THE PATHOLOGY OF DIFFERENTIAL EQUATIONS

T. M. CHERRY*

1. When a system of ordinary differential equations, say

,  dz,
(1) xr=?1t—=Xr(x1!”'xn)’ (r=1,-'-n),

or in vector notation x = X(x), arises in a physical or even a purely mathe-
matical context, it is usually desired to solve it; to ‘find’, in some adequate
sense, a specified particular solution x = x(¢) or the set of all its solutions.
If the range of ¢ over which the solution is desired is unbounded this problem
is usually intractable; for example, there have been two centuries of in-
conclusive effort to establish the stability of the solar system — as idealized
by the equations of motion of a set of mutually gravitating particles. There
are however, related questions on which progress has been made over
the last 70 years. For example (1) we can inquire, for functions X, of a
given species, say polynomials, what sorts of solution are possible, and what
sorts of structure are possible for the set of all solutions; (2) the question of
solution near an equilibrium point, though in one sense ‘local’, has something
of a global character, and notable progress with it has recently been made.

I propose in this address to speak about these questions at the level of
the ‘general reader’, trying to give interesting indications rather than a
complete review. Some of the material has not hitherto been published (so
far as I know), and for the rest I give some historical notes and main
references.

The chief object of the address is to illustrate the fact that the solutions
of systems (1) can have pathological features, even when the X, are functions
of the simplest sort, e.g. polynomials. Here there is of course a contrast with
the easily soluble systems which one meets in the elementary text books.
This fact was adumbrated by Poincaré in his great memoir of 1890 on the
equations of dynamics, but I think that it was first conclusively demonstrated
by Hadamard in 1898 (for the set of all solutions), and Morse in 1921 (for
individual solutions) [1]. I forbear to suppose the X, anything but analytic,
for this would invite further complication; for definiteness they are here-
after restricted to be polynomials, or at worst integral functions.

* Presidential address, August 1957.
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Solution Curves

2. There is a well known geometrical representation in which, restricting
all the variables to be real, we take x,, - - - x,, as coordinates in some ‘phase-
space’, e.g. Euclidean n-space, and ¢ a time variable. Then (1) specify a
velocity-field in the space, and a solution x(¢) is represented by a para-
metrized curve called a trajectory or (if the ¢ dependence is disregarded) a
path. Since (1) is autonomous (¢ absent from X) the solutions fall into sets
x(¢ — t,), where ¢, is arbitrary, and for any such set there is only one path.
The range of ¢ is (—o0, o), so each trajectory is an open curve. (It is
possible for x(#) to become infinite for a finite limiting value of £, but in
the cases to be here considered this will not occur, and for simplicity the
possibility will be neglected in general statements.)

There are standard theorems of existence, uniqueness and continuity
which state (i) that the trajectory determined by any initial point x(Z,)
is a regular curve for — o0 < ¢ <C o0, (ii) that two non-identical paths
cannot intersect, (iii) that for any finite ¢, x(¢) varies continuously with
x(t,) — but the continuity is not uniform over — o0 < ¢ < 0. Accordingly,
it is in the behaviour of trajectories when indefinitely continued (¢ - 4 o)
that the pathological possibilities lie.

To focus this matter, suppose for the initial x(4,) in question that x(¢)
remains bounded, and let (¢,) be any sequence increasing to + co. Then the
set of points x(¢,) has limit points, and the set of all such limit points for
all such sequences (¢,) is called the w-limit set of the trajectory x(t); from the
continuity theorem it is easily proved to consist of a closed set of trajectories.
The a-limit set of the trajectory x(t) is similarly defined via sequences (¢,)
decreasing to —oco. For example the system

E=z(l—2*—9y*) —y, g=y(l —2* —¢) + =
has in polar coordinates a solution 72 = }(1 + tanh{), 6 = ¢, whose w-
limit set is the circle » = 1 (itself a solution) and «-limit set the point » = 0
(an equilibrium solution).

These definitions and the associated theory and due to G. D. Birkhoff
[2], and the « w-terminology is one of his happiest appropriations.

