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DECOMPOSITION OF MULTIVARIATE FUNCTIONS 

J. M. BORWEIN AND A. S. LEWIS 

ABSTRACT. Given a bivariate function defined on some subset of the Cartesian 
product of two sets, it is natural to ask when that function can be decomposed as the 
sum of two univariate functions. In particular, is a pointwise limit of such functions 
itself decomposable? At first glance this might seem obviously true but, as we show, 
the possibilities are quite subtle. We consider the question of existence and uniqueness 
of such decompositions for this case and for many generalizations to multivariate func­
tions and to cases where the sets and functions have topological or measure theoretic 
structure. 

1. Introduction. Consider the following simply stated question. Suppose S\ and 52 
are sets, with E C Sx x 52, and h: E -> R. Suppose further that (/"f)~ , and (#)£L, are 
two sequences of functions,/™: S* —• R, for / = 1,2 and each n, with the property that 

(1) lim {/?(*,)+.#te)} - Ksus2), for all (sus2) G E. 
w—KX> 

In other words, on the set E, the bivariate function h is the pointwise limit of sums of 
univariate functions. Is it true that h is itself the sum of univariate functions: do there 
exist functions/i: S\ —• R ,f2: S2 —> R with 

(2) / i (J i )+/ 2 te) = h(si,s2), for all (sus2) G El 

It seems clear that the answer must be affirmative, and we shall prove this. Notice that 
if E is a finite set the result is easy: the set of functions h which have a decomposition 
of the form (2) clearly forms a subspace of the finite-dimensional vector space R£ , so is 
closed, and the result now follows. One might ask the same question, but with the range 
of all the functions involved changed from R t o R + = { 0 < x € R } . Again we shall 
show that the answer is affirmative. (Again the proof is straightforward if E is finite). 

However, to demonstrate the difficulties which can arise, consider the following ex­
ample. Define 

E:= {(ra,m),(m + l,ra) | m G N} C N2, 

and a function h: E —•> R by /z(m, m) :— 0 and h(m + 1, m) := —1, for all m G N. It is 
easy to see that if/: N —• R, for / = 1,2, have property (2) then/i(m) = k — m, and 
f2(m) = m — k, for all m G N, where k is some constant. Thus it is not possible to find 
/ i : N —• R+ and/2: N —• R with property (2). 
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However, suppose we define/": N —> R+, and/": N —•+ R, by 

fi(m):=(n-m)+, 

ftirn) := (m - «), 

for each m, n 6 N (where for x G R, x+ = max{ x, 0} ). Then, for all m G N 

fî(m)+fî(m) = (m-n)+ 

—-> 0 as « —• oo, and 

/ f ( m + l ) + # ( m ) = (m + l - n ) + - l 

—> — 1 as n—+ oo. 

To summarize, we have property (1), and yet there do not exist functions/i : N —-> R+ 
and/2: N —+ R with property (2). 

Such questions as the above have many natural extensions to multivariate problems. 
For example, suppose E C Elti $ , h:E —> R,f?:Si x Si+X —> R for / = 1,2,3, and 
each n, and 

3 

lim Y^fin(si>si+\) = h(su's2,S3,s4), for all (51,52,53,^4) G £• 
n - , o o - = 1 

Do there exist/: St x ^+1 —» R with 

3 
^ / i fe ,^+i ) = /*(5i,52,53,54), for all (51,52,53,54) G £? 
i=\ 

This paper will be concerned with characterizing those functions h which have a de­
composition of the form (2), and generalizations of this question. When the underlying 
sets St have additional topological or measure-theoretic structure we can ask about the ex­
istence and uniqueness of decompositions of the form (2) with additional requirements on 
the functions/, such as continuity or measurability. The present investigation was largely 
motivated by questions of this type, which arose in the context of an abstract optimiza­
tion problem (see [2]). Indeed, we were trying to treat continuous 'DAD problems' (cf. 
[12] and [13]) by direct optimization methods rather than using the information-theoretic 
techniques of [3] applied in [12] and [13]. (For a recent survey of the optimization ap­
proach to DAD problems in the finite-dimensional case, see [16] and [17]). However, 
the relevant result in [3] (Corollary 3.1) is inadequate because it fails to address these 
questions. 

As a typical example, suppose (S\,ds\) and (^2,^2) are measure spaces, with E C 
S\ x 52 measurable. Consider the set of all those functions h G L\(E,ds\ds2) which 
decompose, in the sense that there exist measurable f\ = Si —• R and/2 = ^2 —* R 
with 

fi(s\) +/2CS2) = h(sus2) a.e. on£. 
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Clearly the set of all such functions h forms a subspace of L\(E, ds\ds2). Is this subspace 

closed? We shall answer this question positively, by elementary methods, in this paper 

(under reasonable conditions on E). This result allows us to give conditions ensuring the 

existence of a solution to the following continuous DAD problem: given two measure 

spaces S and 7, a non-negative measurable 'kernel' k: Sx T —> R, and non-negative mea­

surable 'marginals' a: S —• R and 0 : T —> R, find non-negative measurable 'weights' 

/ : S —• R and g: 7 -+ R so that 

/ f(s)k(s, t)g(t) dt = a (s), a.e. on S, and 

jf/(*)*(*, % ( 0 * = /? (0, a.e. on T . 

See [2] for details. 

As suggested by the above application, our interest is in the case where the underlying 

sets are infinite. For finite sets the results characterizing decomposability are straightfor­

ward and well-known: they are related to cyclic products on matrices (see for example 

[5] for a survey). Similar ideas have been used to study the approximation of bivariate 

by univariate functions. See [6], [7] and [14] for further references. 

