realized as a subset of C X Rw. 

3. In this section we shall examine various subharmonicity properties 
associated with SAl and SA2. 

Suppose M is a representing measure for z in the interior of M\ (recall 
that M\ is the maximal ideal space of the annulus algebra, A\.) Then, 
there is a real number a such that 

2TT L f <*• f > + *T<n cfo. 

We call a the coordinate of M (with respect to T). The set of all coordinates 
of the representing measures for z is the interval [am(z), aM(z)]. The 
representing measure for z with the coordinate am(z) is called the 
minimum measure for z and the representing measure with aM(z) is 
called the maximum measure for z. We shall show that am(z) and aM(z) 
are subharmonic and superharmonic functions of z respectively. First 
we need the following characterizations of am(z) and aM(z). 

LEMMA 3.1. We use notation as above. For z G M°, 

am(z) = - m i n — (z, f), 
in—x o» 

aM(z) = p m i n — (z, f)-

Proof. For simplicity of notation we set 

a2 = min — (2, f ) and 
in—x on 

I3Z = m i n — (2, f). 
iri-p ™ 

Since the inner normal derivative of the Green's function is always non-
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negative we have az ^ 0 and fiz ^ 0. Note that 

v w l a on |f | = 1. 

(i) Consider the case when a ^ 0; then aT(Ç) ^ 0 on {|f| = p}, and 
we need a/p < fiz in order to satisfy the nonnegativity in (3). Con
sequently, a g pfiz. 

(ii) Assume a < 0. Then a r ( f ) g 0 on {|f| = 1). By (3) we have 
— az < a ^ pfiz. So, we conclude that 

aM(z) = p/3z = p- Smin — (z, f) 

aro(z) = —a2 = -min t— (z, f). 
lf!=i dw 

THEOREM 3.2. We wse notation as above. The function, z —» am(z) is swfr-
harmonic in Mi0. 

Proof. In view of Lemma 3.1 it suffices to show that dG(z, Ç)/bn is a 
harmonic function of z for all f € -XV 

Recall that the Green's function G(z, f) is harmonic in each variable 
on Mi0 X Afi°\diagonal. Fix s G Mi°. Define ftz on Afi° by 

*.(f) = G(«,f). 

&z is harmonic on Afi°\{js} and hz = 0 on JXi by the definition of G. So, 
hz extends, by the reflection principle, to a harmonic function, HZ1 defined 
on a region B D M\. Let A be a disc contained in Mi. Define on 
A X 23\diagonal, 

G(z,i) =H,<r). 

Note that G is harmonic in each variable. We shall prove 
is a harmonic function of z for any f G -Xi by showing 

A,{|f(,f)} = 0. 
Let {77̂} be a sequence of points in Mi0 converging to f along the normal. 

since G(z, rjn) = G(z, rjn) and G is harmonic in z. Hence both az and fiz 
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are subharmonic. This concludes the proof of Theorem 3.2. We have also 
proved: 

COROLLARY 3.3. aM(z) is super harmonic in Mi0. 

Theorem 3.4 is an application of Theorem 3.2 and Corollary 3.3. 

THEOREM 3.4. Suppose A\ is the annulus algebra defined on X\ as before. 
For each f G CR(Xi), the extension, / , of f to M\ defined by 

f(z) = min I fd/i 

is subharmonic in the interior of M\. 

Proof. Note that / may be expressed as 

/(f) =g ( f ) + 0 log |f | 

for some g £ Re Ai and for some /3 £ R. Choose z £ M\. If M is a repre
senting measure for z, then there is a real number, a, such that 

* = £ l f <«.r>+T<rt o\s. 

Each / G CR(Xi) can be extended to CR(SA}) by /(/x) = fxifdp. We 
claim 

/GO = /(*) ~ 0a log f. 

Proof of the claim. Note that 

/GO = / g(t)dvL+ f /3log|f|rf/x. 