The preceding adumbrations about ‘pathological features’ can now be
clarified: a system (1) can have a solution whose w- or a-limit set is patho-
logical. An example will be given in § 5.

3. Second order systems. When n = 2 in (1) the phase-space is naturally
taken as a plane in which z,, z, are cartesian coordinates. The topological
possibilities regarding the trajectory-field were investigated by Poincaré
in the 1880’s, and the theory is accessible in recently published books [3].
The phase-plane provides a topological straight-jacket, as it were, to restrict
the possible waywardness of the trajectories, so that in general the w- or
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(8] The pathology of differential equations 3

a-limit set of a trajectory T is a single closed curve C. It is possible — as
in the example below — for C to have angular points on it, but in general
C is everywhere smooth; and then it is a closed path of (1), which is either
(i) T itself; or (ii) a ‘limit cycle’ or asymptote which T approaches spirally
from one side. In case (ii) neighbourhoods of C on eack side are filled by
paths which, like T, spiral towards C, and this happens in case (i) also if
T is a limit cycle. But in case (i) it is possible — more exceptionally — that
a full neighbourhood of C is filled by a family of closed paths; this com-
monly occurs when the differential equations specify the motion of a con-
servative dynamical system. There are no really pathological possibilities,
but the following example shows that the trajectory-field may have un-
expected features. |
Let f(x, y)= (2% + y?)2 4+ 2(y® — 22), so that f = const. gives a family
of Cassini ovals; for f > 0 these enclose the figure-of-eight curve or lemniscate
f =0, and for f < 0 we get ovals within each eye of the co. This family
of ovals has the differential equation dy/dx = — f,/f,. Then the equations

(2) a.::fv"}‘fztanﬂ’ y='—fw+fvta'nﬂ

specify paths, say p-paths, which cut the ovals at a sensed angle 8, which
need not be a constant. These f-paths are hence easily sketched. If we
take tan g = zf(z, y) the lemniscate f = 0 is a f-path; inside each of its
eyes the f-paths spiral from the equilibrium point y = 0, = 41 out
to the lemniscate as asymptote; but outside the lemniscate every g-path
is closed, on account of the anti-symmetry of dy/dzx as regards z. Thus we
obtain an analytic family of curves of which some are spirals and ‘equally
many’ are closed ovals. N '

By taking in (2) f = y® — (22 — 1)%(2* — 2)2 with tan f = af we get
f-paths showing a similar phenomenon, where now a central compartment
containing ovals is flanked on each side by compartments containing spirals.

4. Paths on a torus. Next in simplicity to the case » = 2 in (1) comes
n =3, with the X, so chosen that there is an integral

(3) F(z,, z,, x3) = const.,

where F is a polynomial or other single-valued function. Then each path
is confined to one of the surfaces (3), and if «, y are curvilinear coordinates
on this surface the paths on it are specified by differential equations

(4) t=X@ y), =Y, y)
The decisive distinction from the case n = 2 of (1) is that the surfaces (3)
need not be topologically plane.

The simplest new case arises when the surface (3) in question is a torus,
on which we take z, y to be angular coordinates of the usual sort, each of
period 1, say. An auxiliary plane on which z, y are cartesian coordinates
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is the universal covering surface of the torus, and any path on the torus
has o02 congruent representations on the plane. In (4), X and Y are periodic
in each of « and y. In the trivial case where X, Y are constant the paths
in the plane are parallel straight lines, which give on the torus a family
of closed curves if X/Y is rational; but if X/Y is irrational each path spirals
round the torus without closing, so that it is everywhere dense on the torus
and has this whole surface as its «-limit set and as its w-limit set. Each
such path cuts any section z = const. in a countable infinity of points,
so there is an uncountable infinity of distinct paths.

