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Abstract
Bernoulli pads can create a significant normal force on an object without contact. The radial outflow which creates
this force also imposes a significant shear force on the object. Better understanding this shear force can improve
pad designs in order to mitigate material deformation and damage, or allow the pads to be used as shear-based
cleaning implements. Here, we use computational fluid dynamics to explore the parameter space and show a
power-law relationship between the fluid power at the pad inlet and the maximum shear stress. These simulations
are validated by a particle tracking velocimetry experiment. A relationship between the maximum shear stress
and the inlet Reynolds number is provided, and some implications of the observed scaling relationships are
explored.

Impact Statement
Organisms responsible for biofouling increase ship drag, and thereby increase the fuel consumption and reduce
the top speed. Invasive species can also travel on ship hulls, which can profoundly affect the ecosystems to
which they are introduced. Hull fouling can be mitigated by the careful selection of surface treatments and
maintenance protocols. A contactless device which can be used to reduce biofouling while reducing damage
to surface coatings is the Bernoulli pad, which cleans hulls using wall shear. This mechanism is consistent
with the working mechanism of slime-release surface coatings. Here, we use data from a large number
of simulations to show that the peak shear force created by these devices has a dimensionless power-law
relationship with the fluid power delivered to the inlet of the pad and the equilibrium distance between the
pad and the hull. This prescriptive model can be used to determine the geometry and operating characteristics
of a pad which will be required to produce a given level of wall shear, and thereby dislodge a given tenacity
of biofouling agent.

1. Introduction

Bernoulli pads or Bernoulli grippers are used widely to grip objects or surfaces without physically
contacting them. In its simplest implementation, this device consists of an axial jet surrounded by a
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Figure 1. A Bernoulli pad showing the inlet and outlet flow parameters.

surface which is parallel to the exit of the jet – see figure 1. Other implementations exist, which use
a simple (Brun & Melkote, 2009) or complex (Wagner, Chen, Nayyerloo, Wang, & Chase, 2008) cen-
tre body to redirect the axial flow as it exits the jet. Because of their ability to manipulate delicate
parts in a clean environment, Bernoulli pads and similar technologies (Paivanas & Hassan, 1981) see
widespread use in the semiconductor industry, and a rich patent literature focused on this application has
also been developed (Frey, 1999; Logue, 1970; McIlwraith & Christie, 2003). Because these devices
are able to exert force to grip soft and pliable workpieces, they have also been explored in medical
(Ertürk & Erzincanlı, 2020), apparel (Fantoni et al., 2014) and meat processing (Misimi et al., 2016)
applications. The direction and magnitude of the normal force produced by the pad depends on the
distance between the pad and the opposite surface. In the limit where the pad contacts the surface, the
repulsive force is equal to the product of the jet’s area and feed pressure, whereas at very large distances,
the repulsive force scales with the jet momentum. An attractive force is produced at some intermediate
distance, which can be understood, with an important caveat, in the context of the Bernoulli equation.
By combining the Bernoulli equation with mass conservation, we find an expression for the local
pressure

p(r) = p(0) −
𝜌

2

(
πd2uin

8πhr

)
, (1.1)

for the geometry in figure 1. In figure 1 and (1.1), 𝜌 denotes the fluid density, uin denotes the inlet flow
velocity, r denotes the radial direction, h is the gap height and d is the inlet diameter of the pad. For
small values of the product hr, a net negative gage pressure results, which can produce a net attractive
force integrated over the pad area. Because the force is repulsive in the limits of large and small h
and attractive for intermediate values, the system has two equilibrium points, one stable and the other
unstable (Kamensky, Hellum, & Mukherjee, 2019; Li & Kagawa, 2014). Assuming a sufficient flow
rate for the applied force, the system will operate at its stable equilibrium height heq, which dictates the
distance between the pad and the opposing surface. This height is important in a variety of applications
(Olsson & Williams, 1969; Wagner et al., 2008), and also is linked to the amount of fluid power required
to operate the device (Kamensky et al., 2019).