The following result provides a model for the problems which arise. For simplicity 

suppose E C [0, l ] 2 is a convex open set in R 2 , and define two open intervals, 

E\:= {s\ I there exists S2 with (s\, S2) E E), and 

E2'— {s2 I there existss\ with {s\,S2) G E}. 

Suppose h: E —• R is C2. 

THEOREM 1.1. There exist Cl functions fi: Et —* R, / = 1,2, with 

(3) f\{s\)+h(s2) = h(suS2),forall(sus2) £ E, 

if and only if for every closed, piecewise smooth, oriented curve 7 in E we have 

r dh 
(4) / v - ^ i = 0. 

h os] 

Since E is simply-connected this is equivalent to d2h/ ds\ds2 vanishing identically on E. 

PROOF. Notice that, since we always have 

dh_ 3/z_ 

h\ds\ ds2 

equation (4) is equivalent to 

/ ^ds2 = 0, 
Ji ds2 

by [4, 9.4]. 

r ( dh , dh , \ 

https://doi.org/10.4153/CJM-1992-030-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-030-9


466 J. M. BORWEIN AND A. S. LEWIS 

Suppose equation (4) holds. Pick (sÇ, s®) G E. Now for any t\ £E\, define 

(5) /i(*i):= / 5 - * , , 

where *2 is any point with (t\ ,t2) £ E and 7i is any piecewise smooth oriented curve in E 
from (s°v s®) to (t\, t2). Suppose (£1, /2) G E and 72 is a curve from (s°{, s®) to (t\, ^2). Then 

/" (dh/dsi)dsi = [ (dh/dsx)dsi + f (dh/dsi)dsi 
h\ ' h2 ' h(tut2ut\,f2)} ' 

(dh/ds\)ds\, L Jll 

by (4), so f\'.E\ —• R is well-defined by (5), and clearly C1. Similarly (by the first 
remark), we can define a C1 functionf2: E2 —> R by 

3ft 

A i 3^2 
But now we have 

/ i(r i)+/2(r2)= / (0ft/a5,)d5,+0ft/352)d52) + ft(Ji,J2) 

= fta,,r2)-ft(5?,^) + ft(5?,55) 

= ft('l,*2), 
(since we are integrating an exact differential form, see [4, 9.4]), so (2) holds. The con­
verse is obvious. 

The last statement follows from the fact that (4) holds if and only if 

(dh/ds\)ds\ +0ds2 

is a closed differential form, which is equivalent to d2ft/ ds\ds2 vanishing identically [4, 
9.4.9]. • 

The characterization that we shall develop for functions ft satisfying (2) will be exactly 
the discrete analogue of Condition (4). 

2. Potential differences. In this section we shall be concerned with graphs and with 
potential differences defined on the edges of a given graph. We will not restrict attention 
to graphs with a finite number of vertices, and we will allow potentials on the vertices to 
take their value in an arbitrary group. 

Throughout this section, let ( V, E) be an (undirected) graph with vertices V (not nec­
essarily finite) and edges E (consisting of unordered pairs from V), and let G be a group, 
with identity element e. Recall that a circuit is a path of vertices vovj V2 • • • VkVk+\ with 
v/V/+i E £, / = 1, . . . , k and v̂ +i = vo. 

DEFINITION 2.1. A function ft: V x V —> G is a (left) potential difference if there 
exists a function/?: V —• G with ft(vi, V2) = p(v\)~xp{v2) for all vi V2 E E. 
Notice that if ft is a potential difference and v\v2 G t then 

ft(V2,Vi) = ft(Vi,V2r
1. 

The following result is well-known in various forms. It is essentially Kirchoff 's po­
tential law (see for example [1] when G = (R, +)). Notice though we do not require V 
finite. 
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THEOREM 2.2. The function h: V x V —> G is a potential difference if and only if for 
every circuit VQV\ • • • v̂ vo, 

(6) h(vo9v\)h(vuv2)--h(vk,vo) = e 

In this case h(v\,v2) — p{v\)~xp(v2) for all v\v2 G E, where the function p: V —• G is 
unique on each connected component, up to a constant multiple. 

PROOF. One direction is immediate. On the other hand, suppose (6) holds. Clearly 
we can treat each connected component of the graph separately, so without loss of gen­
erality suppose (V,£) is connected. Fix an arbitrary vertex vo. 

We define p: V —-> G in the following way. Set p(vo) := e. Suppose u G V. Since 
(V, E) is connected, there exists a path vovi • • • vku. Then define 

(7) p(u) := h(v0,v\)h(v],v2)-'-h(vk,u). 

To see that/? is well-defined, suppose voi/j • • • v'-u is another path, so 

VoVl • • • VkUVj • • • v\ V0 

is a circuit and thus 

(8) h(v0,vi)h(vuV2)--h(vk,u)h(u,Vj)--h(v\,v0) = e, 

Notice that whenever u\u2 G E, u\u2u\ is a circuit, so (6) implies 

h(u\,u2) = h(u2,u\)~l. 

From (8), 
p(u) = h(v0, vi ) h(v\, v2) • • • h{yk, u) 

= h(v\,v0y
]h(v2yv{y

l •••/z(w,vj)~1 

= h(v0,v\)h(v'l,v2).-h(vf
j,ul 

as required. Furthermore, whenever u\u2 G E, by the definition of p, p(u2) — 
p(u\)h(ui,u2), or h(u\,u2) = p(u\)~xp{u2), so h is a potential difference. 