Imagine now that these paths are drawn on a deformable membrane
stretched over the torus, that the membrane is slit for a short distance
along the path through a chosen point P, and that the slit is then opened
out into a region of finite breadth. Hereby the part of the membrane near
P is pushed aside, so that the paths on it become deformed. Now suppose
the slit is continually extended along the path T through P, in both senses,
and that it is continually opened out so that a strip of finite breadth is
generated, with an associated deformation of the neighbouring paths (which
will include ‘later’ stretches of the path T, not yet reached by the slit);
any part of the strip already generated is supposed to have its edges held
fixed, so the strip keeps encroaching on more and more of the surface,
and its breadth must diminish towards zero as it is indefinitely followed in
either sense. Finally we can suppose that the strip is filled with new paths
strung along it, so that the torus is completely covered by a set of paths,
which can be specified by differential equations (4) in which, clearly, X, Y
can be supposed continuous functions which never simultaneously vanish.

This set of paths has pathological properties, which are clearest in the
case (which we may suppose achieved) where the strip is everywhere dense
on the torus. If we take the strip to be open (i.e. edges excluded) the residual
set R on the torus is perfect and nowhere dense and consists of an uncountable
set of paths; and every path on the torus has R as its a~- and w-limit sets.
The paths which constitute R are called recurrent (because they belong
to their limit sets) and of discontinuous type; the contrast is with the paths
in the case where X/Y is an irrational constant, which are recurrent and of
continuous type.

For half a century it was a question of some notoriety whether this
pathological case could occur for differential equations (4) in which X, Y
are analytic functions, but in 1932 Denjoy [4] disproved the conjecture;
the argument is too long and subtle to be given here, but the key fact
can be informally stated: the ‘positive half’ of any trajectory (corresponding -
to £ > 0) partitions the surface into ‘a set of strips nearly all of which must
be infinitely narrow’, and the negative half of the trajectory is forced to
thread its way along these strips.
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6. A pathological example [5]. We can achieve a pathological set of
paths closely resembling the set just discussed, but whose differential equations
(4) have X, Y analytic, provided we take X, Y to vanish simultaneously at
two points A4, C of the torus. Specifically, the paths are defined by (2), in
which £ is a constant to be suitably chosen, and f has level curves which,
in the ay-plane, consist of oo0? repetitions of the unit shown by thin lines
in figure 1; on the torus, the family consists of a set of closed curves, for

W
——— e e N - -

Figure 1. Unit of guide curves (thin) and B-paths (thick)

which (for example) we can take its intersections with a family of cylinders,
whose cross sections are congruent equiangular spirals and whose polar
axis is parallel to the axis of symmetry of the torus but not coincident with
it; the singular points A4, C arise from tangencies of two of the cylinders
with the torus — external tangency for A4, internal for C.

We call the family f = const. the guide-curves, and (2) specify trajectories
cutting the guide curves at a constant angle 8, which are easily sketched
as on the figure. A set of them spiral outwards from 4, for ¢ increasing (say)
from — co; one of these goes for £ — 4- oo into the col C, and the others form
a strip bordered by the two trajectories running away from C. This strip
plays the part of the strip described in § 4, with the unessential difference
that its continuation leftwards consists of a single path BC running into C.
By considering the co? congruent representations in the zy-plane it is in-
tuitive (i) that there is an average gradient g for each indefinitely extended
trajectory, the same for all of them; (ii) that if g is rational the strip (con-
sidered on the torus), when followed in the sense of ¢ increasing, abuts at
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some stage on to C and then divides (in general) into two ribbons which
border the earlier part of the strip; (iii) that if g is irrational the continuation
of the strip never abuts in this way on C; (iv) that g varies monotonically
and continuously with g, but the variation is pathological in that g remains
fixed at any rafional value as f increases over a finite range — during
which the continuation of the strip is traversing over C. Hence an irrational
g can be achieved by suitable choice of §.

When g is irrational, (iii) gives us the pathological situation that the strip
is cut by any section x = const. of the torus in an infinite set of disjunct
intervals, and there are trajectories residual to the strip which are recurrent
and of discontinuous type; in certain cases all the residual trajectories are
of this type, but the discrimination regarding this is not a trivial matter.