Kamensky et al. (2019) produced a scaling relationship between operating power and equilibrium
height, the derivation of which indicates that work added to the system is primarily required to overcome
shear at the wall. This wall shear is the reason that the inviscid analysis in (1.1) is not fully correct (Wark
& Foss, 1984). For most applications, the wall shear is a by-product of the normal force that supports
the workpiece. Although the effect of the pressure distribution on delicate (Brun & Melkote, 2009)
and flexible (Dini, Fantoni, & Failli, 2009) workpieces has been examined, shear is less well studied.
Typically, deformation or destruction of the opposing surface due to shear forces is not a substantial
concern, because the maximum normal stresses are much larger.

The present work is motivated by a grooming application in which a Bernoulli pad is moved around
the submerged hull of a marine vessel to remove biofouling. In this application, the pad keeps itself
close to the surface of the vessel using the attractive normal forces generated, and simultaneously uses
the wall-shear forces for biofouling mitigation (Kamensky, Hellum, Mukherjee, Naik, & Moisander,
2020). This method of cleaning is consistent with the operation of commercially available fouling-
release coatings (Hu, Xie, Ma, & Zhang, 2020), which use boundary-layer shear while the vessel is
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underway to slough fouling organisms. Biofouling colonization on a ship’s hull is most problematic
in port, where these forces are not present. For the grooming device to keep the vessel clean, it is
necessary for the local shear stress imposed at the hull to be large enough to dislodge fouling organisms,
a value which depends on the organism and settling time (Menesses, Belden, Dickenson, & Bird,
2017). The maximum shear stress created by the flow field is therefore a parameter of interest for this
application.

In this work, we simulate a large number of Bernoulli pad geometries, using water as the working
fluid. The methods used in these simulations are validated by a particle tracking velocimetry (PTV)
experiment performed for one of the geometries. These simulations indicate that the maximum shear
stress increases as the equilibrium height decreases, and as the inlet fluid power increases. We also
present a dimensionless power-law model for the inlet fluid power, based on the maximum shear stress
and equilibrium height. These data also indicate a power-law relationship between the maximum shear
stress and the inlet Reynolds number. The empirical form found for the relationship between maximum
shear stress and inlet power also indicates a relationship between the inlet Reynolds number and the
length scale which characterizes the dissipation of power by wall shear.

2. Methodology

2.1. Computational domain

The Bernoulli pad is axially symmetric and therefore the fluid dynamics is investigated using a two-
dimensional axisymmetric computational model; this significantly reduces the computational time. The
computational domain is defined by the inner diameter d, outer diameter D and gap height h – see
figure 1. An axial flow is provided at the inlet; assuming incompressibility, the flow parameters include
the inlet velocity uin, the inlet pressure pin and fluid density 𝜌. After impinging the wall, the fluid flows
radially outward through the gap; the pressure at the outlet is atmospheric, patm. The surface roughnesses
of the pad and the wall are 𝜀p and 𝜀w, respectively, and no-slip boundary conditions are imposed on both
surfaces. Following the work by Kamensky et al. (2019), a four equation-based transition-shear stress
transport model is used for turbulence modelling. As discussed therein, there exists a stable equilibrium
gap height heq, where the net normal force on the wall is zero. In this study, the same model is used
to determine the inlet velocities that correspond to different configurations of stable equilibrium gap,
heq. It should be noted that, although heq is an imposed condition for the CFD model, in a physical
system heq is the result of the imposed flow conditions and pad geometry. In this study, we investigate
the relationship between inlet fluid power and maximum wall-shear stress at heq.

