Peaucellier's Cell and other linkages in non-euclidean Geometry.

By Professor D. M. Y. Sommerville, D.Sc.
(Received 15th January 1926. Read 5th February 1926.)

1. There are certain well-known linkages for effecting the transformation of inversion, and, incidentally, by inverting a suitably situated circle, for producing straight-line motion. Reference may be made to the classic lecture by A. B. Kempe, "How to draw a straight line" (London: Macmillan, 1877). It is the object of this paper to call attention to the fact that these linkages bave the corresponding property in non-euclidean geometry.
2. We shall consider first Peaucellier's Cell. This consists of two links $O A, O B$, each equal to a, and four links $A P, A P^{\prime}, B P, B P^{\prime}$, each equal to $b(a>b)$. Then it is readily proved that $O P$ and $O P^{\prime}$ each bisect the interior angle $A O B$, and therefore O, P, P^{\prime} are collinear.

Fig. 1

Let $O P=r, O P^{\prime}=r^{\prime}, \angle A O P=\angle B O P=\theta$. Then, for the case of elliptic geometry

$$
\begin{aligned}
\cos b & =\cos r \cos a+\sin r \sin a \cos \theta \\
& =\cos r^{\prime} \cos a+\sin r^{\prime} \sin a \cos \theta
\end{aligned}
$$

i.e. r, r^{\prime} are two distinct solutions of the equation

$$
\cos r \cos a+\sin r \sin a \cos \theta=\cos b .
$$

Put $\tan \frac{1}{2} r=t$, and the equation becomes

$$
(\cos a+\cos b) t^{2}-2 t \sin a \cos \theta+(\cos b-\cos a)=0
$$

Hence, if the roots of this equation are t, t^{\prime} we have

$$
\begin{equation*}
t t^{\prime}=\frac{\cos b-\cos a}{\cos b+\cos a}=\tan \frac{1}{2}(a-b) \tan \frac{1}{2}(a+b)=\text { const }=k \tag{1}
\end{equation*}
$$

P, P^{\prime} are therefore inverse points* with respect to a circle of radius ρ such that $\quad \tan ^{2} \frac{1}{2} \rho=\tan \frac{1}{2}(a-b) \tan \frac{1}{2}(a+b)$
or $\quad \cos \rho=\cos a / \cos b$.
The latter result follows at once by considering the case where P, P^{\prime} coincide at C, and then $A C=b$, and $\angle A C O$ is right,
3. In non-euclidean geometry, however, inversion is not a (1, 1), but a (2,2) point transformation. In euclidean geometry the relation between r and r^{\prime} is $r r^{\prime}=a^{2}-b^{2}$, which is (1, 1). In elliptic geometry the relation (1) is $(1,1)$ as between $\tan \frac{1}{2} r$ and $\tan \frac{1}{2} r^{\prime}$, but between the parameter $\tan \frac{1}{2} r$ and the point P on the fixed line $O P$ the correspondence is (2,1), as we see from the following. The value of r which corresponds to a given point P is indeterminate to an added multiple of π. Hence there is a (1,1) correspondence between the points P and the values of $\tan r$, and therefore a $(2,1)$ correspondence between the values of $\tan \frac{1}{2} r$ and the points P, viz. to the point P correspond the two values of $\tan \frac{1}{2} r:-t$ and $-t^{-1}$. The correspondence between $\tan \frac{1}{2} r$ and $\tan \frac{1}{2} r^{\prime}$ being (1, 1), that between P and P^{\prime} is (2, 2). The (2, 2) relation between $\tan r(=T)$ and $\tan r^{\prime}\left(=T T^{\prime \prime}\right)$ is found to be

$$
\begin{equation*}
\left(k^{2}-1\right)^{2} T^{2} T^{\prime 2}=4 k\left(k T+T^{\prime \prime}\right)\left(T^{\prime}+k T^{\prime}\right) \tag{2}
\end{equation*}
$$

When the equation is expressed conversely in terms of t and t^{\prime} it gives

$$
\begin{equation*}
\left(t t^{\prime}-k\right)\left(k t t^{\prime}-1\right)\left(k t+t^{\prime}\right)\left(t+k t^{\prime}\right)=0 \tag{3}
\end{equation*}
$$