Suppose /i(vi, V2) = q(v\ )~lq(v2) whenever v\ v2 G E, for some other function q: V —• 
G. Then if vovj • • • v̂ w is a path, we must have 

q(u) = q(yk)h(vk,u) 

= ^(v^i)/î(v^i,v^)/î(vi,w) 

= ^(v0)/z(v0,vi)---M^,w) 

= q(v0)p(u), 

and this must hold for every u G V. The last assertion follows. • 
The next result shows that if G is a topological group then the set of potential differ­

ences is closed under pointwise convergence. 
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COROLLARY 2.3. Suppose G is a topological group and (ha)aee is a net of potential 
differences, ha: V x V —• G, for a G 0. Suppose that h: V x V —> G and ha —> h 
pointwise: in other words, 

lim ha (v\, v2) = h(v\, v2), for all v\ v2 G E. 
a 

Then h is a potential difference. 

PROOF. We just need to check (6). If vovi • • • v̂  vo is a circuit then 

/*Oo,vi)/i(vi, v2)- • -h(vk,vo) = (lim/za(v0, vi)) • • • (\imha(vk, v0)) 

= lim(Mv0 ,vi)---Mv*,v0)) 

= lime 
a 

= e, 

as required. • 
We can restate this as follows. 

COROLLARY 2.4. Suppose G is a topological group and (pa )a£Q is a net of functions, 
Pa'V —> G, for a G 0. Suppose that h:V x V —• G and 

\im(pa(v\ylpa(v2)) = h(v],v2),forallv]v2 G E. 

Then there exists a function p: V —> G (unique up to a constant multiple on each con­
nected component) with 

P(v\ ) Xp(vi) — h(v\ » V2X far all V\v2 G E. 

Suppose in the above result we know that for each vertex v, pa(v) G Gv for all a G 0, 
where Gv is a closed subset of G. Can we choose the function/? so that/?(v) G Gv for 
all v G V7 A simple example shows that this need not be the case. Let the graph consist 
of just two vertices, V — {1,2}, and the single edge joining them, E — { 12} . Let the 
group G be (R, +) and suppose h is identically zero. Consider the sequence of functions 
pn: V —> R defined by (for n > 2)pn(l) := n, and/?n(2) := n + £. Let 

C\ := {ne N | n>2} 

C2 := {n+- I ne N,n > 2), 1 n J 

so certainly /?„(/) G C/ for each / and n, and Ci and C2 are closed in R. Clearly 

Pn(j) - Pn(i) --> 0, for all 1,7. 

However, if p(2) - p(l) = fc(l,2) = 0, and /?(/) G CM for each /, then 0 G C2 - Ci, 
which is a contradiction. 
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In the case where the graph ( V, E) infinite, the group G = (R , +), and each set Gv is 

a closed interval in R, there are well-known conditions characterizing those functions 

h: V x V —y R for which there exists a function/?: V —» R with/?(v) G Gv for all v G V, 

and 

p(v2) — p(v\ ) = /z(vi, V2) for all vj V2 G Zs, 

(see [1] for example). It is easy to see from these conditions that in this case the answer 

to the above question is affirmative. 

However, even in this case, if we allow the graph to be infinité the result may fail. 

Examples analogous to that given in the introduction demonstrate this. What is lacking 

is a suitable compactness conditon. 

COROLLARY 2.5. Suppose G is a topological group, and Gv C G is closed for each 

vertex v G V. Suppose (pa)aeQ is a net of functions, pa:V —> G, for a G 0 , with the 

property that for each vertex v G V, pa(y) G Gv for all a G 0 . Suppose further that 

h: V x V —> G, with 

(9) lim(/?a(vi)~1pa(v2)) = h(vuv2),forallviv2 G E. 

Suppose finally that the following condition holds. 

CONDITION A. For each connected component V7, there exists a vertex v1 G V7 

such that the net (pa(v>y )) has a convergent subnet. 

Then there exists a function p: V —> G with 

p{v\)~xp{v2) — h(y\, V2), for all v\V2 G E, 

and 

p(v) G Gv, for all vertices v G V. 

PROOF. We can treat each connected component independently, so without loss of 

generality suppose (V,E) is connected. Suppose (/?<*(vo)) 0 has a convergent subnet. 

Without loss of generality, \imapa(vo) — 8 G GVo. By Corollary 2.4 there exists a 

function/?: V —> G withp(vj)_1/?(v2) = /?(vj, V2), for all vi v2 G E, and we can choose p 

sothat/?(v0) = g. 

We now claim lim^/^aCv) = p(v) for all vertices v G V. Suppose there is a path of 

length k linking vo to v. The proof will be induction on k. Clearly the result is true for 

k — 0. Suppose it holds for k, and vovj • • • v^v is a path. By hypothesis, lima pa(vk) — 

p(vk). Furthermore, by assumption, 

lim(/7a(vifc)~I/7a(v)) = h(vk,v) 

= p(vk)~
lp(v)i 

so lim^ pa(v) = p(v) as required. Thus the hypothesis holds for k + 1, and hence for all 

k. 
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Finally, sincepa(v) G Gv for all a G 0, and Gv is closed, p(v) G Gv as required. • 

EXAMPLES. 

(1) If, for each connected component V1, there exists a vertex v1 G V^ with GV7 com­
pact then Condition A holds. In particular, if G is compact, Condition A holds, 
as for example on G = ({ e2ixie | 0 < 0 < l } , •). 

