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This note proves two propositions on infinite doubly
stochastic matrices, both of which already appear in the
literature: one with an unnecessarily sophisticated proof
(Kendall [2]) and the other with the incorrect assertion that
the proof is trivial (Isbell [1]). Both are purely algebraic;
so we are, if you like, in the linear space of all real doubly
infinite matrices A = (aij).

Proposition 1. Every extreme point of the convex set
of all doubly stochastic matrices is a permutation matrix.

Kendall' s proof of this depends on an ingenious choice
of a topology and the Krein-Milman theorem for general
locally convex spaces [2]. The following proof depends on
practically nothing: for example, not on the axiom of choice.

Proof. Let A be a doubly stochastic matrix which is

not a permutation matrix; we may assume 0 < 311 <1i. We

must find a non-zero matrix E such that both A+ E and
A - E are doubly stochastic, with A = %(A+E) + (A-E)
non-extreme.

I shall define certain finite sets R{(n) of row indices and
C(n) of column indices for n=0, 1 1, t+ 2,..., beginning with
R(0) = {1}, C(0) ={1}. Each j in C(n) will be associated
with at least one i in R(n-1) and with at least one i in R(n),
so that among other facts we have 0 < aij <1 when i and j

are associated. More fully, for n> 0, each j in C(n) is
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associated with exactly one i in R(n-1); each i in R(n) is.
associated with exactly one j in C{(n). In the other direction
the association is one-to-many. For n < 0 the direction is
reversed.

Note now that should C(m) and C(n), m < n, ever have
a common element, we should be done. Consider the case
m< 0<n. Then ji in C{m) m C(n) is associated with a unique
i, in R{m) and a unique i, in R(n-1). In turn 11 is _
associated with a unique j2 in C(m+1), and so on. Working

toward zero, we obtain a closed loop of 2(n-m) places, cycli-
cally ordered, in which some non-zero ¢ can be alternately
added to or subtracted from the entries of A to yield two
doubly stochastic matrices A+ E, A - E. Moreover, however
m and n lie with respect to zero, the same result can be
achieved by working toward zero. (The closed loop may have
more than 2(n-m) places; one may have to go to R(0) or C(0)
to close it.) Further, should we ever find two distinct column
indices j, k in C(n) (n > 0) such that for some row index i
not in R(n-1), both aij and a, are non-zero, we could again

&

find a closed loop. Similar remarks hold for row indices and
forn< 0.

> 0, i i ,4- .
Then select ¢ o strictly less than min (aL11 1 aM)

For some finite set C(1) of column indices, disjoint from

C(0), the sum of a1j as j runs over C(1) exceeds s and

it is certainly less than 1 - € Select numbers 61j >0 for

j in C(1), with sum £ such that each aij is strictly between
61j and 1 - 613,. (Clearly the apparent free choice here can be
replaced by rigid formulas.) Generally, having C(n) and

6n-j, n > 0, select finite sets R(n,j) of row indices i not in

R(n-1) over which aij sums to more than énj' For fixed n

and different j, these are disjoint sets, or we have a closed
loop. Partition 6nj into numbers €3 as before; put R(n) =

U R(n, j); and define C(n+1) in the same manner as C(1). The
recursion for n < 0 differs only trivially from this.
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Finally we define E: eoo is so; forn> 0, forie R(n),
jeC(n), e., is ¢ .; forie R(n-1), jeC(n), e,, is - & ,; and
ij ni ij nj

similarly for n< 0. By construction, both A+ E and A - E
are doubly stochastic.

Proposition 2. A doubly stochastic matrix A=(a ) in
ij° —
which aij takes only finitely many distinct values is a convex

combination of permutation matrices.

In [1] I said this followed trivially from the theorem that
there exists a permutation matrix P such that a,. > 0 whenever

pij > 0 (for any doubly stochastic A). In using the result (for

approximations), Peck and Rattray added the restriction that

aij takes only rational values [3]; then it does follow trivially.
To make the proof trivial without this restriction, we seem to
need the

Lemma. For any finite set of positive real numbers
PERRRR N there exists a Hamel basis for the reals over the
n

rationals, {ba} , such that each )\1 is = rij b‘z with non-
J

X

negative rational coefficients r_..
1)

Proof. Since 0 cannot be represented as a positive
rational combination of the X\ , the convex cone which they
i

generate in the vector space of reals over the rationals contains
no line. In the finite-dimensional subspace generated by the
X ., the polar cone has an interior point and hence generates

i

the whole subspace. We pick a basis for the subspace from
this polar cone and extend to the required Hamel basis.

Now the proof of Proposition 2 presents no.difficulty, if
we begin by rewriting each aij in terms of our special Hamel

basis.

Let us note in conclusion that the restricted form of
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Proposition 2, with ai. rational, actually follows from ‘the

construction for Proposition 1 (suitably extended). It would

be interesting to know whether there is a choice-free proof

of the theorem that each infinite doubly stochastic matrix has

a positive diagonal. In [1], that was deduced from the marriage
theorem; but the constant row and column sums might impose
enough order on the array to avoid this.
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