Finally we can exhibit a third order system (1), in which the X, are
polynomials, having this sort of pathological solution. We start from two
integrals such as (3), one representing a family of tori and the other a family
of equiangular spiral cylinders, and by eliminating the arbitrary constants
arrive at a system (1) whose trajectories are the guide curves. This system
is then modified so as to give on each torus F(x,, z,, ;) = const. the g-
paths, and finally we take tan f = F so as to secure continuous variation

of S.
Hamiltonian Systems

6. Differential equations of Hamiltonian form
(5) . oH ) oH
Z, = ’ r — — ’
T oy, Y oz,

are of outstanding interest because of their dynamical applications and
their beautiful formal properties. To provide a background for later sections
of this address I shall say a little about one of these properties.

There is a theorem of Liouville, that if m independent involutory *
integrals of (5) are known, then the remaining m integrals that are required
to complete the solution of the system can be found by quadrature. The
classical elementary dynamical problems, such as that of motion under two
fixed centres of gravitation, are in effect ‘soluble’ because such a primary
set of m integrals I = const. can be found in closed form; these F moreover
are regular single-valued functions, so the hypersurfaces F' = const. partition
the 2m-dimensional phase-space into regular m-dimensional regions, and
for any trajectory the w- and «-limit sets can at most fill one such region.
Now an arbitrary system (5) can be said to do its best to behave in this
same manner, as follows:

H=Hx,y), (r=1---,m)

* The set is involutory if for each pair the Poisson bracket (F,, F,), defined as in (6),
is zero.
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For a general theory we naturally try for developments in series, and
the simplest case in which we can expect to obtain something approaching
global validity from series is to use them for the neighbourhood of an equi-
librium point, say the origin. Then the development of H in powers of the
z,, y, starts with quadratic terms, and by a preliminary contact transfor-
mation these terms may in general be supposed of the form

Lhayth + -+ 2@ Ym-
The condition for F to be an integral is

oF oH JF 0

6 F, H) = ( ————— =0
©) E D =2\5 39 ~ o, s,

A power series F = z,y,+ - - - will satisfy this provided its constituent
homogeneous polynomials, T" say, of successive degrees satisfy equations
of the form :

oT oT
Ao~ ) = zam ey
2 Ar\2e o Y 3 (e y7r)
where the coefficients 4 have a complicated dependence on the terms of
lower degree; and the solution is a polynomial

Al (277 yy")
er(ar - br)

provided only that ‘critical’ terms, for which the denominator vanishes,
‘happen’ to have their coefficients A zero. If 1, - - -, 4,, are mutually in-
commensurable the only critical terms are those for which @, = b, for each
7, and their coefficients A are in fact zero, but the proof of this is not
trivial [6]. Hence if the series converge we have the desired set of integrals.
However, in the most interesting case where two at least of the 4, have a
real ratio the divisor on the right of (7) can for suitable a, b be arbitrarily
close to zero, and the convergence of the series remains doubtful; this is
an instance of the notorious ‘small divisor problem’.

In fact, there seems little doubt that the series are in general essentially
divergent, and that the solutions of general Hamiltonian systems have
pathological features which distinguish them sharply from the elementary
‘soluble’ systems [7]. An example will now be given, and the vital fact will
be that two functions which might, on analytical continuation, be identical
are not so; in other words, an infinite set of constants which might all be
zero are not so. The preceding fact about formal series-integrals shows that
the non-zero property must not blithely be assumed ‘on general grounds’,
but must be proved to the hilt.

7. Pendulum with forced oscillations. Consider a rigid rod 4 B, of length
3//2 capable of swinging in a vertical plane about a frictionaless pivot A.

(7) T=2X
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The pivot is forced by an external agency to oscillate in a vertical line, so
that its displacement s/ is a given periodic function of ¢, of period 27y, say.
The equations of motion in Hamiltonian form are

& =y -+ ssinz = 0H/dy,
(8) Y = n?sinx — ys cos x — 1$%sin 22 = — JH/ox,

H = 1y? 4+ n?cos x + ys sin x — %$% cos?
where n? = g/l, x is the inclination of AB to the upward vertical, and y
is proportional to the angular momentum of the pendulum about the moving
point A.