[^0]The four relations got by equating these four factors to zero are obtainable one from another by changing t or t^{\prime} into its negative reciprocal. We have thus the four relations

$$
\left.\left.\begin{array}{l}
t_{1}=k t^{-1} \tag{4}\\
t_{3}=-k^{-1} t
\end{array}\right\} \quad \begin{array}{l}
t_{2}=-k t \\
t_{4}=k^{-1} t^{-1}
\end{array}\right\}
$$

Of these the first pair give coincident points P_{1} and P_{3}, and the second two give another pair of coincident points P_{2} and P_{4}. The two points P_{1} and P_{2} are the two inverses of P.

Since $t_{1} t_{2}=-k^{2}, P_{1}$ and P_{2} are inverses with regard to a (virtual) circle whose radius R is given by

$$
\tan ^{2} \frac{1}{2} R=-\tan ^{4} \frac{1}{2} \rho .
$$

In hyperbolic geometry this equation becomes

$$
\tanh ^{2} \frac{1}{2} R=\tanh ^{4} \frac{1}{2} \rho=k^{2},
$$

and the circle is real. The inverse of any point on this circle, with respect to the circle of radius ρ is given by

$$
\tanh _{\frac{1}{2}} R \tanh _{\frac{1}{2}} R^{\prime}=\tanh ^{2} \frac{1}{2} \rho=\tanh _{\frac{1}{2}} R .
$$

Hence R^{\prime} is infinite, and this circle is the inverse of the absolute.
4. The contraparallelogram.

In this linkwork we have

$$
\begin{aligned}
& A B^{\prime}=A^{\prime} B=a \\
& A B=A^{\prime} B^{\prime}=b
\end{aligned}
$$

Fig. 2
$(a>b)$. Let $A B^{\prime}$ and $A^{\prime} B$ intersect in X. Take $X P=X P^{\prime}$ on $X A$ and $X A^{\prime}$ respectively, and let $P P^{\prime}$ cut $A B$ and $A^{\prime} B^{\prime}$ in O and O^{\prime}.

Then since $O P P^{\prime}$ is a transversal of the triangle $A B X$,

$$
\begin{gathered}
\frac{\sin B P^{\prime}}{\sin X P^{\prime}} \cdot \frac{\sin X P}{\sin P A} \cdot \frac{\sin A O}{\sin O B}=1 \\
\frac{\sin A O}{\sin O B}=\frac{\sin A P}{\sin P \bar{B}^{\prime}}
\end{gathered}
$$

therefore
i.e. O is independent of the angle $B A B^{\prime}$ and is therefore a fixed point on $A B$. As the linkwork is moved, the four points $O, P, P^{\prime}, O^{\prime}$ will therefore remain in line.

Let $A P=a_{1}, P B^{\prime}=a_{2}, A O=b_{1}, O B=b_{2}$, so that

$$
\begin{equation*}
\frac{\sin a_{1}}{\sin a_{2}}=\frac{\sin b_{1}}{\sin b_{2}} \tag{5}
\end{equation*}
$$

Let $O P=r, O P^{\prime}=r^{\prime}$, and $\angle B O P=\theta$; then from the triangles $A O P$ and $B O P^{\prime}$

$$
\begin{aligned}
& \cos a_{1}=\cos b_{1} \cos r-\sin b_{1} \sin r \cos \theta, \\
& \cos a_{2}=\cos b_{2} \cos r^{\prime}+\sin b_{2} \sin r^{\prime} \cos \theta .
\end{aligned}
$$

Eliminating $\cos \theta$, writing t and t^{\prime} for $\tan \frac{1}{2} r$ and $\tan \frac{1}{2} r^{\prime}$, and simplifying by means of the relation

$$
\frac{\tan \frac{1}{2}\left(a_{1}+b_{1}\right)}{\tan \frac{1}{2}\left(a_{1}-b_{1}\right)}=\frac{\tan \frac{1}{2}\left(a_{2}+b_{2}\right)}{\tan \frac{1}{2}\left(a_{2}-b_{2}\right)}
$$

which is derived from (5), we obtain

$$
\begin{aligned}
t t^{\prime} & =\tan \frac{1}{2}\left(a_{1}-b_{1}\right) \tan \frac{1}{2}\left(a_{2}+b_{2}\right) \\
& =\tan \frac{1}{2}\left(a_{2}-b_{2}\right) \tan \frac{1}{2}\left(a_{1}+b_{1}\right) .
\end{aligned}
$$

