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1. Introduction
When a function/(x) possesses an asymptotic series

S(x): ao + a1x~1+a2x~2 + a3x~3 + ...,

this series provides a useful means of evaluating f{x) for large values of x.
The usual procedure is to sum all the terms in S{x) up to, but excluding, the
term of smallest magnitude. The degree of accuracy obtained by this method
cannot normally be improved by direct summation of S(x), but sometimes
better accuracy can be obtained by using one of the familiar devices for acceler-
ating the convergence of series. Simple <5 ̂ extrapolation may be successful,
and Rosser (1) and others have used the Euler transformation to some effect.
The method given here provides, in suitable cases, a more effective means of
evaluating/(x) from the series for a wide range of values of x.

It will be assumed that the a/s are real and that x is real and positive. It
will also be assumed that, although S(x) diverges for all finite x, the series

+ ^ + + ( 1 )

where z is a complex variable, converges in a non-vanishing region for sufficiently
large m. If the series sm(z) converges for | z | < p, where p > 0 and m is an integer,
but the series jm_t(z) diverges for all non-zero z, the series S(x) will be said
to be of Type (m). Most series which arise in common practice are of Type (1)
or Type (2). Series of Type (1) are considered first; the method is then extended
to Type (2) series, and the subsequent generalisation is obvious.

2. The Borel sum
A fundamental difficulty in handling asymptotic series is that the series S(x)

does not define/(JC) uniquely; before proceeding to sum S(x) it is necessary
to decide which sum is required. In almost all practical situations in which
asymptotic series arise, the required sum is the Borel sum, as defined below.

For a Type (1) series, the series sx(z) given by (1) defines an analytic function
<f>{z) for | z \<p. If $(z) has an analytic continuation along the positive real
axis, the Borel sum B(x) of S(x) is defined by

- J "
Jo

JB(x)= e-'4>(tlx)dt, (2)
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provided, of course, that the integral exists. It will be assumed henceforth that
the Borel sum is the sum required, i.e. that B(x) is identical with/(;c). Now for
any real c> — 1, it can be seen that

r(c+i)J0
 e Jo

~r(c+i)J0
 e (Jo vx v]

where T = t+u and v = t/T. On integrating by parts and replacing T by t,
this gives

r(c+i)j0
r f ( 3 )

r (c+i ) j 0

where
flz; c)= f1 {zv(j>'(zv)+(c+l)<Kzv)}(l-vydu. (4)

Jo
For | z | <p,

r^o rr(c+r+l)

= a n +
 Q1Z

(c

the interchange of order of summation and integration being justified by virtue
of the uniform convergence of the series for 0 ^ v ^ 1.

It will be noted, of course, that if the function (j>(z; c) is replaced by the
series (5), the integral on the right-hand side of (3) may be integrated formally
to give the original asymptotic series. The expression (3) may be regarded as
a more general form of the Borel sum (2), to which it reduces when c = 0.

3. Use of the /[-transformation
The problem of summing S(x) is now reduced to that of evaluating the

integral on the right-hand side of (3), with an appropriate value of c. As the
series (5) defines $(z; c) only for | z \ <p, it is first necessary to find a represent-
ation of <l>(z; c) on the positive real axis; in the treatment which follows, this
is obtained by using the ^-transformation, described elsewhere by the present
author (2).

The A-transform of the series (5) is the series

(6)
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where b0 = a0,

b,= £ , r > i
(c+l)(c + 2)...(c+r)Ar -

and A is the usual forward difference operator. Wherever this series converges
its sum is equal to <f>{z; c), and for the present purpose it is necessary to find a
value of A so that the series converges for all positive real z. Reference to (2)
will show that this is possible if all the singularities of <f>(z; c) lie in the region
Rez ^ k, where fc<0. It will be assumed that this is the case, as in fact it
is for many asymptotic series which arise in practice. (One qualification to this
last remark is necessary: for a number of familiar series which contain even or
odd terms only, some singularities lie on the axis Re z = 0. In such cases it is
merely necessary to replace x by JC*, SO that these singularities are transferred
to the negative real axis.) The appropriate value of A will always be real and
negative.

Use of the A-transformation gives

B(x) = - ~ - e-<t< £ 77^^—l A'bodt. (7)
r(C+l)J0 r = 0 (1 — Mjx)

Assuming, for the moment, that the order of integration and summation can be
interchanged,

00

B(x) = ^ Kr(—x/X, c)( — l)rArb0, (8)
>• = o

where r
Uo

Kr(u, c) = — - — e~' —- dt
r(C+l)J ( + 0r+I

and u — —x/L The series (8) will be called the (A, c)-transform of S(x). It is
shown below that Kr(u, c) is easily evaluated numerically (in fact it is related to
the confluent hypergeometric function, though this is of no concern here) so that
the transformation provides a convenient method of summing S(x).