This system is converted into an autonomous one of the third order by
putting ¢ = uf, so that § is periodic in 6 with period 2z and mean value
zero, say f(f). Also if 2 is the mean value of s we put §2 = $2 4 2g(0),
where g(6) is periodic with mean value zero. Then the equivalent system is

6 = 1/u
(9) =y + f(0) sinz
¥y = n?sin x — §p%sin 2x — yf(0) cos x — g(0) sin 2z

I

I

and is equivalent to a 4th order Hamiltonian system since we can write
7 (14 3)
H
6 = EY 3 +
The solutions of (9) are appropriately represented by paths in a space
for which 2 and 6 are angular coordinates. For example we can take

exp (¢¥ cos z)cos 0, exp (e¥ cosz)sinf, e¥sinz

as rectangular coordinates; for y ~ — oo there is a limiting circle, which
is to be regarded as an improper path since by (9) |y| can have at most
exponential increase. The path through any point P of the half-plane
6 = 0 intersects this half-plane again (for § = 2n) at a point T(P), where
T indicates an analytic transformation of the half-plane into itself which
has a single-valued inverse T-1(P). Writing T(T(P)) = T%(P), etc., an
arbitrary arc « joining P to T(P) determines a set of arcs

- THa), &, T(a), T2(x), - -~

which abut so as to form an ‘invariant curve’; in general there will be angular
points where the arcs abut, but for suitable choice of « the arcs may join
regularly. The paths that cut such an invariant curve form a surface,and a
family of such surfaces corresponds to an integral of (9).

The essential fact that is to be demonstrated is that there are invariant
curves which are locally regular but globally pathological. The argument
will be most vivid if stated largely in physical terms, but its mathematical
translation presents no real difficulty.
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We take the case where the vertically upward position of the pendulum
is unstable, which will be so if 0 << %2 << #% and f(0), g(0) are sufficiently
small; this position is given by the periodic solution, or path, z = y = 0,
6 = t/u, which cuts the half-plane § = 0 at a point U, say. For the solutions
‘near this periodic solution there is a theory initiated by Poincaré [8] and
recently completed by Moser [9], who has shown that (9) has an integral
F = const. which is periodic in 6 and regular for ||, |y| sufficiently small.
To this corresponds a set of surfaces, and these are cut by the half-plane
6 =0 in a set of invariant curves which are topologically a family of
hyperbolas, for the neighbourhood of U, as in figure 2. The waviness in
these curves answers to the occurrence of f(8), g(8) in (9); but for the
following argument this is irrelevant.

M

N

-

\\
-~

-
-
-
Dl atal

Figure 2. Invariant curves in the half-plane 6 = 0, for neighbourhood of U

A chain of points T"(P) on the curve UK represents a motion in which
as { > 4+ oo the pendulum makes an asymptotic approach, from the left
side, to the unstable vertical position, and chains on UM represent similar
motions in which the approach is from the right side. Points on UL, UN
similarly represent motions falling away from the vertical as ¢ increases
from —oo. These four are called asymptotic curves. Chains of points in
the sectors above and below U represent motions in which the vertical is
overshot, from right to left or left to right, and the sectors to either side of
U similarly belong to motions in which the pendulum approaches the vertical
but falls back without attaining it. It is an important feature that the points
of a chain are the more tightly bunched in so far as they are the nearer
to U.

It has already been remarked that any invariant curve can be indefinitely
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continued, and it will now be shown that the continuations of the asymptotic
curves UK, UL are intersecting but not coincident. For this, take first the case
where the displacement s of 4 is an even function of ¢, with § practically
constant over each half-period, so that there are rapid tramnsitions between
its positive (ascending) and negative (descending) values. Then the angular
motion of the pendulum proceeds almost as though A were at rest, except
when A is jerked from its ascending to its descending phase or vice versa.
At a downward (upward) jerk there will be an upward (downward) in-
crement in the angular velocity*, proportional roughly to |sin z|.

Suppose first that the pendulum is swinging with angular velocity w
through its bottom position = =» when a jerk, either upwards or down-
wards, occurs, at ¢ = 0, say. Then the jerk is without effect on the angular
velocity, * — # is an odd function of #, and by an argument involving
continuity we can choose w = w, so that the top position is approached
as t > 4-o00. Hence the asymptotic curves intersect.

