INFINITE DOUBLY STOCHASTIC MATRICES

J. R Isbell*

(received August 28, 1961)

This note proves two propositions on infinite doubly stochastic matrices, both of which already appear in the literature: one with an unnecessarily sophisticated proof (Kendall [2]) and the other with the incorrect assertion that the proof is trivial (Isbell [1]). Both are purely algebraic; so we are, if you like, in the linear space of all real doubly infinite matrices $A=\left(\mathrm{a}_{\mathrm{ij}}\right)$.

Proposition 1. Every extreme point of the convex set of all doubly stochastic matrices is a permutation matrix.

Kendall's proof of this depends on an ingenious choice of a topology and the Krein-Milman theorem for general locally convex spaces [2]. The following proof depends on practically nothing: for example, not on the axiom of choice.

Proof. Let A be a doubly stochastic matrix which is not a permutation matrix; we may assume $0<a_{11}<1$. We must find a non-zero matrix E such that both $A+E$ and $A-E$ are doubly stochastic, with $A=\frac{1}{2}(A+E)+\frac{1}{2}(A-E)$ non-extreme.

I shall define certain finite sets $R(n)$ of row indices and $C(n)$ of column indices for $n=0, \pm 1, \pm 2, \ldots$, beginning with $R(0)=\{1\}, C(0)=\{1\}$. Each j in $C(n)$ will be associated with at least one i in $R(n-1)$ and with at least one i in $R(n)$, so that among other facts we have $0<a_{i j}<1$ when i and j are associated. More fully, for $n>0$, each j in $C(n)$ is

[^0]Canad. Math. Bull. vol. 5, no. 1, Janua ry 1962.
associated with exactly one i in $R(n-1)$; each i in $R(n)$ is associated with exactly one j in $C(n)$. In the other direction the association is one-to-many. For $n<0$ the direction is reversed.

Note now that should $C(m)$ and $C(n), m<n$, ever have a common element, we should be done. Consider the case $\mathrm{m}<0<\mathrm{n}$. Then j_{1} in $\mathrm{C}(\mathrm{m}) \cap \mathrm{C}(\mathrm{n})$ is associated with a unique i_{1} in $R(m)$ and a unique i_{n-m} in $R(n-1)$. In turn i_{1} is associated with a unique j_{2} in $C(m+1)$, and so on. Working toward zero, we obtain a closed loop of $2(n-m)$ places, cyclically ordered, in which some non-zero ε can be alternately added to or subtracted from the entries of A to yield two doubly stochastic matrices A + E, A - E. Moreover, however m and n lie with respect to zero, the same result can be achieved by working toward zero. (The closed loop may have more than $2(n-m)$ places; one may have to go to $R(0)$ or $C(0)$ to close it.) Further, should we ever find two distinct column indices j, k in $C(n)(n>0)$ such that for some row index i not in $R(n-1)$; both $a_{i j}$ and $a_{i k}$ are non-zero, we could again find a closed loop. Similar remarks hold for row indices and for $n \leq 0$.

Then select $\varepsilon_{0}>0$, strictly less than $\min \left(a_{11}, 1-a_{11}\right)$.
For some finite set $C(1)$ of column indices, disjoint from $C(0)$, the sum of $a_{1 j}$ as j runs over $C(1)$ exceeds ε_{0}; and it is certainly less than $1-\varepsilon_{0}$. Select numbers $\delta_{1 j} \geq 0$ for j in $C(1)$, with sum ε_{o}, such that each $a_{1 j}$ is strictly between $\delta_{1 j}$ and $1-\delta_{1 j}$. (Clearly the apparent free choice here can be replaced by rigid formulas.) Generally, having $C(n)$ and $\delta_{n j}, n>0$, select finite sets $R(n, j)$ of row indices i not in $R(n-1)$ over which $a_{i j}$ sums to more than $\delta_{n j}$. For fixed n and different j, these are disjoint sets, or we have a closed loop. Partition $\delta_{n j}$ into numbers $\varepsilon_{n i}$ as before; put $R(n)=$ $\cup R(n, j)$; and define $C(n+1)$ in the same manner as $C(1)$. The recursion for $n<0$ differs only trivially from this.

Finally we define $E: e_{o 0}$ is ε_{o}; for $n>0$, for i $\varepsilon R(n)$, $j \varepsilon C(n), e_{i j}$ is $\varepsilon_{n i}$; fori $\varepsilon R(n-1), j \varepsilon C(n), e_{i j}$ is $-\delta_{n j}$; and similarly for $\mathrm{n}<0$. By construction, both $\mathrm{A}+\mathrm{E}$ and $\mathrm{A}-\mathrm{E}$ are doubly stochastic.

Proposition 2. A doubly stochastic matrix $A=\left(a_{i j}\right)$ in which $a_{i j}$ takes only finitely many distinct values is a convex combination of permutation matrices.

In [1] I said this followed trivially from the theorem that there exists a permutation matrix P such that $a_{i j}>0$ whenever $\mathrm{P}_{\mathrm{ij}}>0$ (for any doubly stochastic A). In using the result (for approximations), Peck and Rattray added the restriction that $a_{i j}$ takes only rational values [3]; then it does follow trivially. To make the proof trivial without this restriction, we seem to need the

Lemma. For any finite set of positive real numbers $\lambda_{1}, \ldots, \lambda_{n}$ there exists a Hamel basis for the reals over the rationals, $\left\{b_{\alpha}\right\}$, such that each λ_{1} is $\Sigma r_{i j} b_{\alpha_{j}}$ with nonnegative rational coefficients \mathbf{r}_{ij}.

Proof. Since 0 cannot be represented as a positive rational combination of the λ_{i}, the convex cone which they generate in the vector space of reals over the rationals contains no line. In the finite-dimensional subspace generated by the λ_{i}, the polar cone has an interior point and hence generates the whole subspace. We pick a basis for the subspace from this polar cone and extend to the required Hamel basis.

Now the proof of Proposition 2 presents no. difficulty, if we begin by rewriting each $a_{i j}$ in terms of our special Hamel basis.

Let us note in conclusion that the restricted form of

Proposition 2, with a ${ }_{i j}$ rational, actually follows from the construction for Proposition 1 (suitably extended). It would be interesting to know whether there is a choice-free proof of the theorem that each infinite doubly stochastic matrix has a positive diagonal. In [1], that was deduced from the marriage theorem; but the constant row and column sums might impose enough order on the array to avoid this.

REFERENCES

1. J. R. Isbell, Birkhoff's Problem 111, Proc. Amer. Math. Soc. 6(1955), 217-218.
2. M. G. Kendall, On infinite doubly stochastic matrices and Birkhoff's Problem 111, J. London Math. Soc. 35(1960), 81-84.
3. B.A. Rattray and J.E. L. Peck, Infinite doubly stochastic matrices, Trans. Roy. Soc. Canada III(3), 49(1955), 55-57.

University of Washington

[^0]: *This work was supported by the Rand Corporation Combinatorial Symposium in the summer of 1961.

