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1. Introduction

Divine (1993) developed a mathematical model to use measurements of interplanetary
dust to determine the orbital distributions of particles in interplanetary space. The
power of the model is that it uses the fact that the dust particles are in Keplerian orbits
to correct for the observation biases based on spatial density and velocity efifects of the
orbits. In order to do this, he creates families of dust orbits; within each of which the
particles have mathematically separable distributions of mass, periapsis, eccentricity,
and inclination. He then uses a trial-and-error method to vary these distributions until
an adequate fit is made to the data. Each of his distributions is loosely based on
populations of interplanetary dust that are believed to be present in the Solar System.

2. Phase Space Density

Our investigations of Divine's model indicate a discrepancy with his distributions in
orbital parameters. This problem hinges on Divine's definitions of his probability
distributions. In Divine's paper, he gives a formula (his equation 2; without
derivation) for the six-dimensional phase space density (for the purposes of this
discussion, the distribution in mass is ignored) of a family of orbits with a distribution
in periapsis (NO, eccentricity (pc), and inclination (p
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When we attempted to adapt this relation to other models, it became clear that Ni, p*,
and pi are not the "textbook" definitions of the distributions, e.g., pi di is not the
number of objects with inclinations between i and (i + di).

At this stage, it will be instructive to derive equation 1 with a more rigorous
definition of the distributions in orbital parameters. To derive the phase space density
for a distribution of orbiting objects, it is best to start with the phase space density for
a single orbiting object (note that we have tried to use variable definitions similar to
those Divine used in his paper);

T

where 5 is the Dirac delta function, the r vector is the position, the v vector the
velocity, and r is the spatial density given by
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Equation 3 is the same as equation C4 in Divine's paper, where T\ is the periapsis, e
the eccentricity, and i the inclination of the orbit, r is the radius from the center of the
attracting body, and X is the latitude angle. The summing in equation 2 is necessary
because for a Keplerian orbit with randomized ascending node and argument of
periapsis there are four possible velocities (with equal likelihood) at any point in space
that the orbiting object visits (Kessler 1981).

The phase space density in equation 2 is given in terms of the velocity variables.
These can be transformed into Divine's orbital coordinates by using the following
relation to transform the velocity delta functions

(4) S{y-y) = J o{y-y'

J is the Jacobian for this transform and is given by Divine in his equation B8 (GMo is
the gravitational constant) as

V
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2 X cos2 i2r ^rx (r - rx) [(1 + e)rx - (1 - e)r] [cos2 X - cos2 i]
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The phase space density of a single orbiting object in orbital variables is, then

(6)

x (GM0)
/2 sin/

Note that after this transformation process the summing is no longer necessary,
because each of the four terms in the summation returns the same relation as given in
equation 6, so the summation cancels the value of 1/4.

3. Addition of Orbital Parameter Distributions

Equation 6 may now be integrated over a "textbook" distribution of orbital parameters
given by Du Dc, and D*. Di dri is the number of objects having periapsis between T\
and (ri + dri). Dc de is the number of objects having eccentricities between e and (e +
de), and Di di is the number of objects having inclinations between i and (i + di). They
are normalized by

(7)

By integrating equation 6 over these distributions, we arrive at the correct form of the
phase space density <D0 for a family of orbiting objects

<D0 = \~dr{Dx{r{) fQde'De{e')

e

This equation can be used to replace equation 1 (Divine's equation 2). The three
distributions are normalized to unity in equation 7, but to represent the total number of
orbiting objects in a family, a mass distribution term can be added to equation 8 (as is
done in Divine's paper) and the total number of objects included in it.

As long as Divine's distributions are treated as internal functions to be used to
fit measured data and extrapolate to measurements elsewhere, they are internally
consistent. The problem comes when any type of physical interpretation of the orbital
distributions of the dust families is required; for instance, if an attempt is made to
match Divine's distributions to actual sources. In such a case, the '"textbook"
distributions are needed. The relationship between Divine's distributions and the
'̂ textbook" ones can be derived by comparing equation 8 with equation 1,
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The same method outlined above can be used to derive the spatial density of an
combinati of ements, but it sh be noted that differ« f l l ements
such as apoapsis instead of eccentricity) could give very different results
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Figures: Divine's internal distributions from his paper (Divine 1993) are
compared to the true **textbook" distributions they represent a$ given in equation
9. The axis definitions and units are those used by Divine. While Divine's
distributions are internally consistent, any attempt to relate them to the physical
distributions and numbers in space requires the use of these '"textbook
distributions. Divine's distributions were normalized, so the 4ftextbook"
transformations, in general, will not be, and could lead to a misinterpretation of
the total number of meteoroids predicted in the environment by his formulae.
Note that the "textbook" inclination distribution of the "Halo" family is a sine
curve, as would be expected from a spatial ity that is indep of latitude.
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