Now suppose that s = 0, with § positive, when the pendulum is swinging
with angular velocity w, through x = & to the left; this is at an instant
midway between two jerks, of which the first is upwards, and the second
downwards. At the first jerk the pendulum was to the right and swinging
down, and the jerk increased its clockwise angular velocity, while at the
second jerk the pendulum will be to the left and swinging up, and its
clockwise angular velocity will be again increased. From the asymmetry it
is almost clear that the downward motion must have originated from a
position, short of the upward vertical, where & = 0, and that the upward
motion must overshoot the vertical. This is indeed quite clear when the
period 2mu is such that z is about 3z and 3x at the respective jerks (so
that they give the maximum effect), and the jerks are fairly violent.
Moreover, a motion which originated from z = 0 at { = — o0, and reaches
x = n midway between the upward and downward jerks, will there have
® > w,, and a fortiori the subsequent ascent will overshoot the vertical.
Hence there ave points on one asymptotic curve which are not on the other,
and this proves our assertion under the assumed restrictions on the function
s and the period 2mu. An argument resting on analyticity shows finally
that for gemeral values of u and general even functions s(t) the asymptotic
curves UK, UL intersect but are not coincident. (By further argument the
restriction that s(¢f) be even can be removed.)

Let P be one such intersection. Since to a single motion corresponds
the complete chain of points T"(P), the asymptotic curves must intersect
at each point of this chain, so the intersections accumulate at U on each of
the curves.

* There is however, no sudden increment in the angular momentum variable y.
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Now let « be an arc of the continuation of UL which cuts UK near U.
The character of the transformation T for the neighbourhood of U is known,
and the arcs T(«x), T?(«), - - - are then determinate, as in the figure*, in
so far as they lie in this neighbourhood. It is seen that the set of arcs T"(«)
has every point of UL and UN within the neighbourhood as a limit point;
and by a continuity-argument the restriction to the neighbourhood can be
removed. Hence the asymptotic curves, globally considered, are pathological.

This conclusion can be presented as an analytical theorem. The family
of invariant curves was initially defined via an integral -F = const. of (9)
regular near the periodic solution z = y = 0, 8 = ¢/u (where we can take
F = 0 on this solution), and the theorem is that the function F(z, y, 0)
has continuations along its level surface F = 0 which are essentially singular
at all points of this surface. This conclusion extends to any integral F; =
const. which is locally regular near the periodic solution, for by considering
as in the preceding paragraph the march of chains of arcs T*(«) it is seen
that F; can be locally regular only if F, is constant on the surface F = 0.

The pathology of this example can be further pursued, but I forego
this in order to call attention to a physical paradox. When y is small the
oscillations of the pivot A are rapid, and we can plausibly approximate
to the solution of (8) by replacing § and §? by their mean values, i.e. by
putting f =g = 0 in (9); a strict solution would be obtained from an
approximate solution by superposing a small tremor. On this approximation
the upward vertical position « = 0 of the pendulum is stable if 2 > 72,
i.e. if the mean speed of the oscillation is sufficiently rapid; and this can be
verified by physical experiment. Moreover a given mean speed can be
attained for an oscillation of arbitrarily small amplitude, provided the period
is small enough, so the stabilization can be achieved by means of invisible
oscillations! [10].

On investigating higher approximations for the case u ~ 0 it is found that
(9) has a formal integral

1y? + n2cos & — }p%cos 2x + uF, + uF, + - - - = const.,

where F,, F,,--- are polynomials in y whose coefficients are periodic in
z and 6, e.g.

F, = (y?cos x 4 n?sin%x — {p? sin « sin 2z)f,(0) + }y sin 2z g, (6)
. .+ Asin x sin 2z,

where f,, g, are those periodic integrals of f, g whose mean values are zero
and 2 is the mean value of }(f,g — fg,). The preceding pathological result
shows that the series cannot converge uniformly, for any range of x, all

* They are the parts of the thin-line curve near P, T(P), T*(P),---.
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real z, 6 and |y] < 2m, say, and it is likely that the series is essentially
divergent.