(2) Suppose G — (R, +) and in each connected component there exists an edge vi v2 

with GV) = R+, GV2 = -R+. Then 

Pa(V2-) - Pa(V\ ) —> MVI, V2), 

so for all a sufficiently large 

Pa(V2) ~ Pa(V\) G [h(vUV2) ~ l , / l(Vi, V2) + 1], 

and thus 
Pa(v 2)G[/ i (vi ,v 2)- l ,0] , 

which is compact. Therefore (/?a(v2)) has a convergent subnet, so Condition A 
holds. 

(3) Much the same argument works with the multiplicative group 

G= ( { 0 < J C G R } , - ) , 

assuming in each connected component there exists an edge viv2 with GVl = 
{x> 1} andGV2 = {x < 1}. 

3. Decomposable functions. We now return to our central question. We wish to 
characterize those bivariate (or, more generally, multivariate) functions which can be 
decomposed as products or sums of univariate functions. We will call such functions 
'decomposable'. 

DEFINITION 3.1. Suppose S\, S2 are sets, E c Si x S2, and G is a group. A function 
h\E —• G is decomposable if there exist functions ft: S/ —> G ,i — 1,2, with 

(10) h(sus2) =Msl)f2(s2), for all (sus2) G E. 

Associated with the sets E, S\, S2 we can define a bipartite graph (V, E!) with vertices 
V := Si U S2, and edges El := {s\s2 \ (s\,s2) G E}. Corresponding to the function 
h: E —> G we can define a function 

h': (Si U S2) x (S, U S2) —• G, 

by 

I/z(w, v), i f u G S i , v G S2, 

/ i ^ v ) - 1 , i f w G S 2 , v G S i , 
^, otherwise, 
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(where as before e is the identity). Now h' is a potential difference exactly when there 

exists a functionp: S\ U S2 —• G with hf(u, v) = p(u)~lp(v) for all edges uv. Simply by 

making the identification 

f\(s}) = p(si)~\ for.Ji eSu 

/2O2) = p f e ) , for^2 G 52 , 

it is clear that /* is decomposable if and only if h' is potential difference. 

Suppose the connected components of the associated bipartite graph (V,Ef) are 

(V7 ,£^), for 7 G T, so V = UyerVV and £" = U 7 G r ^ are disjoint unions. For each 

7 e T, V7 = 57 U 5^, f o r some subsets 5j C Su &2 C 52 , and U 7 6 7 5] = 5 j , 

U 7 e r ^ = ^2 are disjoint unions. If we write £^ := {(s\,s2) | ^1^2 G £ 7 } , then 

Z?7 C 57 x $1 for each 7 G T and E = UyerEP is a disjoint union. 

We call (5 j , ̂ 2, £^ ) the connected components of (5j, S2, £)• To define them directly, 

define a relation L on £ by (s\, s2)L(t\, 2̂) for 5, f G £ if either s\ = f 1 or 52 = *2, and 

then define an equivalence relation ~onEby s ~ tïovs,t £ E'\i there exists a sequence 

s\s2,... ,sk in E with s1 = s, sk = t and s^Ls^+l for 7 = 1 , . . . , & — 1. The relation ~ 

partitions Zs into equivalence classes Ë1, for 7 G r ' , and we then define 

(11) $] := { J I G5j I (s\,s2)€E? for some 52 G 5 2 } , 

(12) 5^ := {^2 G 5 2 I (s^s^eE? forsomes, G Si}. 

For each s\ € S\ \ Uier&], we adjoin the triple ({s i} ,0 ,0 ) , and similary for each 

2̂ G 52 \ UieF>Sl w e a d J ° i n (^' { ^2}, 0). Together with the triples (5 j , S\, Ey ), 7 G T , 

these make up the connected components of (S\,S2,E). 

Corresponding to circuits in the associated bipartite graph are circuits in E. To describe 

them directly we use the following definition. 

DEFINITION 3.2. A circuit in E C S\ x 52 is a sequence sls2s3 • • . j 2 ^ 2 * " 1 " 1 of points 

j = (s/vs/2)eEvfiûis2k+l = s\<indsj
l = $ \ J2 ± s%\ jfx ± ^2 and 4+1 = 4+ 2 f o r 

either all even 7 or all odd j in { 1 , . . . , 2k}. (In other words, the component of y which 

changes as we follow the circuit alternates between the first and second.) 

The following results are exact translations of the corresponding results in § 2. In each 

of them, E C S\ x 52, G is a group, and h: E—^G. 

THEOREM 3.3. The function h is decomposable if and only if for every circuit in E, 

s\s2 • • -s2ks\ we have 

h(sl)h(s2ylh(s3)h(s4yl • •-h(s2krl = e. 

In this case the functions f: 5£- —> G, i = 1,2 m (10) are unique on each connected 

component of(S\,S2,E) up to a constant multiple. In other words, if f[J2 also satisfy 

(10) then on each connected component (5 j ,5^ ,£^) , there exists g1 G G withf[(s\) — 

f\(s])gj for alls \ G 5] , and ffa) = g~]f2(s2)for all s2 G 5] . 

PROOF. Theorem 2.2 • 
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COROLLARY 3.4. Suppose G is a topological group and (ha)aee is a net of de­

composable functions, ha: E —> G, for a G 0 . Suppose that h: E —> G and ha —> h 

pointwise: in other words, 

lim ha(p) = h{p), for all p £ E. 
a 

Then h is decomposable. 