2.2. Validation with PTV

The CFD simulations were carried out using an element size of 6 × 10−5 m; this resulted in 61 302
elements and a maximum y+ value of 7.5. A smaller element size of 5 × 10−5 m resulted in 75 315
elements but the percentage change in the maximum wall normal and maximum wall-shear stresses
(0.11 % and 0.87 %, respectively) did not justify the additional computational cost. To gain confidence
in our CFD results, we compare them with experimental results obtained using three-dimensional PTV.
The details of the experimental set-up can be found in Kamensky (2020). The PTV data are used
to determine the ensemble averaged velocity on an r–z plane of the flow domain (refer to figure 1)
and is compared with CFD results in figure 2 for z = h/2: the radial velocity was non-dimensional-
ized with respect to its maximum value umax and the radial position was non-dimensionalized with
respect to the outer radius of the pad. There is a good agreement between the velocity profiles obtained
using CFD simulations and PTV experiments; the location of the maximum peak is also observed
at the same value of r (r = 16.62 mm), which is very near to the entrance of the fluid in the radial
direction (r = d/2 = 15.875 mm). This provides us with confidence to proceed with analysis of
CFD data.
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Figure 2. Comparison of PTV and computational fluid dynamics (CFD) data: plot of non-dimensional
radial velocity at z = h/2 with respect to non-dimensional radial position.

2.3. The CFD data

The nominal parameter values used for the CFD simulations are

d = 31.75 mm, D = 200 mm, heq = 1.5 mm, 𝜀p = 𝜀w = 0.04 mm. (2.1a–d)

A total of 45 design points were generated using three values of d (0.5, 0.707 and 1 times the nominal
value), five different values of D (0.5, 0.707, 1, 1.414 and 2 times the nominal value) and three different
values of heq = {1.4, 1.5, 1.6} mm. The values of 𝜀p and 𝜀w used are consistent with the surface
roughness of structural steel. A brief discussion of hydraulic roughness can be found in the Discussion
section.

The inlet fluid power �Win, defined in Kamensky et al. (2019) as

�Win = 2π

∫ d/2

0

[
1
2
𝜌[U(r)]2 + p(r)

]
U(r)r dr, (2.2)

and the maximum shear stress on the wall 𝜏w,max are obtained for all these design points; they are plotted
in figure 3 in log–log scale. The 45 data points are grouped into nine sets of five points. Each set of
five points are joined by straight line segments and correspond to the five different values of D for
specific values of d and heq; the direction in which D increases is shown in the figure. The data points
shown with ∗, ◦ and � symbols correspond to specific values of heq, shown in the figure. For clarity, a
magnified image of a portion of the plot is shown in the inset; the top three lines (dashed) correspond
to d = 31.75 mm, the middle three lines (solid) correspond to d = 31.75 × 0.707 = 22.44 mm and the
bottom three lines (dotted) correspond to d = 31.75× 0.5 = 15.875 mm. It is evident that the maximum
wall-shear stress varies linearly with the inlet fluid power for given values of d and heq; furthermore, as
expected, the maximum wall shear stress increases as heq decreases for the same level of inlet power.

The region of peak shear inside the pad is also the region of lowest pressure. If the flow rate is
high enough, this pressure could potentially reach the vapour pressure of the working liquid, inducing
cavitation. If cavitation were to occur, the wall-shear stress would likely reduce dramatically in the
presence of vapour bubbles, reducing the cleaning performance of the Bernoulli pad. Also, cavitation
could have a potentially damaging effect on the surface. Hence, its presence is undesirable. To avoid
cavitation, the flow rates considered are such that the lowest pressure inside the pad does not go below
the vapour pressure of water at room temperature.
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Figure 3. Plot of inlet fluid power versus maximum wall-shear stress.

3. Analysis

In a physical system like the one considered in this study, the gap between the pad and wall is not imposed.
Rather, the system reaches the equilibrium gap heq as the result of the imposed pad geometry (inner and
outer diameters d and D, respectively), and inlet flow conditions (inlet velocity uin, characteristic length
d and fluid physical properties). Also, as a result of those imposed conditions, the flow will exhibit a
maximum wall shear 𝜏w,max somewhere along the radius of the gap, and consequently will demand a
certain amount of power �Win to sustain the inlet flow conditions. With this in mind, the independent
variables governing the flow through a Bernoulli pad in equilibrium conditions are the geometric
parameters d and D and the inlet flow parameters 𝜌, 𝜇 and uin, because those are the only variables
controlled by the experimentalist; and in consequence �Win, heq and 𝜏w,max are the dependent variables
because they result from the imposed geometric conditions and inlet flow conditions. Therefore, the
dependent variables can be expressed as a function of the independent variables as follows:

