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FUNCTIONS IN ALL H" SPACES, p<oo 

BY 

D O U G L A S M. C A M P B E L L 

ABSTRACT. Let H denote the class of functions analytic in |z| < 1 
which are in every Hp class, 0 < p < oo. The class H strictly contains 
H°° and consists of those functions that are 'almost in H00' in the 
sense of integration. L. Hansen and W. Hayman have given simple 
geometric conditions for a function to belong to H. The purpose of 
this note is to show that Hansen and Hayman's conditions are far 
from necessary. Using techniques from normal functions, gap series, 
characterizations of BMOA, subordination, Bloch functions, and 
VMOA, six completely different examples of functions in H are 
given which 'fill the plane'. 

A function /(z) analytic in D = {|z|<l} is said to be in Hp, 0 < p < o ° , if 
sup r<1J§w | /(re i e)|pd0<oo and in H°°, if sup|z |<1 | / (z) |<°°. Let H denote the 
class of functions analytic in D which are in every Hp class, 0 < p <°°. The class 
H consists of those functions that are 'almost in H°°'; the class H strictly 
contains H°°. 

There is a simple geometric condition that guarantees an analytic function 
belongs to H. Let 

A ( # ) = Areaof {|w|<JRfl/(D)}. 

Hansen proved in 1974 [3] that H I T I R ^ A(R)R2 log R = 0 implies / belongs 
to H. Later Hansen and Hayman [4] removed the \ogR factor and proved 
A ( J R ) J R ~ 2 ^ 0 implies / belongs to H. Informally, / is in H if / misses a 
substantial part of the plane. In fact when asked to exhibit functions in H — H°° 
most people cite the canonical examples of an unbounded function of finite 
area or an unbounded function of infinite area such as l o g ( l - z ) ; both of these 
examples fill an infinitesimal part of the plane. 

Hansen observed in [3] that his condition 'is almost best possible since the 
inequality A(R)<irR2 holds for any complex valued function / ' . The purpose 
of this note is to show that Hansen and Hayman's condition is far from being 
necessary. Using techniques from normal functions, gap series, characteriza­
tions of BMOA, subordination, Bloch functions, and VMOA, we will produce 
six completely different examples of functions in H which satisfy the extremal 
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condition A(R) = irR2, 0 < J R < O ° . Informally, we produce functions in H that 
fill the plane. Since the material comes from so many different areas of function 
theory, accessible rather than original sources have been cited. 

EXAMPLE 1. A non-normal function in H which takes on every value except 0 
infinitely often. Let f(z) = z~x log(l — z) • exp[(z + l)/(z — 1)]. The function 
l o g ( l - z ) is contained in a strip of width IT. Thus A(R)<2TTR and Hayman 
and Hansen's condition implies log(l - z) is in H. The vanishing of log(l - z) at 
z = 0 guarantees that z _ 1 l o g ( l - z ) is also in H. Since H is an 
algebra and exp[(z + l)/(z — 1)] is bounded we conclude that f(z) — 
z _ 1 log(l - z)exp[(z + l)/(z - 1 ) ] is in H. Rather than try to determine the range 
of / directly, we observe that / ( z )^>0 as z —> 1 radially, while /(z)—»°° as 
z —» 1 on the semi-circle r = cos 6, 0 < r < 1. The point z = 1 has two different 
asymptotic values which implies that f(z) is not a normal function [8, p. 268]. 
A non-normal function takes on all but at most two values of the Riemann 
sphere infinitely often. Since / omits 0 and oo we see that / is a non-normal 
function in H which takes on every complex number except 0 infinitely often. 

EXAMPLE 2. A normal function in H which takes on every value infinitely 
often. Let f(z) = Yl=i akz\ where nk+1/nk>q (q>100), I£= 11 ak I = °°, 
Zk = i l%| 2 < 0 0 tf°r example ak = 1/fc, nk = 1000k). Since / is a gap series with 
X kk|2<00> / belongs to H (the proof of [11, p. 215] is clearer than the more 
recent edition [12, p. 213]). Since the coefficients go to zero and / is a gap 
series, / is in B0 , hence is Bloch, hence is a normal function. Finally, by G. and 
M. Weiss' theorem for gap series with £ Wk\ = œ> Q sufficiently large, we know 
that / takes on every value infinitely often [10]. 

Perhaps the reader has been lulled into thinking that the key ingredient in 
the above examples has been the infinite valence of /. We therefore turn to the 
other extreme and produce functions in H which are univalent but satisfy 
A(R) = TTR2, 0 < £ < O ° . Since / is univalent it will be forced to omit a 
continuum of values, but these will be made to have zero area. 