8. Transittivity. It was remarked in § 6 that, for the classical ‘soluble’
Hamiltonian systems of order 2m, the w- or a-limit set of any trajectory
is at most of dimension m. In Statistical Mechanics, systems for which m
is enormously large are considered, which naturally cannot be explicitly
solved and for which indeed the only known global integral is that of
energy. It was seen by Maxwell and Boltzmann that a fundamental hypothesis
of this subject would be effectively proved if a ‘general’ trajectory was
everywhere dense on the appropriate energy-hypersurface, so that its w-
and «-limit sets were of dimension 2m — 1. Birkhoff has called such a
trajectory, and Hamiltonian systems possessing such trajectories, ‘tran-
sitive’; other authors, e.g. Artin [11], following Boltzmann, have used the
name ‘quasi-ergodic’*.

I believe that the only Hamiltonian systems that have been proved to
be transitive are those that specify the geodesics on certain closed surfaces
of negative curvature, and related systems that are only piecewise analytic;
such surfaces are not of physical interest since they cannot be imbedded in
Euclidean 3-space. The first such example was given by Artin [11] and
starts from the well known modular figure in which the half-plane y > 0
is divided into an infinite set of triangular cells by semi-circles. This figure
is invariant under the transformations of the modular group, and the
‘closed surface’ arises by identifying all the ‘congruent’ points, viz. points
of any set that is invariant under this group. The geodesics are then defined
via the Poincaré metric ds = do/y, where do is Euclidean arc-length;
they are semi-circles orthogonal to y = 0. _

A transitive geodesic is one that, in its representation on the closed sur-
face, is not merely everywhere dense, but traverses an arbitrary neigh-
bourhood of each point of the surface, on different occasions, in directions
that are dense in the set of all directions; it is the proviso about directions
which makes the corresponding path in the phase-space everywhere dense
on a 3-dimensional region, in contrast to the 2-dimensional density of
unclosed geodesics on a torus. The translation of this into a property of the
modular figure is easy, but there seems to be no way of making the property
‘evident’. A hint is however provided by the remark that the geodesic semi-
circle will be required to traverse an infinity of the triangular cells near
y = 0, and that in this neighbourhood the semi-circle is (in the Euclidean
sense) almost straight but the cells show gross departure from similarity.

* It is therefore misleading that Birkhoff and von Neumann used the name ‘ergodic
theorem’ for what is not a proof that Hamiltonian systems in general have the quasi-ergodic
property. The root trouble is perhaps that Boltzmann used ‘ergodic’ in two different, but
related, senses; see P. and T. Ehrenfest, Encycl. Math. Wiss. IV 32, §§ 10a, b.
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There is a modification in which, in the plane, only one cell is considered
and a geodesic is continued through it as a succession of arcs by reflection
at the boundaries of the cell. This cell can be represented, with Euclidean
metric, on a pseudosphere, and the conclusion is that ‘the hyperbolic billiard
table permits transitive shots’.

In these examples it is far from the case that every geodesic is transitive.
We have, rather, a complicated and intimate mixture of geodesics of many
different sorts, both recurrent and asymptotic, amongst which for example
the set of periodic geodesics is everywhere dense.

Conclusion

9. In recent years there has been a considerable resurgence or work
on differential equations, mainly directed towards non-linear oscillations.
For example there is van der Pol’s equation with forcing term,

(10) & — k(1 — 22)& + x = bkA cos A,

whose feature is that it is dissipative for || > 1 but ‘explosive’ for |z| < 1.
If a dissipative system is subject to an external periodically varying force
we may expect that, independently of the initial conditions, its motion will
settle down to some stable oscillation, represented in the phase-space by
a limit cycle (cf. § 3); and a good deal of the modern work has been devoted
to investigating such conjectures and to methods for approximating to
limit cycles. For equations like (10) the matter is haturally more com-
plicated; we may expect that in an ultimate motion there will be a rough
balance between the dissipative and explosive tendencies, and typical
investigations rest upon the piecing together of approximations — buttressed
by error-estimates — for motions under the two regimes. There is an extreme
and characteristically written example of this by Littlewood [12], and general
accounts of the subject are readily accessible [3].