Hence when O is fixed, P and P^{\prime} are inverse points with regard to a circle of radius ρ where

$$
\tan ^{2} \frac{1}{2} \rho=\tan \frac{1}{2}\left(a_{1}-b_{1}\right) \tan \frac{1}{2}\left(a_{2}+b_{2}\right) .
$$

5. Relations of the same form hold between the angles of the contraparallelogram and also for the pseudoparallelogram (the simple, not crossed, quadrilateral with opposite sides equal). If
the angles are denoted by ϕ and ϕ^{\prime}, and $\tan \frac{1}{\Downarrow} \phi=t, \tan \frac{1}{2} \phi^{\prime}=t^{\prime}$, we find
for the contraparallelogram: $t t^{\prime}=\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)}$
for the pseudoparallelogram: $t t^{\prime}=\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)}$.
On the other hand the diagonals $A A^{\prime}(=r)$ and $B B^{\prime}\left(=r^{\prime}\right)$ are connected by the relations.
$\sin \frac{1}{2} r \sin \frac{1}{2} r^{\prime}=\sin \frac{1}{4}(a+b) \sin \frac{1}{2}(a-b) \quad$ (Contraparallelogram)
$\cos \frac{1}{2} r \cos \frac{1}{2} r^{\prime}=\cos \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b)$ (Pseudoparallelogram).
6 In the contraparallelogram (Fig. 2), if O is fixed and P, P^{\prime} are otherwise constrained to move in a straight line the only links required are $P A, A B$ and $B P^{\prime}$, connected by the relation

$$
\frac{\sin A P}{\sin B P^{\prime}}=\frac{\sin A O}{\sin O B}
$$

The constraint may be produced by rendering this linkwork symmetrical in another way (see Fig. 3) so that this linkage also makes $\tan \frac{1}{2} O P \tan \frac{1}{2} O P^{\prime}$ constant (cf. Kempe, p. 17).

Fig. 3
7. In conclusion it may be mentioned that the apparatus for trisecting angles or dividing into any number of equal parts (Kempe, p. 42) can also be applied in non-euclidean geometry. This is a combination of contraparallelograms $O A_{1} B_{1} C_{1}, O A_{2}\left(C_{1}\right) B_{2} C_{2}$, $0 A_{3}\left(C_{2}\right) B_{3} C_{3}$ (Fig. 4).

Let

$$
\left.\begin{array}{l}
O A_{1}=B_{1} C_{1}=a_{1} \\
O C_{1}=A_{1} B_{1}=b_{1}
\end{array}\right\}
$$

$$
\angle A_{1} O A_{2}=A_{2} O A_{3}=A_{3} O C_{3}=\theta
$$

$$
\angle O C_{1} B_{1}=O C_{2} B_{2}=O C_{3} B_{3}=\phi
$$

Then $\tan \frac{1}{2} \theta \tan \frac{1}{2} \phi=\frac{\sin \frac{1}{2}\left(a_{1}-b_{1}\right)}{\sin \frac{1}{2}\left(a_{1}+b_{1}\right)}$

$$
=\frac{\sin \frac{1}{2}\left(a_{2}-b_{2}\right)}{\sin \frac{1}{2}\left(a_{2}+b_{2}\right)}=\frac{\sin \frac{1}{2}\left(a_{3}-b_{3}\right)}{\sin \frac{1}{2}\left(a_{3}+b_{3}\right)} .
$$

From these relations we obtain

$$
\frac{\tan \frac{1}{2} a_{1}}{\tan \frac{1}{2} b_{1}}=\frac{\tan \frac{1}{2} a_{2}}{\tan \frac{1}{2} b_{2}}=\frac{\tan \frac{1}{8} a_{3}}{\tan \frac{1}{2} b_{3}},
$$

Fig. 4
which are the necessary relations determining the dimensions of the successive contraparallelograms.

Victoria Univ Coll., Wellington, N.Z.

[^0]: *See the author's Non-euclidean Geometry," p. 241.

