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This note proves two propositions on infinite doubly 
stochastic ma t r i ce s , both of which already appear in the 
l i te ra ture : one with an unnecessari ly sophisticated proof 
(Kendall [2]) and the other with the incorrect asser t ion that 
the proof is t r ivial (Isbell [l]). Both are purely algebraic; 
so we a r e , if you like, in the l inear space of all real doubly 
infinite mat r i ces A = (a. .) . 

iJ 

Proposition 1. Every extreme point of the convex set 
of ail doubly stochastic ma t r i ces is a permutation matr ix . 

Kendall1 s proof of this depends on an ingenious choice 
of a topology and the Krein-Milman theorem for general 
locally convex spaces [2]. The following proof depends on 
practically nothing: for example, not on the axiom of choice. 

Proof. Let A be a doubly stochastic ma t r ix which is 
not a permutation mat r ix ; we may assume 0 < a < 1. We 

11 
must find a non-zero ma t r ix E such that both A «f E and 
A « E a re doubly stochastic, with A= £(AfE) + i (A-E) 
non-extreme. 

I shall define cer tain finite sets R(n) of row indices and 
C(n) of column indices for n = 0, + *> t 2, . . . , beginning with 
R(0) = { 1} , C(0) = { 1} . Each j in C(n) will be associated 
with at least one i in R(n-l) and with at least one i in R(n), 
so that among other facts we have 0 < a.. < 1 when i and j 

a r e associated. More fully, for n > 0, each j in C(n) is 
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a s s o c i a t e d wi th exac t ly one i in R ( n - l ) ; e a c h i in R(n) i s 
a s s o c i a t e d wi th exac t ly one j in C(n) . In the o t h e r d i r e c t i o n 
the a s s o c i a t i o n i s o n e - t o - m a n y . F o r n < 0 the d i r e c t i o n i s 
r e v e r s e d . 

Note now tha t should C(m) and C(n) , m < n , e v e r have 
a c o m m o n e l e m e n t , we should b e done . C o n s i d e r the c a s e 
m < 0 < n. Then j in C(m) r\ C(n) i s a s s o c i a t e d wi th a un ique 

i in R(m) and a un ique i in R ( n - l ) . In t u r n i i s 
1 n - m 1 

a s s o c i a t e d wi th a unique j in C(m-K) , and so on. Working 

t o w a r d z e r o , we obta in a c l o s e d loop of 2 (n -m) p l a c e s , c y c l i ­
ca l ly o r d e r e d , in which some n o n - z e r o e can be a l t e r n a t e l y 
added to o r s u b t r a c t e d f r o m the e n t r i e s of A to y i e ld two 
doubly s t o c h a s t i c m a t r i c e s A + E , A - E . M o r e o v e r , h o w e v e r 
m and n l ie wi th r e s p e c t to z e r o , the s a m e r e s u l t c a n be 
ach i eved by w o r k i n g t o w a r d z e r o . (The c l o s e d loop m a y have 
m o r e than 2 (n -m) p l a c e s ; one m a y have to go to R(0) o r C(0) 
to c lose i t . ) F u r t h e r , should we e v e r find two d i s t i n c t co lumn 
i n d i c e s j , k in C(n) (n > 0) such tha t for s o m e row index i 
not in R(n-l) ,* both a., and a., a r e n o n - z e r o , we could aga in 

rj l k 
find a c l o s e d loop. S i m i l a r r e m a r k s hold for row i n d i c e s and 
for n < 0. 

Then s e l e c t e > 0, s t r i c t l y l e s s than m i n ( a . . 1 - a ) . 
o 1 1 1 1 

F o r s o m e f ini te set C ( l ) of co lumn i n d i c e s , d i s jo in t f r o m 
C(0), the s u m of a a s j r u n s o v e r C ( l ) e x c e e d s e ; and 

l j o 
i t i s c e r t a i n l y l e s s than 1 - e . Se lec t n u m b e r s 6 , . > 0 fo r 

o l j — 
j in C ( l ) , wi th s u m e , such tha t e a c h B. i s s t r i c t l y b e t w e e n 

o I j 
Ô , and 1 - 6 , , . ( C l e a r l y the a p p a r e n t f r ee cho ice h e r e can be 

r e p l a c e d by r ig id f o r m u l a s . ) G e n e r a l l y , hav ing C(n) and 
6 ., n > 0, s e l e c t f ini te s e t s R(n , j ) of row i n d i c e s i not in 

R ( n - l ) o v e r which a. , s u m s to m o r e than ô .. F o r fixed n 

and d i f ferent j , t h e s e a r e d i s jo in t s e t s , o r we have a c l o s e d 
loop. P a r t i t i o n 6 . in to n u m b e r s e . a s b e f o r e ; put R(n) = 

nj n i 
u R ( n , j ) ; and define C(n+1) in the s a m e m a n n e r a s C ( l ) . The 
r e c u r s i o n fo r n < 0 d i f f e r s only t r i v i a l l y f r o m t h i s . 
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Finally we define E: e is E ; for n > 0, for i e R(n), 
oo o 

j e C(n), e.. is t .; for i e R(n- l ) , j e C(n), e.. is - 6 .: and 
ij m IJ nj 

s imilarly for n < 0. By construction, both A + E and A - E 
are doubly stochastic. 

Proposition 2. A doubly stochastic ma t r ix A = (a ) in 
ij ~ 

which a., takes only finitely many distinct values is a convex 

combination of permutation ma t r i ces . 

In [1] I said this followed trivially from the theorem that 
there exists a permutation mat r ix P such that a.. > 0 whenever 

p. . > 0 (for any doubly stochastic A). In using the result (for 

approximations), Peck and Rattray added the restr ic t ion that 
a., takes only rational values [3]; then it does follow trivially. 

To make the proof trivial without this res tr ic t ion, we seem to 
need the 

Lemma. For any finite set of positive real numbers 
L , . , . , X. there exists a Hamel basis for the reals over the 

1 n 
rat ionals , {b } , such that each X, is S r . , b with non-

a ^ — ij or, 

negative rational coefficients r. . . 

Proof. Since 0 cannot be represented as a positive 
rational combination of the X., the convex cone which they 

generate in the vector space of rea ls over the rationals contains 
no line. In the finite-dimensional sub space generated by the 
X., the polar cone has an inter ior point and hence generates 

the whole subspace. We pick a basis for the subspace from 
this polar cone and extend to the required Hamel bas is . 

Now the proof of Proposition 2 presents no.difficulty, if 
we begin by rewriting each a., in t e rms of our special Hamel 

bas i s . 

Let us note in conclusion that the restricted form of 
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Proposition 2, with a., rational, actually follows from the 

construction for Proposition 1 (suitably extended). It would 
be interesting to know whether there is a choice-free proof 
of the theorem that each infinite doubly stochastic ma t r ix has 
a positive diagonal. In [ l ] , that was deduced from the mar r i age 
theorem; but the constant row and column sums might impose 
enough order on the a r ray to avoid this . 
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