�Win = f (𝜇, uin,D, d, 𝜌), heq = g(𝜇, uin,D, d, 𝜌), 𝜏w,max = h(𝜇, uin,D, d, 𝜌). (3.1a–c)

After choosing the inlet diameter d, dynamic viscosity 𝜇 and inlet velocity uin as repeating variables,
a dimensional analysis over each one of the above functional forms provide the following set of
dimensionless parameters:

�̃Win =
�Win

𝜇u2
ind

, h∗ =
heq

d
, 𝜏w,max =

𝜏w,maxd
𝜇uin

, D∗ =
D
d
, Rein =

𝜌uind
𝜇

. (3.2a–e)

The non-dimensional maximum shear stress 𝜏w,max is the ratio between the maximum wall-shear stress
and a combination of parameters that together also have the dimension of stress: 𝜇uin/d. This combination
of parameters is, however, representative of a shear scale in the inlet pipe rather than in the pad gap.
A more appropriate shear scaling would be of the form 𝜇uc/heq, where uc is the characteristic velocity
at the inlet of the pad gap (since the maximum shear occurs in this region), and can be determined from
the volumetric flow rate �V and the inlet cross-section of the pad gap as follows:

�V �
(π

4
d2

)
uin ⇒ uc =

�V
πdheq

=
1
4
×

uin d
heq

. (3.3)
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Hence, the shear scaling for the inlet region of the pad gap is

𝜇
uc

heq
=

1
4
×

𝜇uind
h2

eq
∼

𝜇uind
h2

eq
. (3.4)

The factor 1/4 can be ignored because it will be ultimately absorbed by a fitting coefficient. The
non-dimensional shear stress 𝜏w,max can now be manipulated based on this shear scaling as follows:

𝜏w,max =
𝜏w,maxd
𝜇uin

=
𝜏w,maxd

𝜇uin (d/h2
eq)

×
d

h2
eq

=
𝜏w,max

𝜇uin (d/h2
eq)

× [h∗]−2. (3.5)

Equation (3.5) shows that 𝜏w,max is the combination of a new expression for the dimensionless maximum
shear and h∗, but h∗ is one of the dependent non-dimensional variables. To eliminate this redundancy,
𝜏w,max is replaced by 𝜏∗w,max, which is defined as follows:

𝜏∗w,max =
𝜏w,max

𝜇uin (d/h2
eq)

. (3.6)

The set of dimensionless parameters in (3.2a–e) can now be modified to

�̃Win =
�Win

𝜇u2
in d

, h∗ =
heq

d
, 𝜏∗w,max =

𝜏w,max

𝜇uin(d/h2
eq)

, D∗ =
D
d
, Rein =

𝜌uin d
𝜇

. (3.7a–e)

This set of parameters reduces the physical system to three dimensionless functions of the form

�̃Win =𝛷(D∗,Rein), h∗ = 𝛤 (D∗,Rein), 𝜏∗w,max =𝛹 (D∗,Rein). (3.8a–c)

The dimensionless system described by (3.8a–c) has two independent variables (D∗ and Rein) as opposed
to the five independent variables (𝜇, uin,D, d, 𝜌) of the dimensional system in (3.1a–c). While there are
no analytical solutions available to determine the exact form of the relationships in (3.8a–c), it is possible
to use regression analysis to determine how the independent variables predict the dependent variables.
Figure 3 suggests that the inlet power �Win is linearly related to the maximum shear stress 𝜏w,max in a
log–log space. This suggests that the relationships in (3.8a–c) are also linear in a log–log space

ln �̃Win = C11 ln D∗ + C12 ln Rein + C13, (3.9a)
ln h∗ = C21 ln D∗ + C22 ln Rein + C23, (3.9b)

ln 𝜏∗w,max = C31 ln D∗ + C32 ln Rein + C33. (3.9c)

