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Abstract. We show that the vanishing order of a non-zero vector field at a generic point of a
smooth Fano variety of Picard number 1 cannot exceed the dimension of the Fano variety.
Furthermore, if there exist only finitely many rational curves of minimal degree through a generic
point of the Fano variety, we show that a non-zero vector field cannot vanish at a generic point of
the Fano variety.
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1. Introduction

The dimensions of the automorphism groups of projective varieties of dimension n
cannot be bounded in terms of n. For example, the dimension of the automorphism
group of the Hirzebruch surface P(O(m) ® O),m > 0, is m + 5.

In this paper, we will give a bound on the dimension of the automorphism group of
a smooth Fano variety X of Picard number 1 in terms of n = dim(X) by giving
a bound on the vanishing orders of vector fields at a generic point of X. Here
the vanishing order of a vector field is defined as follows. A non-zero vector
field V' on a smooth variety X has vanishing order k>0 at xe X if
Ve H' (X, T(X)®m") but V¢ H'(X, T(X) ® m*t!), where T(X) is the tangent
bundle of X and m is the maximal ideal at x. Throughout the paper, we will work
over the complex numbers.

To state our results, we need the concept of standard rational curves. Let X be a
smooth uniruled projective variety of dimension n. By Mori’s bend-and-break trick
([Ko] Ch.II), there exists a rational curve C C X, such that under the normalization
v:iP > CC X, v*T(X)=02)®[O1) & O, p+ q+ 1 =n. Such a rational curve
C will be called a standard rational curve. For example, choose a generic point x and
consider rational curves passing through x which has minimal degree with respect to
a fixed ample divisor. Then a generic choice of such a curve is a standard rational
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curve. A standard rational curve C needs not be smooth. But its normalization
vi:Pi > CC X is an immersion. For convenience, we will call the bundle
Vv*T(X)/T(Py) = [O(1)F & O? on the normalization of C as the normal bundle of C.

Note that many Fano varieties have standard rational curves with p = 0. For
example, any Fano threefold of Picard number 1, except the projective space
and the hyperquadric, has standard rational curves with p = 0. In general, if there
exist only finitely many rational curves of minimal degree through a generic point
of a smooth Fano variety, it is easy to see from the basic deformation theory (e.g.
[Ko]), that these rational curves are standard rational curves with p = 0. In this case,
we will prove the following.

THEOREM 1. Let X be a smooth Fano variety of Picard number 1 of dimension = 3
having standard rational curves with p = 0 and x € X be a generic point. Then there
exists no non-zero vector field on X which vanishes at x.

An immediate consequence is

COROLLARY 1. Let X be a smooth Fano variety of Picard number 1 of dimension n
having standard rational curves with p = 0. Then the dimension of the automorphism
group of X is <n.

Theorem 1 implies that if the dimension is # in Corollary 1, the variety must be
almost homogeneous. This is the case for Mukai-Umemura threefolds ((MU]),
which are SL(2, C)-almost homogeneous Fano threefolds satisfying the assumption
of Theorem 1. In this sense, Corollary 1 seems optimal.

For p > 0, we have the following result.

THEOREM 2. Let X be a smooth Fano variety of Picard number 1 of dimensionn = 2
having standard rational curves with p > 0 and x € X be a generic point. Then there
exists a positive integer m and a nonnegative integer [ satisfying [+ (p+ 1)m <n
such that the vanishing order at x of any non-zero vector field on X cannot exceed
[+ 2m. In particular, the vanishing order at x cannot exceed n.

The idea of the proof of Theorem 2 can be best illustrated by proving it for
p=n—1.Sincem=1and /=0 for p =n— 1, we have to show that the vanishing
order cannot exceed 2. Suppose the vanishing order at x of a vector field V is
> 3. Then the one-parameter group of automorphisms of X induced by V acts
trivially on the tangent space T.(X). We claim that this action preserves each stan-
dard rational curve through x. Otherwise, this action sends some standard rational
curve through x to a family of standard rational curves through x having the same
tangent vector at x. Then the infinitesimal deformation will give a section of the
normal bundle vanishing at x with multiplicity > 2. This is impossible from the
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splitting type of the normal bundle of a standard rational curve. Thus V is tangent to
each standard rational curve through x. Since the vanishing order of ' at xis >3
while ¢;(Py) =2, V vanishes identically on each standard rational curve through
x. But from p = n — 1, standard rational curves passing through x cover a Zariski
dense open subset in X. This shows that V" vanishes identically on X. The proof
of Theorem 2 is a refinement of this argument.