PROOF. Corollary 2.3. • 

It is worthwhile making the intuitive basis for the proof of this result clearer. For 

simplicity, consider the case where G = (R , +) and the nets are sequences, and suppose 

that (Si,S2,E) 1S connected. Thus we have, for all (51,52) inE,f"(s\)+f2(s2) —+h(s\, s2). 

The difficulty of course is tha t / " and/J2 m aY n ° t converge themselves. However, it is 

not difficult to see that the only way this can happen is if/f = gn
x + kn and / " = g" — k„ 

for some sequence of constants kn, where the functions gn
x and g\ do converge. To make 

this precise, pick an arbitrary (I\,S2~) in E and define kn := fx(s\), gn
x := fx

n — kn, and 

82 '-— fi + ^n- Then the proof above translates immediately into a demonstration that g\ 

and g2 converge pointwise to the desired decomposition of h. 

COROLLARY 3.5. Suppose (f^aee, i= 1,2 are sets offunctions, fa:Si —> R+, that 

E C Si x S2 and h: E —> R+, and that 

f?(s\)+f2
a(s2) — A(5i,52), for all (sus2) e E. 

Then there exist functions / : S/ —> R+, / = 1,2, unique up to a constant on each con­

nected component (cf. Theorem 3.3), with 

f\(s\)+f2(s2) = h(sus2),forall(sus2) G E. 

PROOF. Corollary 2.5 and the following examples. • 

This resolves the opening questions in the introduction. 

4. The multivariate case. We would naturally expect such results as Corollary 3.4, 

which showed that pointwise limits of (bivariate) decomposable functions were decom­

posable, would extend to the multivariate case. In most of the circumstances in which we 

are interested (for example G = (R , +)) this is indeed the case, as we shall see. Surpris­

ingly however, these results can fail in the multivariate case even with G = (Z, +). We 

shall present an example of this. Beyond the two variable case such simple characteri­

zations as Theorem 3.3 are no longer possible, and rather than attempting to generalize 

these, we will proceed directly to extensions of Corollary 3.4. 

The proofs in this section, which could also be used in the bivariate case, are shorter 

but less constructive than those used in the bivariate case. They are more restrictive on 

the underlying group G, and provide no uniqueness information as in Corollary 3.5. 
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We will use the following ideas from universal algebra (see [8]). Suppose G is an 
abelian group, O and A are two index sets, 

a : O x A - > { - l , 0 , + l } 

has the property that { <p G O | a(<p, A ) ^ 0} is finite for all À G A, and b: A —» G. 
Consider a canonical set of linear equations, indexed by A, in variables x^ G G for 
(f G O: 

(13) XI a((f,X)xip =b(X), for A G A. 

It is easy to see in fact that systems of this form with arbitrary integer coefficients can be 
reduced to this special case by adding extra variables. 

DEFINITION 4.1. (i) System (13) is solvable if there exist variables JC ,̂ for ip G O 
satisfying the system. 

(ii) System (13) is finitely solvable if every finite subsystem of (13) (i.e. indexed by 
A G Ao where Ao is a finite subset of A) is solvable. 

(iii) G is equationally compact if any system of the form (13) which is finitely solv­
able, is solvable. 

It is easy to see, by Tychonoff 's theorem, that if G is a compact abelian group then 
it is equationally compact: corresponding to any finite subsystem is a collection of pos­
sible solutions which clearly form a closed subset of the compact set G°, and which 
furthermore have the finite intersection property. 

DEFINITION 4.2. An abelian group G is divisible if for any x G G and n G N, there 
exists y G G with ny — x. 

Thus, for example, (Q, +), (R, +) and (C, +) are divisible, but (Z, +) is not. 

THEOREM 4.3. Any divisible abelian group is equationally compact. 

PROOF. See for example [8, Appendix 6, by G.H. Wenzel]. • 
Thus (Q, +), (R, +) and (C, +) are all equationally compact. The following example 

shows that (Z, +) is not equationally compact. 

EXAMPLE. Consider the system of equations in (Z, +) 

(14) xn + 2xn+l = 1, n G N. 

Clearly (14) is finitely solvable but not solvable. 
The proof of the following decomposition result in the case in which we are particu­

larly interested, where G is (R, +) (and equally when G is (C, +) or (Q, +)), proceeds in 
two steps. The first step depends on the previous observation that for functions on finite 
sets, decomposable functions form a subspace of a finite-dimensional vector space, so 
are a closed set under pointwise convergence. We then use the equational compactness 
of (R, +) (or (C, +) or (Q, +)) to extend to the infinite case. We shall use the notation that 
for s G n?=i Si and / C { 1,2,..., n}, s/ G He/ Si is defined by (57)/ = s,, for / G /. 
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THEOREM 4.4. Suppose 

vcf[sh 
1=1 

G is a topological group, and h:V —> G . Suppose 0 ^ l} C { 1 , . . . , n}, and fa: 

Hieij St —> G are nets of functions indexed by a G S, for each j = 1 , . . . , m. Suppose 

that h: n"= \S{ —> G has the property that 

(15) \im(f?{sh)fî{sh).. .fâ{slmj) = h(s), for all s G V. 

Suppose finally that one of the following assumptions holds 

(16) G is compact, or 

(17) G= ( Q , + ) , ( R , + ) o r ( C , + ) . 

77*en //zere exist functions f: Yheij Si —+ G, j = 1 , . . . , m, with, 

(18) f\{shMsi2) ' ' -fm(slm) = h(s), for all s G V. 