Equations (3.9a), (3.9b) and (3.9c) can be used to eliminate D∗ and Rein and obtain the relationship
between the dependent variables

ln �̃Win = 𝜅1 ln h∗ + 𝜅2 ln 𝜏∗w,max + 𝜅3, (3.10)

where the coefficients 𝜅1, 𝜅2 and 𝜅3 can be obtained using the relations

𝜅1 =
C12C31 − C11C32

C22C31 − C21C32
, (3.11a)

𝜅2 =
C11C22 − C12C21

C22C31 − C21C32
, (3.11b)

𝜅3 =
C13C22C31 − C12C23C31 − C13C21C32 + C11C23C32 + C12C21C33 − C11C22C33

C22C31 − C21C32
. (3.11c)
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If the assumption of linearity in log–log space is true, the linear model in (3.10) can also be used
for a direct fit to the data, and the resulting values of the coefficients 𝜅i, i = 1, 2, 3, should be consistent
with the values determined from (3.11a), (3.11b) and (3.11c). This latter approach can be viewed as the
indirect fit.

4. Results

A direct fit of the linear model in (3.10) to the CFD data results in the following values of the coefficients:

[𝜅1 𝜅2 𝜅3] = [−1.9683 2.3416 0.1115] . (4.1)

These coefficient values can be substituted in (3.10) to obtain the following power-law expression:

�̃Win = 1.1180[𝜏∗w,max]
2.3416 [h∗]−1.9683. (4.2)

The power law obtained in (4.2) collapses the data on a straight line in a log–log plane – this is shown
in figure 4.

By fitting (3.9a), (3.9b) and (3.9c) to the CFD data, we get the following results for the matrix of
coefficients C = [Cĳ], i, j = 1, 2, 3; the coefficients can then be computed indirectly as follows:

C =

⎡⎢⎢⎢⎢⎣
−1.4703 2.1924 −5.9854
0.8564 −0.7021 1.9268
0.0867 0.3477 −0.9874

⎤⎥⎥⎥⎥⎦ ⇒ [𝜅1 𝜅2 𝜅3] = [−1.9554 2.3568 0.1094] . (4.3)

A comparison of the results in (4.1) and (4.2), obtained through direct and indirect fits of the data,
indicates that 𝜅1 and 𝜅2 differ by 0.65 %, the results for 𝜅3 differ by 1.9 %. A goodness-of-fit analysis
of the direct fit was conducted via calculation of the relation coefficient and an Anderson–Darling
normality test (D’Agostino & Stephens, 1986; Stephens, 1974). The details of these statistical tests are
not shown here for brevity, but the results confirm that (4.2) describes the data adequately and is likely
a good model for the physical phenomenon studied herein: the direct fit exhibits a relation coefficient of
R2 = 0.9951; and the Anderson–Darling normality test demonstrates that the residuals of the direct fit
follow a normal distribution.
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In the study by Kamensky et al. (2019), �Win was non-dimensionalized as follows:

�W∗
in =

�Win

𝜇u2
inD(D/d)

. (4.4)

To put the current results in context with that study, �̃Win can be shown to be equal to �W∗
inD∗2. Therefore,

we get from (4.2)

�W∗
in = 1.1180[𝜏∗w,max]

2.3416 [h∗]−1.9683 [D∗]−2. (4.5)

Based on theoretical grounds, Kamensky et al. (2019) proposed a proportionality of the form: �W∗
in ∝

[h∗]−3, which was near to the scaling observed in that work. But (4.5) suggests a proportionality closer
to �W∗

in ∝ [h∗]−2. These results are different because they describe different phenomena. While the
former is based on the global effect of inlet fluid power on equilibrium height, the latter focuses on the
local effects (where the shear stress is maximum) that relate fluid power with maximum shear stress and
equilibrium height.

5. Discussion

5.1. Relationship between maximum shear stress and inlet Reynolds number

The location of the maximum shear stress is just beyond the location of the corner, r ≈ d/2; this short
development length indicates a laminar boundary layer over the range of flow speeds examined here.
The shear stress for a large number of laminar flows takes the form 𝜏 ∝ 𝜌U2Ren𝛬, where U is the flow
velocity and 𝛬 is a flow-dependent length scale. The value n = −1/2 has been found for pure boundary
layers with zero and non-zero pressure gradients (White, 1974). This value of n was also found for the
developed portion of the flow under a Bernoulli pad by Guo et al. (2017). The same is true for the
maximum wall shear produced by both the planar and axisymmetric wall jet, which is an unconfined
analogue of the developing region of the Bernoulli pad flow (Phares, Smedley, & Flagan, 2000).