The question of interchanging the order of integration and summation in
(7) requires further comment. It is possible that in some circumstances the
series may converge, but not converge uniformly, so that the interchange is not
justified; indeed in such circumstances it is possible that the series (8) may not
converge. It can be shown, however, (though the analysis is too cumbersome
to reproduce here) that the interchange is justified if constants a, p can be found
so that

| Arb0 | <ar" (9)
for all r. It could possibly be justified under less stringent conditions, but in
practice Arb0 is usually of approximately constant magnitude, so that the con-
dition (9) will suffice.

The particular case of the (A, ̂ -transformation in which A = 1 and c = 0
has been discussed elsewhere, initially by Ser (3, 4, 5) and subsequently by
van Wijngaarden (6). Both authors make use of tabulated values of Kr(u, 0),
a suitable table being given in (5).
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4. Calculation of Kr(u, c)
Let

so that

It is easily seen that

tc+r

U0(u, c) = 1,
Ur(u, c)-*0 as r-*co

and
tfr_i(«, c)-(2r+c+M)f/r(«> c)+r^r+1(«, c) = 0, r £ 1. (10)

An obvious procedure for calculating Ur(u, c) is to evaluate U^u, c) by quad-
rature and then use (10) to obtain U2(u, c), U3(u, c), .... This is not, however,
a satisfactory numerical process. The difference equation (10) has two indepen-
dent solutions which, for large r, are approximately proportional to

r*+*cexp[±2(ur)±],

the required solution having the negative sign in the exponential. If tabulation
is commenced from U0(u, c), Ut{u, c), numerical perturbations caused by
rounding errors, etc., introduce a multiple of the alternative solution, and since
the latter diverges rapidly it ultimately swamps the required solution. If,
however, tabulation is carried out in the reverse direction, no such trouble
arises since the unwanted solution then dies out. One therefore tabulates the
sequence {Pr} defined by

Pn+i = 1,

Pr-i = — l(2r + c + u)Pr-rPr+1-], r = n, n-1, ..., 2,1,
c + r

in which Pn is chosen so as to be approximately equal to Un(u, c)/Un+i(u, c)
when n is large.

Then, for sufficiently large n, Ur(u, c) =£= Pr/Po>

Po
The approximation is quite good even for small values of n, as is shown in the
example below.

5. Numerical example (i)
Consider the series

c, x 1 1 , 1•3 1 . 3 . 5 ,S(x): 1 - - + — - —T— +...
x x x
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which represents the function

f(x)= |2±)V x erfc |

321

If A = —2 and c = — £, then br = 1 for all r, and consequently the (—2, — i)-
transform of S(x) terminates after only one term; its sum is simply K0(£x, — i).
(In a simple example such as this, it is easy to show that/(x) = K0{\x, —\)
without recourse to asymptotic series.) The values obtained for / ( I ) and/(5)
using the procedure described in the previous section with n = 1, 2, ..., 10
are shown in Table 1; the correct values are shown at the foot of each column.
The power of the method will be appreciated if one compares the values obtained
for f(x) with those which could be obtained by direct summation of S{x).

TABLE 1

n

1
2
3
4
5
6
7
8
9
10

x = l

0-652
0-6549
0-65541
0-655575
0-655633
0-655657
0-655668
0-655673
0-655676
0-655678

0-655680

x = S

0-86577
0-86541,2
0-86539,456
0-86539,2725
0-86539,2629
0-86539,25951
0-86539,25885
0-86539,25870
0-86539,25866
0-86539,25866

0-86539,25866

It is evident that X and c can be chosen so as to make the transformed series
terminate whenever ar is of the form

( - iya(a+h)(a+2h)...(a+lr- l]A)fc^?(r),

where a, h, k are positive and p(r) is any polynomial in r. It might be argued
that in such cases one is not really summing the asymptotic series but merely
rewriting/(x) as the sum of a finite number of terms which can be evaluated
numerically. Certainly the real value of the present method arises when/(x)
cannot be put into a form which is readily calculable, but a numerical example
in which the transformed series does not terminate will be delayed until Type (2)
series have been considered.

6. Extension to Type (2) series
If S(x) is of Type (2), the series s2(z) defines an analytic function

the Borel sum of S(x) may be defined as
), and

e-'e-T<t>(tT/x)dtdT.n
o JoE.M.S.—U
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As before, it can be shown that if c> — 1, d> — 1

' ; c, d)dtdT,
)r(d+i)j0 j 0r (c+ i ) r (d+i )

where <j>(z; c, d) is the analytic function defined by the series

a , <*i2 ,
0 ( + l)(d+l)

On applying the /l-transformation, this gives

B(x)= f) Kr(-x/k, c, d)(-l)rArb0, (11)

where b0 = a0,

br = ^ r, r ^ 1

a n d ,. foo foo tc + rrpd + r

Kr(u, c, d) = e-'e-T -——- dtdT,
A r(c+i)r(d+i)J0 Jo (u+tr)r+1

with u = —x/X.

If
1 P 00 f 00 *C + T'T'd + T

I7r(u, c, d) = =: e~'e~T-— dtdT,
r(c+i)r(d+i)J0 Jo (u+tTy

t h e n K&u, c,d)= U,(u, c,d)-Ur+M c, d)
and it can be shown that
{c+r){d+r)Ur.x(u, c, d)~l3r2 + (2c+2d+l)r+cd+ii]Ur(u, c, d)

+[3r2+(c+d+2)rlUr+1(u, c, d)-r{r+ l)Ur+2(u, c,d) = O, r ^ 1.