PROOF. Assume (16) first. By Tychonoff s Theorem, for each j = 1 , . . . ,m, the 

Cartesian product 

FJ:=GU^SI 

is compact (in the product topology). Since the net {/" | a G 0 } C f i , there exists 

a convergent subnet {f^ \ ct\ G S\} with/i := l im a i / j a i G F j . Selecting convergent 

subnets in turn for each net {ff*} we eventually arrive at convergent subnets {f"m \ 

ocm G 0 m } with/; := limam^am G Fy, each/ — 1 , . . . ,m. The required conclusion, (18), 

now follows from (15). 

Secondly, suppose (17) holds. By equational compactness, in order to prove that ( 18) 

is solvable for the funct ions/ i , . . . ,/m, it suffices to show that (18) is finitely solvable. 

We can therefore without loss of generality assume V is finite, and therefore that the sets 

S i , . . . ,Sn are all finite. 

We can now regard Gv as a finite-dimensional vector space over G (where G is either 

Q, R or C ). Consider the following condition on p G Gv: 

m 

(19) There exist/}: l[Si-+GJ= 1 , . . . ,m, with YjfAsO = P(s^ f o r a11 s e v-
ieij y=i 

The set of p G Gv satisfying (19) is clearly a subspace of G v , so is closed (under 

pointwise convergence). From (15), h is a pointwise limit of functions satisfying (19), 

so therefore p := h satisfies (19). But this is exactly (18). • 

EXAMPLE (MEKLER). The following counterexample, due to [11], shows that the 

result can fail with G = (Z ,+) . Let S, = S2 = N x { 1,2,3}, and S3 = N. Define 

V C Si x S2 x S3 as the set of all points of the form 

((r, 1 ), (r, 1 ), 2r - 1 ) ((r, 1 ), (r, 2), 2r) ((r, 2), (r, 1 ), 2r) 

((r, 2), (r, 3), 2r - 1 ) ((r, 3), (r, 2), 2r + 1 ) ((r, 3), (r, 3), 2r + 2) 
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as r ranges over N, and define h: V —> Z by 

h(sus2,S3)= I 1 ' i f ( * i ^ 2 , s 3 ) = ( ( r , 3 ) , ( r , 2 ) , 2 r + l ) , s o m e r € N , 
10, otherwise. 

The condition that h is decomposable is then that there exist functions w, v: 

N x {1 ,2 ,3} —> Z, and vu: N —• Z such that for each r G N, 

w(r,l) + v>(>, l) + vv(2r- 1) = 0, 

M(r,l) + v(r,2) + w(2r) = 0, 

(20) u(r9 2) + v(r, 1 ) + w(2r) = 0, 

w(r,2) + v(r,3) + w ( 2 r - 1) - 0, 

w(r,3) + v(r,2) + w ( 2 r + l ) = 1, 

n(r, 3) + v(r, 3) + w(2r + 2) = 0, 

or equivalently, 

i*(r, l) + v(r,2) + w(2r) = 0, 

w(r,2) + v(r,3) + v K 2 r - l ) = 0, 

(21 ) w(r, 3) + v(r, 3) + w(2r + 2) = 0, 

v(r, 1) - v(r, 2) + w(2r - 1) - w(2r) = 0, 

v ( r , 2 ) - v(r,3) + w(2r + 1 ) - w(2r+2) = 1, 

2(w(2r - 1 ) - wÇLrj) + (w(2r + 1 ) - w(2r + 2)) = 1. 

Notice that having solved for w, the values of u and v may be found by back-substitution 

in (21). It follows, by making the substitution 

xr := w(2r— 1) — w(2r), each r G N , 

in the last equation in (21) and using the example after Theorem 4.3, that (21) (and 

therefore (20)) is finitely solvable for the variables w, v, w, but not solvable. Thus h is not 

decomposable. 

However, since (20) is finitely solvable, we can find ul, vz, wl such that putting u := 

ul, v :— v/, w := wl solves (20) for all r = 1,2, . . . , / . It then follows that 

\im(ul(s\) + vl(s2) + wl(s3)) — /Î(Si,^2,S3),for all (s\,S2,s-$) £ V, 

so /i is a pointwise limit of decomposable functions, but is not decomposable. 
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5. The continuous case. In Section 3 we gave various conditions under which a 
bivariate function was decomposable, or in other words could be written as a product 
(or sum) of two univariate functions. In many circumstances the sets involved may have 
additional topological or measure-theoretic structure, in which case it is natural to impose 
the corresponding structure on the component functions. In the next two sections we 
will consider first the case of continuous functions, and then measurable functions. We 
will restrict attention to the bivariate case: the multivariate results will be analogous 
extensions. 

Throughout this section we will suppose S\, S2 are topological spaces, and for a subset 
E C S\ x S2 we write for the projections 

P2) Sf := {51 G Si I (s\,s2) G E for some s2 G S2}, 

Sf '•= {s2 £ S2\ (s\,s2) G E for some 51 G Si}. 

Clearly if E is open in Si x S2, Sf and Sf are open in Si and S2 respectively. We shall 
also suppose that G is a topological group, with identity e. 

The first result shows that if h is continuous on an open set E, and is decomposable, 
then it decomposes into a product of continuous functions. 

PROPOSITION 5.1. Suppose E C Si x S2 is open, h:E —• G is continuous, and 
frSf-^G, 1 = 1,2, with 

h(s\,s2) = f\(s\)f2(s2), for all (su s2) G E. 