From g G Re ^4i, we get JXlgd^ = g(z). Since l /2x dG(z, I) I an ds is a 
logmodular measure we have 

On the other hand, 

^ - f /3log |f |ar(f)d5 = ^ - f 0 l og | f | ^ 

+ f f /8log|f | (--) f i^ = 0- j8.a!ogp. 
Z7T J | f | = p \ p/ Ç 

We conclude that 

/ (M) = /(*) - 0 • a log p. 

So, 

/(z) = minM€ro,//djLt = mina { f{z) - 0a log p}. 
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Case i. ft ^ 0. In this case minM€m2 j fdn is attained when /x is the 
minimum measure for z; i.e., 

minM€mz ffdn = f(z) - pam(z) log p. 

By Theorem 3.2, z —• am(s) is subharmonic. f(z) is harmonic and 
log p < 0. So, s —•> minM €mz J /d/x is subharmonic. 

Case ii. 0 < 0. In this case m'mfiemz J fd^x is attained when /x is the 
maximum measure. By an argument similar to the proof of Case i and 
Corollary 3.3, we have the desired subharmonicity. This concludes the 
proof of Theorem 3.4. 

Now let A 2 be the generalized annulus algebra of Example 2 in 
Section 2. Suppose z is an interior point of M2 and /u, £ SAz represents z. 
Then, there exists (a, b) 6 Kz satisfying 

M = 7>-~ T~ (*' ^ds + aT« + bJv Zir on 

Define am(z) to be the minimum value of a such that there exists b with 
(a, b) G i£z. The value of b such that (am(s), b) £ i£2 is uniquely deter
mined for each z. We denote this unique value by bm(z). 

THEOREM 3.5. We use notation as above. am(z) is subharmonic in the 
interior of Mi. 

Proof. First we show that am(z) has the submean value property. Fix 
f G X2. Let z0 £ M2° and let Â(JZ0, 5) be the closed disc centered at z0 

with radius ô. Suppose Â(s0, 5) C MA°. For all z with |z — z0\ = 6, we 
have: 

| ^ (2o + &", fids + am(2)rM + 6m(s)r„ è o. 

Hence, 

(5) ~- f -̂ - («o + &", fide + ̂ - I M^o + ^ r ^ 
ZW J -TT On ZT J -TT 

Let 

^m(s) = TT I a™(s° + àel°)Tudd; 
ZT J -7T 

the average of am(z). Then (5) becomes 

| ^ (*0, f) + o~^jrM +~b~&Tu è o 
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which shows that (am(z), bm(z)) (E KZQ. Hence, 

am(z0) ^ am(z) = — I am(z0 + ôel6)d6. 
Zir J _T 

It remains to be shown that am(z) is upper semicontinuous. Note that 
Um(z) < 0 f° r all z- Let So be an interior point of M2. Choose a disc, 
A(z0, ô) C M2°. Denote 

c = maxÂxx2 -^ > 0. 

Given any e > 0, set 

€i = - c • e/(am(20)) > 0. 

Without loss of generality, assume ei/c < 1. By the continuity of 
dG(z}Ç)/dn on A X I 2 there exists <5' < ô such that for all z with 
|z - z0\ < ô' and for all f G X2, 

f(».,0 S f (,« + ., 
from which we get, 

(« £<*• » * £ < * » ( • -?)• 
Choose 6 such that 

<9G 
a w (so, f ) + am(z0)Tu(ï) + bTv(Ç) è 0 for all f € X. 

Then, 

(7) (1 - ^ j -£ (2o, r)<fc + (1 - ^)om(2o)rM + (1 - *j)bTv ^ 0. 

From (6) and (7) 

• | (0, r) + ( i - ~)aw(s0)7; + ( i - ^ r „ ^ o. dG 
an 

Hence, 

( 1 - ~ )am(zo) ^ am(s) 

by the definition of am(z). Consequently, 

am(zo) è am(z) - e. 

Theorem 3.5 is proved. 
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