EXAMPLE 3. A univalent close-to-convex function in H with A(R) = irR2. Let 
fî be the set of complex numbers not equal to n + iy, |y | > 1, n = 0, ±1 , ± 2 , . . . 
Let / be the analytic univalent function mapping | z | < l onto ft, /(0) = 0, 
f ( 0 ) > 0 . The function / is close-to-convex [8, p. 52]. Clearly A(R) = TTR2, 

0<R<°°. The Hayman-Pommerenke-Stegenga criteria for BMOA functions 
[5] states: A domain G c C has the property that every function f(z) analytic in 
D with values in G belongs to BMOA if and only if there exist constants 1? 
and 8>0 such that cap ( (C-G)n{ |w — w 0 |< i^}>6 for every w0 in G, where 
cap denotes the logarithmic capacity. For every point w0 in ft the disc 
|vv — w 0 |<20 contains a line segment of length at least 1 in the complement of 
ft. Therefore the capacity of (C - ft) Pi {| w - w0| < 20} is bounded below by %[8, 
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p. 335]. By the Hayman-Pommerenke-Stegenga criterion for BMO functions / 
is in BMOA. But every BMOA function is in H and we are done. 

EXAMPLE 4. A starlike, non-BMOA, non-Bloch, function in H with A( JR) = 

irR2. Let ft be the region formed from C by performing a countable number of 
operations, the nth of which is the removal of 2n+2 infinite radial slits whose 
end points have modulus 4n and whose arguments are irk • 2 - n _ 1 , k = 
1, 2, 3 , . . . , 2n + 2 . Clearly ft is a starlike domain containing the origin. Let / 
map | z | < l into ft, /(0) = 0, / ' (0 )>0 . It is well known [7] that a function 
analytic in D is Bloch if and only if sup{df(z): zeD}<o°? where df(z) is the 
radius of the largest schlicht disc around f(z) on the Riemann image surface of 
/ (D) . Since ft contains a disc of radius approximately 2 n _ 1 at the point 
(4n-2n)exp(7n'2~n-1), the function / is not Bloch. All BMOA functions are 
Bloch [9, p. 593]; hence / is not BMOA. The function 

gn(z)=cz/f[a-e^/2n+izr2-
I v = l 

maps | z | < l onto the plane with 2 n + 2 infinite symmetrically placed slits with 
end points of equal modulus. Furthermore 

| g n ( r e i 8 ) p d 0 < | c r I I \l-e™,2n+'eier\-1,2d6 
^0 Jo v = 1 

obviously remains finite as r—> 1. Any function subordinate to an HQ function 
is also in Hq [1, p. 10]. To conclude that / is in H it suffices to note that for 
every n the function / is subordinate to the H2n function gn. The function / is 
normal since it is univalent [8, p. 262]. 

EXAMPLE 5. A starlike univalent BMOA function in H, with A(R) = TTR2. 

Let ft be the starlike region formed by removing from C all infinite radial rays 
which begin at an integral lattice point of C (except (0,0)). Let / map | z | < l 
univalently onto ft, /(0) = 0, /'(0) > 0. Clearly A (J?) = TTR2. Since / contains no 
disc of radius bigger than 1, it is a Bloch function [7]. All Bloch univalent 
functions are BMOA [9, p. 592] hence in H. 

EXAMPLE 6. A locally univalent, normal function in H which takes on every 
value except 0 infinitely often. We first construct a simply connected region ft 
with two special properties. First, if wn is in ft and wn —> 3ft, then the radius of 
the largest schlicht disc contained in ft and centered at wn will be required to 
go to zero as n —> oo. Second, for every real number x there must be an infinite 
ray, whose real part is x, contained in ft. We proceed as follows: 

In the half-strip {x + iy : 0 < x < 1, 0 < y < o°} we perform a countable number 
of operations, the nth of which is the removal from {x + iy : 0 < x < 1, 0 < y < o°} 
of 2 n _ 1 infinite slits parallel to* the imaginary axis whose initial points are 
2mn + k2~n, k = 1, 3, 5 , . . . , 2n - 1. 
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In the half-strip {x + iy: m < x < m + l, 0<y<<»}, m = ±l, ±2,... we per­
form a countable number of operations, the nth of which is the removal of 2 n _ 1 

infinite slits parallel to the imaginary axis whose initial points are 27rm/|m| + 
fc2~n + m, fc = l , 3 , 5 , . . . , 2 n - l . 

In the half-strip {x + iy : V2 < x < 1 + V2, -oo < y < 0} we perform a countable 
number of operations, the nth of which is the removal of 2 n _ 1 infinite slits 
parallel to the imaginary axis whose initial points are 27rm + fc2-n+V2, k = 
l , 3 , . . . , 2 n - l . 

In the half-strip {x + iy : V2 + m < x < V2+ m + 1 , -oo< y <0}, m = ±1 , ± 2 , . . . 
we perform a countable number of operations, the nth of which is the removal 
of 2 n _ 1 infinite slits parallel to the imaginary axis whose initial points are 
27nn + fc2-n+V2, k = 1, 3 , . . . , 2 n - l . 

Let g map | z | < l univalently into ft, g(0) = 0, g'(0)>0. Since the radius of 
any schlicht disc which approaches aft goes to zero, we conclude that g is in B0. 
Let /(z) = exp(g(z)). Univalent B0 functions are in VMO [9, p. 593] and the 
exponential of any VMO function is in H [9, p. 596]. Since g is univalent, / is 
locally univalent. Since g is Bloch, / is normal. We constructed ft so that for 
any real number x there is an infinite ray whose real part is x which is 
contained in ft. Thus / takes on every value expect 0 infinitely often. 
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