On two of the classical problems there has recently been progress.
(i) For the differential equations

(11) g =Ax,+ =X, (r=1,---,n)

where - - - - indicates a power series in the ¥ commencing with quadratic
terms, we can seek for the general solution near the origin in the form
(12) z, = a,edt + P,,

where on the right we have power series in a, e, - - - o, ersf, the « being

arbitrary constants. It is easily found that to obtain the term in I7(x,e?r*)?r
in the series for z, a division by

(13) ?111 +oee 4+ pn}"n - )'a
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is involved; the series is hence-encumbered by ‘small divisors’ if the ratio
of two of the 4 is real negative, but is formally valid provided the A are
incommensurable. Now it is well known that the possible smallness of
p — qu (where u is a positive irrational and p, ¢ positive integers) for a
given large ¢ depends on the arithmetical character of u4; there are transcen-
dentals ¢ and associated sequences (p, ¢) such that p — gu tends to zero
as fast as we please; but for almost all irrational u, [p — gu| exceeds Ag—,
for some constant 4 and ». It is therefore plausible that the convergence
properties of the series (12) may be decisively affected by the arithmetical
character of the ratios of the 4 when these are real negative. In 1904 Dulac
[13] showed that the series could be essentially divergent in the transcen-
dental case, and recently Siegel by a tour de force [14] has shown that they
are ‘in general’ convergent when the |«,.e?| are sufficiently small.

(ii) When the system (11) is Hamiltonian, with » = 2m, the condition
that the 4 be incommensurable is never satisfied since they fall into the pairs
4+ 4, + 4,; but if 4;,---4,, are incommensurable there is a formal
solution resembling (12), in which the coefficients A in the exponents are
replaced by series involving the integration-constants «. The small-divisor
problem here regarding convergence appears to be less tractable than that
treated by Siegel, and even the case where all the ratios of the A are unreal,
so that the divisors are not ‘small’, was outstanding until a recent publication
by Moser [15].

10. If in (11) the A are not incommensurable, the attempt to solve in
the form (12) will-generally fail through the vanishing of one of the divisors
(13), and instead of a pure-exponential term in the series we get a ‘secular
term’ carrying ¢ as a factor. The greater formal complication of this case
has led to its receiving less attention, but I believe that here we may in
fact have something of a heel of Achilles. The following are two indications.

(i) There is both an analogy and a connection between differential
equations and iteration equations such as

Zppr = [(2n) = p2z, + a2 + - - -,

whose ‘solution’ involves the effective determination of the sequences (z,)
of complex numbers defined by given z,. The formal solution of this near
the origin is made by series in the argument z,u™ which involve divisors of
the form u? — 1, for p =1, 2, 3, - - -; these divisors are ‘small’ if |u| = 1,
with (2r7)~1log 4 = A irrational, while if 4 is rational the formal solution
fails. However, when A is rational the solution is easily found by other means [16].

(ii) We know that formal series solutions can be essentially divergent,
and it is a challenging problem then to find an interpretation for them. Are
they asymptotic expansions, in some sense, of analytic or perhaps patho-
logical functions? I believe that this question will not be properly answered
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unless we allow all the variables concerned to range over complex values.
Here is an elementary example: In § 6 I have mentioned formal integrals
of Hamiltonian systems (5) in the case where the A are incommensurable.
Regarding the commensurable case there is complete formal knowledge in

the case m = 2: there does exist a series-integral G independent of H (171
For example, if

H =,y — Z93(1 — 2 25) — b“’::
then

4 4-5
G = xlxgyz + bxlxg (1 + -3" x1x2 + ——3——2—x§x2 + .. .).

The series (- - -) is essentially divergent, but it is the asymptotic expansion of

-0
3 ——2 €XP (—— —3——)] t2ed/tds,
xl .’132 xl xz xy &y

valid for |arg (—x,2,)| < 3xn/2; and when G is modified by so replacing the
series it is actually an integral. It would be rash to assert that this example
is typical, but I would lay a large stake against anyone finding an equally
non-typical example of interpretation of a divergent small-divisor series.
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