The latter work uses laminar boundary-layer theory to yield (in our nomenclature) the expression
𝜏w,max ∝ 𝜌u2

inRen
in [h

∗]−2 for the maximum shear stress. The use of the gap height arises in the wall jet
because of the development of the shear layer at the edge of the jet. Using our scaling relationships, this
expression predicts that

𝜏∗w,max =
𝜏w,max

𝜇uind/h2
eq

∝
𝜌u2

in

𝜇uind/h2
eq

Ren
in [h

∗]−2 =

(
𝜌uind
𝜇

) (
h2

eq

d2

)
Ren

in [h
∗]−2 = Ren+1

in

⇒ 𝜏∗w,max ∝ Ren+1
in , (5.1)

that is, the non-dimensional shear stress is not dependent on any length scale other than the one
appearing in the Reynolds number. We have found this to be the case (see figure 5), where the value
n + 1 = 0.42, or n = −0.58, is broadly in line with the findings for other flow fields. We can write (4.2)
as a proportionality in terms of Rein and h∗

�̃Win ∝ [Re0.42
in ]2.3416 [h∗]−1.9683 = [Rein]

0.98 [h∗]−1.9683. (5.2)

The exponents which appear in (5.2) are enticingly near to round numbers but we have not been
able to predict them using analytical methods. This statement also holds for expressions presented in
the following section. We therefore present these relationships as implications of the data rather than
derivations.
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5.2. Implications of the observed scaling relationship

We can write the power �Win required to operate the pad in terms of the shear stress

�Win ∝

∫ 2π

0

∫ D/2

0
𝜏w(r)U(r)r dr d𝜃 ∝

∫ rw

0
𝜏w,maxU(r)r dr, (5.3)

where rw is a radial location which characterizes an area over which we have to integrate the shear stress,
and U(r) is the mean radial component of the velocity in the gap. There are two critical assumptions
being made. The first assumption is that the power required to operate the system is well character-
ized by the integral of the wall shear over the entire pad area; this is consistent with a low fraction of
the inlet power being used to provide kinetic energy to the fluid (Kamensky et al., 2020). The second
assumption is that the integral of the wall shear over the entire pad area can be characterized using the
maximum shear stress, integrated over a much smaller area. We justify this partially on the basis of the
mean radial velocity U(r) ∝ r−1. Because 𝜏w(r) ∝ [U(r)]2, 𝜏w(r)U(r)r ∝ r−2, and therefore most of
the power used to overcome wall shear is expended at small r. This assumption is further justified by the
observed empirical form, in which the outer diameter D does not explicitly appear. We now manipulate
the integrand, using the result from mass conservation

U(r) ∝
uind
h∗r

⇒ 𝜏w,maxU(r)r ∝ 𝜏∗w,max

(
𝜇uin

d[h∗]2

) (
uind
h∗r

)
r ∝ 𝜇u2

in𝜏
∗
w,max [h∗]−3. (5.4)

Placing this form into (5.3) and making the result non-dimensional yields

�Win ∝

∫ rw

0
𝜇u2

in𝜏
∗
w,max [h∗]−3 dr ⇒ �̃Win ∝

1
𝜇u2

ind

∫ rw

0
𝜇u2

in𝜏
∗
w,max [h∗]−3 dr = 𝜏∗w,max [h∗]−3

( rw

d

)
. (5.5)

The empirical relationship in (4.2) has the form [𝜏∗w,max]
m [h∗]−2, where m = 2.34. A comparison

between this form and the above relationship, and substitution of (5.1) along with the value of the
observed constant n = −0.58, yields

rw

d
∝ [𝜏∗w,max]

m−1h∗ ⇒
rw

heq
∝ Re(m−1) (n+1)

in ≈ Re0.56
in . (5.6)

This indicates that the length scale in the problem which best represents the power dissipated by wall
shear is the equilibrium gap height heq, but with a non-trivial dependence on the inlet Reynolds number.
The reason for this Reynolds number dependence is likely related to both the growth of the boundary layer

https://doi.org/10.1017/flo.2022.23 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2022.23


E29-10 A.S. Tomar and others

on the wall, and the scale of the recirculation bubble on the pad (Nakabayashi, Ichikawa, & Morinishi,
2002).