Thenf\ andf2 are continuous. 

PROOF. Suppose s°x G Sf, U C G open, and/i(.s?) G U. Thus for some s% G Sf, 
Cs?,^) ^ E> s o KtfiS?) = A(s°\)f2(s2) G £//*2($2)• Since h is continuous, there exists an 
open neighbourhood V of s® in Si, with 

h(sus°2)=Ms])Ms0
2)eUf2(s°2\ 

orf\(s\) G U, for all s\ G V with (si ,^) G E. But since E is open there exists an open 
neighbourhood W of s°{ in Si, with (s\,Sj) G E for all s\ G W. Thus VPi W is an open 
neighbourhood of s® in Si with/1 (51) G £/ for all 51 G VPl W,sof\ is continuous. 
Similarly,/2 is continuous. • 

An easy example shows that this result may fail if E is not open. For example, suppose 
Si := {1,2} (with the discrete topology), S2 := [0,1], G = (R,+) (with the usual 
topologies), and E = {(1,0),(1,1)} U ({2} x (0,1]), with A( 1,1) = - 1 and A = 0 
elsewhere on E. Then defining/i(l) := 0,/i(2) := 1, and 

f. fO, if52 = 0, 

we have h(s\,s2) = f\(s\) + f2{s2) for all (^1,̂ 2) G E, although f2 is not continuous. 
Furthermore, there is clearly no decomposition of h into continuous functions, as the 
given decomposition is unique up to a constant. 
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The other question of interest is that of uniqueness of decomposition. By Theorem 3.3, 

this amounts to checking that the graph associated with E is connected. In this topological 

setting we can be more concrete, using topological connectedness. 

PROPOSITION 5.2. Suppose f: Sf —> G, i — 1,2 are continuous, withf\(s\ )f2(s2) = 

e, for all (s\, s 2) G E. Suppose one of the following conditions holds: 

(i) Sf is connected, andfor all s\ G Sf, there exists S2 G S2 and an open neighbour­

hood U of s\ with U x {^2} C E. 

(ii) Sf is connected, and for all S2 G Sf, there exists s\ G S\ and an open neighbour­

hood V ofs2 with {s\} x V C E. 

(Hi) E is open and connected. 

Then for some contant k G G,f = k on Sf andf2 = k~] on Sf. 

PROOF, (i) Suppose s® G 5f. Pick 2̂ G S2 and an open neighbourhood U of s°{ with 

U x {S2} C E. Then for all s\ G U,f\(s\) = / 2 f e ) _ 1 • Thus/i is locally constant on Sf, 

so by connectedness is constant, [18, p. 105]. The result follows. 

(ii) Similar. 

(iii) This condition implies both (i) and (ii), since Sf and Sf a r e m e continuous pro­

jections of E onto Si and S2 respectively, so are connected [18, p. 97]. • 

This result clearly resolves the uniqueness question since if 

p\(s\)p2(s2) = q\(s\)q2(s2),fordl\ (sus2) G E, 

then 

(qi(s\T]p\(si))(P2(s2)q2(s2rl) = e, 

so for some k G G, 

q](s\y]p\(S}) = k, for a\\ s\ G Sf, 

P2(s2)q2(s2yl = k~\ for all ^2 G Sf, 

or^i(^i) = pi( j i)k_ 1 a n d ^ f e ) = kp2{s2). 

EXAMPLE. Suppose Si = S2 = fO, 1] with the usual topology, and E c [0, l ] 2 is 

open with the main diagonal {(s, s) \ s G [0, 1 ]} C E. Then it is easy to see (i) applies. 

6. The measurable case. The previous section showed that if a bivariate function 

was continuous and decomposable then it decomposed into continuous univariate func­

tions. We also showed uniqueness results. In this section we will develop the analogue 

results for the measurable case. Again we will restrict our attention to the bivariate case: 

extensions to multivariate results will be analogous. 

We suppose (S\,p,\) and (S2, p,2) are measure spaces, and G is a topological group with 

identity e. We will take the Borel sets of a topological space to be the a -algebra generated 

by the open sets (as in [15]) rather than the (possibly smaller) a-algebra generated by 

the compact sets (as in [9]). In a locally compact, a -compact Hausdorff space (such as 

R ) the two will be the same (see [9, p. 219]). 
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We shall suppose E C S\ x S2 is fi\ x /x2 - measurable and we will lose no generality 
by assuming Sf = S\ and S2 = S2 (defined as in (22)). Our first result is the analogue of 
Proposition 5.1. We show that, under a simple condition on £, if a measurable function 
on E is decomposable, then it decomposes into a product of measurable functions. 

PROPOSITION 6.1. Suppose E C S\ x 52 is a countable union of measurable rectan­
gles, h:S\ x S2 —• G is measurable (fi\ x 112), and/ : S\ —* G,f2: ^2 —» G, with 

A(si,s2) = Ms\]f2(s2)9 (Mi x /x2)-a.e. o n £ 

Then/ is ///-measurable, / = 1,2. 

PROOF. Suppose E = U™{(S\ x SJ
2), where each SJ

t is ///-measurable and non-null. 
Then for each / 

h(s],s2) = f\(s\)f2(s2), (Mi x fi2) -a.e. onS\ x SJ
2, 

so by [9, p. 147], for //1-almost all s\ G S\, 

h(sus2)=f(sl)f2(s2) [i2 -a.e. on SJ
2. 