Since the dimension of the vector space of polynomial vector fields in z variables
with coefficients of degree < n is

n n+1 2n—1 2n
n—+nx +n X + -4+ nx =nx s
n—1 n—1 n—1 n

Theorem 2 gives the following bound on the dimensions of automorphism groups of
Fano varieties.

COROLLARY 2. Let X be a smooth Fano variety of Picard number I of dimension n.

Then the dimension of the automorphism group of X is less than or equal to n x (2:)

It should be mentioned that it is possible to get a bound on the dimension of the
automorphism group of a smooth Fano variety of Picard number 1 by known results.
In fact, by the results on Fujita’s conjecture, e.g. [Si], we have a bound on the integer
m for which [mK~!| is very ample for all smooth Fano varieties of dimension n with
Picard number 1. Then Alan Nadel’s proof of the boundedness of degree of Fano
varieties of Picard number 1 of a fixed dimension gives a bound N on the dimension
of |mK~'| ([Na]). So the dimensions of automorphism groups will be bounded
by the dimension of PGL(N + 1). But this bound is quite huge because the known
bounds on m and the dimension of |mK~!| are huge, and usually there is a big dif-
ference between the automorphism group of a Fano variety X and
PGL(ImKy!|). For example, even assuming K~! is very ample, i.e. m = 1, the bound

one can get by this method is the square of (”2:2”), which is much larger than ours.

Moreover, it is unclear that such a bound on the dimensions of automorphism
groups gives a bound on the vanishing orders of vector fields at generic points.

We expect that the bound in Theorem 2 is far from being optimal. In this regard,
we would like to raise the following questions.

QUESTION 1. Let X be a smooth Fano variety of Picard number 1 and x € X be a
generic point. Is the vanishing order at x of any non-zero vector field on X less than

or equal to 27

QUESTION 2. Is the dimension of the automorphism group of an n-dimensional
smooth Fano variety of Picard number 1 bounded by that of P,?

https://doi.org/10.1023/A:1002692122176 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002692122176

258 JUN-MUK HWANG

2. Proof of Theorem 1

Given a smooth uniruled projective variety X, choose an irreducible component K of
the Chow scheme of curves on X so that a generic point of X corresponds to a stan-
dard rational curve. By taking normalization, we can construct universal family
morphisms ¥ : F — K and ¢: F — X (e.g. [Ko] Ch.II) so that for a point k € K
corresponding to a standard rational curve, the fiber ~!(x) is P; and ¢|w_1(K) is
an immersion of Py. The fiber of ¢ over a point in ¢(¢71(K)) has dimension p, where
p is the number of O(1)-factors in the splitting of 7'(X) over the normalization
of the standard rational curve ¢p(y ' (k)).

Proof of Theorem 1. Choose K as above with p = 0 and the universal family
morphisms {y: F — Kand ¢: F — X. From p = 0, ¢ is generically finite and a stan-
dard rational curve is an immersed P; with trivial normal bundle. Thus ¢ is
unramified at every point on a generic fiber of . Replacing F by its
desingularization, we assume that F is smooth. ¢ remains to be generically finite
and unramified at every point on a generic fiber of .

Let R C F be the ramification loci of ¢. A generic fiber F of  is disjoint from the
ramification loci R and ¢ is biholomorphic in an analytic neighborhood U C F
of F.

We claim that ¢ is not birational. Otherwise, we may assume that ¢~ (¢p(U)) = U.
Shrinking I/ if necessary, we can choose a general hypersurface H C K disjoint from
W(U). Then ¢y~ (H)) is a hypersurface on X disjoint from C = $(F). This is a con-
tradiction to the assumption that X has Picard number 1. Thus ¢ is not birational.

Let B C X be the codimension 1 loci of ¢(R), which is nonempty since ¢ is not
birational and X is simply connected. From the triviality of the normal bundle,
we may assume that the generic curve C is disjoint from the codimension 2 set
$(R)\ B. We claim that ¢~!(C) contains an irreducible component C’ such that
¢: C' — C is not birational. In fact, since C intersects B from the Picard number
of X, some component C’ intersects R. If ¢: C' — C is birational, deformations
of C’ induce deformations of C by the genericity of C. It follows that both C
and C’ have trivial normal bundles. This is a contradiction to Kr = ¢*Ky + R.