As a final comment, we note that the ‘entrance length’ of a pipe or channel is defined as a region with
wall shear substantially above the value in the fully developed flow (White, 1974). This is analogous to
our definition of rw within the gap between the pad and the wall. For planar channels, the dimensionless
entrance length scales with Re1.0. Equation (5.6) indicates that the entrance length to a radial outflow
scales instead with Re0.56

in , notably reduced from the planar case.

5.3. Hydraulic roughness

The roughness used in our simulations follows the model of monodisperse sand grains (Nikuradse,
1950). That source uses the roughness Reynolds number to define the wall as hydraulically smooth for
𝜀+ � 5, transitionally rough for 5 < 𝜀+ < 70 and rough for 𝜀+ � 70, where

𝜀+ � 𝜀u𝜏𝜌/𝜇, u𝜏 �
√
𝜏w/𝜌. (5.7a,b)

Although the present study was not undertaken in a zero pressure gradient boundary layer, we can
use these values to provide context for the material roughness employed in the simulations by defining
a local value for 𝜀+ based on the local value of u𝜏 .

The flow was hydraulically smooth predominantly over most of the pad’s surface in all simulations.
The worst case was observed for the nominal pad: d = 31.75 mm, D = 200 mm, heq = 1.5 mm,
𝜀p = 𝜀w = 0.04 mm, which showed 𝜀+ ≈ 8.096 at the point of maximum shear stress. For this worst case,
there was a mild transitionally rough behaviour around the region of maximum shear. A full examination
of the roughness in the context of the proposed biofouling removal application would probably require
a more detailed description of the roughness, to include material properties and inhomogeneities. For
the present work, we have restricted ourselves to a real material for which we have experimental data,
and with a roughness which is small with respect to the gap height.

6. Concluding remarks

A computational study of Bernoulli pads has been performed in order to determine a relationship
between the input power required to maintain stable equilibrium and the maximum shear stress. The
scaling law presented collapses the power and shear stress results of a large number of pad geometries and
operating conditions onto a single curve. This collapse is extremely robust over the range of parameters
examined. Because the inlet power is computed using a combination of the pressure and velocity at the
inlet, it is not obvious a priori that the inlet power would be so well described by the maximum value of
shear stress. Kamensky et al. (2019) indicated that the fluid power scaled with ‘worst case’ choices of
characteristic parameters: largest velocity, largest gradient and largest area. Although the largest velocity
and gradient occur near the location of maximum shear stress, this position is much nearer to the jet exit
d than the outer diameter D. These findings are not inconsistent, since the outer diameter is being used
in (3.8a–c) to scale the power, equilibrium height and shear stress. It appears that (per the arguments
made in the Discussion) the power expended to overcome wall shear over the entire pad is proportional
to the maximum value.

Unusually, this work has used water as the working fluid in its simulations of the Bernoulli pad
flow field. This is consistent with our proposed application, which is to use a Bernoulli pad to groom
underwater surfaces without contact. This choice of working fluid introduces a great deal of potential
richness – particularly cavitation – which has been ignored in the present work. Because cavitation
occurs when the local pressure is below the vapour pressure, bubble formation tends to happen where
the local velocity is large – precisely where we observe the highest wall-shear stress. The design of
alternate flow geometries which create sufficiently high levels of shear stress to groom surfaces while
controlling cavitation will be examined in future work. Although it is unlikely that the scaling laws
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proposed here will work ‘off the shelf’ on these new geometries, we anticipate that the techniques used
here will be employed.
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