Further, for large r, Ur(u, c, d) is approximately proportional to
r*<c+d+1>exp[-3(ur)*].

If, therefore, the sequence {Pr} is defined by

Kc+d + l)

P« = ( - ^ T ) exp

Kc+d+i)

»*

2u*

•r+2k r = / i - l , n-2,..., 2,1,
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then, for sufficiently large n,

The series (11) will be called the (A, c, d)-transform of S(x), and it is clear that
this transformed series provides a convenient method of evaluating f(x).

7. Choice of parameters
In some cases—as in the numerical example already considered—it is possible

to choose values of the parameters A, c, d so that the transformed series termin-
ates. When this is not possible, it is desirable to have some means of choosing
the parameters so that the transformed series converges rapidly. Unfortunately
it is not possible to give very precise criteria for this choice, but the ideas outlined
below may serve as a general guide. The effectiveness of the method is not
seriously impaired if values differing appreciably from the best values are used,
so that the choice is not crucial.

The method of choosing A so that the series (6) has minimum " convergence
ratio " is described fully in (2). If $(z; c) or $(z; c, d) is regular at infinity,
the convergence ratio of the series (8) or (11) is the same as the limit of the
convergence ratio of (6) as z-*oo. The value of A should therefore be chosen
so as to give optimum convergence of (6) at infinity.

More usually, however, <t>(z; c) or <j>(z; c, d) has a singularity at infinity,
and further singularities at, say, the set of points

{-as + /j?s,a5>0, ps^O,s= 1,2,3,...}.
In these circumstances the convergence ratio of (8) or (11) is equal to unity
for any value of A. The series (6) is used, however, only with positive real
values of z, and it can be shown that the value

A= -
2 min (<xs)

5

gives optimum convergence of (6) for sufficiently large positive real z (and
indeed for all positive real z if as ^ fis for all s). This value of A, which is inde-
pendent of the choice of c and d, is therefore recommended, though it is not
easy to see how it could be rigorously justified.

The choice of c and d is even more a matter of conjecture. It appears
empirically that best results are obtained if these parameters are chosen so that
the ratios {br+l/br} are approximately constant.

8. Numerical example (ii)
Consider the series

~, , < 9 _j 3675 _2 2401245 _3 ,
S(x): 1 x 1-\ x z x 3 + . . .

128 32768 4194304
a = ( - D r [ l - 3 . 5 - ( 4 r - l ) ] 2

26r(2r)!
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This series represents the function

fix) = Q cos (**-*«) + Y0(x±) sin (x*-**)].

The discussion of the preceding section indicates that A should be taken as —\,
and a little trial and error shows that the ratios br+llbr can be made very nearly
constant by taking c = d = —0-7382. The evaluation of / ( I ) is set out in
Table 2; S, is the sum of the first (r+1) terms of the transformed series. The

TABLE 2

r

0
1
2
3
4
5
6
7
8
9
10

1000000
2051744
4110996
8-204230
16-362678
32-634789
65100225
129-888376
259-202916
517-348378
1032-740912

A7>0

1000000
1051744
1007507
1026475
1004758
1012459
1-001537
1002982
0-998541
0-995910
0-995836

K,

0-976667
0017729
0003369
0001120
0000483
0000243
0000135
0000081
0000051
0000033
0000023

0-976667
0-958021
0-961415
0-960265
0-960751
0-960505
0-960640
0-960559
0-960610
0-960576
0-960599

S2-extrapolate

0-960892
0-960556
0-960606
0-960587
0-960592
0-960589
0-960590
0-960590
0-960590

convergence can be improved slightly by using ^-extrapolation, the results
being shown in the final column; the last three entries in this column give
/ ( I ) correct to six decimal places. Perhaps more remarkable is that the first
three terms in S{x) suffice to give/(I) with an error of only 0-0003.

REFERENCES

(1) J. B. ROSSER, Transformations to speed the convergence of series. J. Res. Nat.
Bur. Stand. 46 (1951), 56.

(2) R. E. SCRATON, A note on the summation of divergent power series, Proc.
Cambridge Philos. Soc. 66 (1969), 109.

(3) J. SER, Sur la valeur numerique des integrales employees dans la sommation
exponentielle, Bull. Sci. Math. (2) 60 (1936), 199.

(4) J. SER, Quelques applications des polynomes de Laguerre, Bull. Sci. Math. (2)
61 (1937), 74.

(5) J. SER, Formules et tables pour le calcul numerique de certaines series diver-
gentes. Bull. Math. Sci., (2) 62 (1938), 171.

(6) A. VAN WIJNGAARDEN, A transformation of formal series, Proc. Kon. Ned. Ak.
v. Wet., Ser. A, 56 (1953), 522.

UNIVERSITY OF BRADFORD

BRADFORD 7

YORKS

https://doi.org/10.1017/S0013091500012980 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012980