Let q?): C’ — C be the induced morphism on the normalizations. Then (ES has at
least two distinct branch points on C. Otherwise, we have a finite unramified cover-
ing of C, a contradiction. We conclude that v~!(B) has at least two distinct points,
where v: C — X is the normalization of C

Now let x € X be a generic point and suppose there exists a vector field V" on X
vanishing at x. Then the one-parameter group of automorphisms of X induced
by V fixes the finitely many curves Ci, ..., C, through x belonging to the family
K. Thus V' must be tangent to each C;. Let v; : C,- — C; be the normalization. Since
the divisor B is determined by K, B is invariant under V. So V vanishes at the points
C; N B. But from the above discussion, the lifted vector field ¥ on 6} vanishes at least
at three distinct points v; !(B) and v; !(x). It follows that V vanishes identically on C;.
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Arguing at a generic point on C; in place of x, we see that ' vanishes on points which
can be joined to x by the union of two intersecting rational curves belonging to the
family KC. Repeating the same argument, V vanishes on points which can be joined
to x by the connected chain of finitely many curves belonging to the family K. Since
the Picard number of X is 1, this means that V' vanishes on generic points of X
(e.g. [Ko] IV.4) and V' = 0. O

3. Proof of Theorem 2

We start with a discussion on how the vanishing orders of a vector field change along
standard rational curves.

PROPOSITION 1. Let X be a smooth uniruled projective variety. Let V be a vector
field on X with vanishing order k =1 at x € X. Suppose there exists a standard
rational curve C through x at a generic point of which the vanishing order of V is
k. Assume that the vanishing order of V is | = k at some point y € C. Then

i) —k<2;
(i) ifl —k =2 then the k-jet of V at x regarded as an element of T(X) ® Sym* Ti(X)
lies in the subspace Ty(C) ® Sym* TH(X).
In the statement of (ii), the standard rational curve C is an immersed P; and may

have several branches at x. But the proof of Proposition 1 shows that all the branches
must have the same tangent direction at x, which we denote by T(C).

Proof. Let J"T(X) be the mth order jet bundle of 7(X). We may pull-back the
exact sequence of vector bundles

0— T(X) ® Sym*T*(X) — J*T(X) — J* ' T(X) — 0

by the normalization of C, and regard all bundles to be defined on P;. Let m, be the
ideal sheaf on Py corresponding to the point y. Since V' vanishes to the order k along
C and to the order / at ye C, it defines a non-zero section t of
H(Py, T(X) ® Sym"“T*(X) ® m/%). From the splitting type

T(X)® Sym* T*(X)|p, = (OQ2) ® [O(DY & O7) ® Sym*(O(-2)B[O(— 1)} ),

we see (1) immediately. Furthermore if / —k =2, then 7 must be a section of
O(2) ® Sym*(O7) vanishing to the order 2 at y. Since the O(2)-factor of T(X)| p, cor-
responds to Ty(C), (ii) follows. O

PROPOSITION 2. Let X be a smooth uniruled projective variety and
Ci t € A:={|t| < 1} be a family of distinct standard rational curves sharing a com-
mon point x € X. Suppose there exists a vector field V on X such that the vanishing
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order of Visk = 0at x and at generic points of C, foreacht € A. If the vanishing order
is [ =2 at some point y, € C, for each t € A, then | <k + 1.

Proof. First we show that & > 0, namely, V" vanishes on C, for all # € A. Since the
one-parameter group of automorphisms of X induced by V acts trivially on the
tangent space of X at y,, this action moves C, with its tangent vector at y, fixed.
But standard rational curves cannot be deformed with a tangent vector at a point
fixed because the infinitesimal deformation gives a section of the normal bundle
of the curve vanishing to order 2 at that point. It follows that the action preserves
C, for each t € A and fixes the point x. In other words, V' is tangent to C, and vanishes
at x. So V¢, has at least three zeroes, a double zero at y, and a single zero at x,
showing that V" vanishes on C;.

Now we can apply Proposition 1 to each C,. Suppose [ = k + 2. From Proposition
1 (ii), the k-jet of ¥ at x lies in T,(C;) ® Sym* T*(X) C Ty(X) ® Sym* T*(X). Thus the
the tangent direction of C, at x is independent of # € A and C,’s give a family of
standard rational curves with the tangent vector at x fixed, a contradiction. []

Now we assume that X is a smooth Fano variety of Picard number 1. Fix an
irreducible component K of the Chow scheme of curves on X so that a generic point
of IC corresponds to a standard rational curve on X. We say that an irreducible
subvariety 4 C X is saturated if for any standard rational curve C belonging to
K, either CC Aor CNA=0.

LEMMA 1. Let X be a smooth Fano variety of Picard number 1. There exists a
countable union of proper subvarieties of X, so that the only saturated subvariety
of X containing a point outside this countable union is X itself.

Proof. Otherwise the union of saturated subvarieties of dimension < n = dim(X)
cover a Zariski-open subset of X. Thus there exists an irreducible subvariety H
of the Hilbert scheme of X whose generic point corresponds to a saturated proper
subvariety of X so that the members of H cover the whole X. By choosing a suitable
subvariety of H, we get a hypersurface H C X which is the closure of the union of
some collection of saturated proper subvarieties of X. Choose a standard rational
curve C; belonging to X which is not contained in H. From the condition on
the Picard number, C intersects H. Thus small deformations of Cj intersect generic
points of H. This gives standard rational curves not contained in H but intersects
saturated subvarieties lying in H, a contradiction to the definition of saturated
subvarieties. O

If A ¢ X isnotsaturated and A4 # X, then we can find a standard rational curve C
belonging to K which is not contained in A4 but contains a point of 4. Small
deformations of standard rational curves are standard rational curves, and the union
of all such deformations contain an open neighborhood of C. Thus given a generic
point a € A, there exists a standard rational curve belonging to K which is not con-

https://doi.org/10.1023/A:1002692122176 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002692122176

THE VANISHING ORDERS OF VECTOR FIELDS 261

tained in 4 but contains a. Let y:F — K and ¢:F — X be the universal
family morphisms, as explained in Section 2. Given 4 C X as above,
¢ oy oo ¢ (4) contains an irreducible component A’ which contains 4 prop-
erly so that given a generic point a € A’ there exists a standard K-curve C containing
a with CN 4 # (. There may be many possibilities for 4’. We choose one such A4’
with maximal dimension and say that 4’ is obtained from A4 by attaching standard
rational curves.

PROPOSITION 3. Given an irreducible subvariety A C X which is not saturated, let
A’ be anirreducible subvariety obtained from A by attaching standard rational curves.
Then either dim(A’) = dim(A) + p + 1, or for a generic point a € A', there exists a
family C,, t € A of distinct standard rational curves belonging to K such that
ae Crand C,NA#D forall t € A

Proof. Note that ¢ has a generic fiber of dimension p. Thus a component A of
Yoy odp~l(4) with qS(;l) = A’ has dimension > dim(A4) 4+ p + 1. If ¢ is generi-
cally finite on this component, we have dim(4’) > dim(4) + p + 1. Otherwise,
for each generica € 4/, x//(¢|§1(a)) will give the required family of standard rational
curves. ]

We are ready to finish the proof of Theorem 2.

Proof of Theorem 2. If the bound on the vanishing order holds for some point on
X, it will hold for generic points of X. Thus we may prove it for some x € X.

Choose a point x € X so that any proper irreducible subvariety of X containing x
is not saturated (Lemma 1). Choose a sequence of irreducible subvarieties
Ay C Ay C---C Ay_1 C Ay = X so that 4yp = x and 4; is obtained from A4;_; by
attaching standard rational curves. Let m be the number of inclusions A;_; C 4;
with dim(4;) > dim(4;_;) + p + 1. Note that there does not exist a non-trivial family
of standard rational curves sharing two distinct points, from the splitting type
of their normal bundles. Thus dim(4;) > dim(4y)+p+1 and m>1. Let
[=N—m. Then (p+ 1)m+1<n.

Let V' be a vector field on X which has order k; at generic points of 4;. If k;_; > 3,
then ¥ vanishes on 4; as in the proof of Proposition 2, and applying Proposition 1 (i),
we see that k;_ | — k; < 2. If k;_; =2 and dim(4;) < dim(4;_;) +p+ 1, we have
ki1 —k; <1 by Proposition 2 and Proposition 3. Combining these, if
ko>1+2m, then ky >0 and V vanishes on Ay =X identically. Thus
ko <1+ 2m. O
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