In particular, there exists dx G S\ with 

/>(s2) = ( / K ^ ) " 1 ^ » ^ ) , M2 -a.e. onS7
2, 

so/21^ is /^-measurable, since h is measurable, and every section of a measurable func­
tion is measurable {cf. [9, p. 142]). 

Now by assumption, U™XSJ
2 = S2. Suppose £/ C G is open. Then 

f2\U) = U^(f2\sJ)-\U) 

which is measurable. Thus/2 is measurable, and similarly, so i s / . • 

NOTE. At least when G = R it makes no difference whether we assume h is (//i x 
/^-measurable or measurable with respect to the completion {\i\ x /i2X since in the 
latter case there exists a (/M X /^-measurable function /i' with h = h', (/J7~x~jU2)-a.e. 
[15, p. 145]. 

Certainly not every measurable subset of S\ x S2 will be a countable union of mea­
surable rectangles. However, the following result gives a simple condition. 

LEMMA 6.2. Suppose S\,S2 are separable metric spaces, with Borel measures fi\ 
and p2 respectively. If E C S\ x S2 is open then it is a countable union of measurable 
rectangles. 

PROOF. For each e — {e\, e2) in E choose open neighbourhoods S\ of e\ and S2 of 
e2 with S\ x S\ C E. These measurable rectangles form an open cover of E, and since E 
is Lindelof there is a countable subcover. • 

We next prove a uniqueness result which is analogous to Proposition 5.2. We first 
need an analogue of the result that a locally constant function on a connected space is 
constant. 

https://doi.org/10.4153/CJM-1992-030-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-030-9


DECOMPOSITION OF MULTIVARIATE FUNCTIONS 479 

LEMMA 6.3. Suppose S is a connected, locally compact, a-compact Hausdorff 

space, and \i is a Borel measure on S with full support, in other words every nonempty 

open set in S has strictly positive measure. Suppose f: S —> G is measurable and locally 

a.e. constant: given any s G S there exists a neighbourhood of s on which f is constant 

a.e. Thenf is constant a.e. on S. 

PROOF. Define a function F: S —• G as follows. Given t G S, there exists an open 

neighbourhood Ut of t and a constant gt G G w i t h / 0 ) = gt, a.e. on Ut: then define 

F{t) := gt. The function F is well-defined, since if U' is another neighbourhood of t and 

f(s) = g\ a.e. on U\ then since /x has full support, n(Utn U') > 0, so gt = g'. 

Now F is locally constant on S. To see this, suppose so € S. By assumption, there 

exists an open neighbourhood UQ of so and go G G with f(s) = go, a.e. on UQ, and then 

F{so) — go- Suppose s\ G UQ. Then again by assumption, there exists a neighbourhood 

U\ of s\ and g\ G G with f (s) = g\, a.e. on U\, and then F(s\) = g\. Since / /has full 

support, p(Uo Pi U\)> 0, so go = gi• Thus F($) = F(^o) for all s G £/o, as required. 

It follows immediately that F is continuous, and therefore constant, since S is con­

nected. Suppose F(s) — k G G for all s G 5. Thus f(s) = &, a.e. on Ut for all / G S. Now 

UtesUt is an open cover of 5, and since S is a-compact it is Lindelôf [10, p. 172] so there 

exists a countable subcover \J™xUtj. Bu t /O) = K a.e. on each Utj, sof(s) = /c, a.e. on 

5. ' m 

THEOREM 6.4. Suppose S\ and S2 are locally compact Hausdorff spaces with Borel 

measures p,\ and \ii respectively, each with full support. Suppose E is a measurable 

subset ofS\ x 5*2, f\ :S\ —• G andfj;. S2 —> G are measurable, and 

f\(s\)f2(s2) = e, (/ii x /i2) -a.e. on E. 

Suppose the following conditions hold: 

(1) S\ is a-compact and connected. 

(2) For each S\ G S\ there exists s2 G S2 with Oi, ^2) in the interior of E. 

(3) p\{s\ G S\ I 0i»^2) G F} > 0, p>2 -a.e. on S2. 

Then for some constant k G G, 

/1O1) = k, fi\ -a.e. on Su 

and 

/2O2) = k~ , p2 -a.e. on S2. 

PROOF. Suppose tx G S\. By Condition (2), there exists t2 G S2 with (t\, t2) in the 

interior of E, so for some open neighbourhoods U\ and U2 of t\ and t2 respectively, 

Ui xU2C E. Now 

/1OO/2O2) = e, (/ii X M2) -a.e. on i/i x U2. 
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Therefore by [9, p. 147], for almost all s2 G U2, 

f\(s\)f2(s2) = e, /ij -a.e. on U\. 

Since [i2 has full support, so p2(U2) > 0, there exists s\ G U2 with 

f\(s\) = (f2(s°2)r\ / x i -a . e .on t / , . 

Thus/i is locally a.e. constant, so constant a.e. on S\, by Condition 1 and Lemma 6.3. 

Thus for some k G G,f\(s\) = k, /ii -a.e. on S\. 

Finally, by assumption, 

(/x, xii2){(sx,s2)eE\Mstf2(s2)?e} - 0 , 

so by [9, p. 147], for /^-almost all s2 G 52, 

Mi{5, € 5 , I (suS2)eE,Mstf2(s2)?e} = 0, 

and thus by Condition 3, 

»\{si G 5, I (sus2)eE9MSl)f2(s2) = e} > 0. 

But/ i (^i) = k, 11 \ -a.e. on 5i, so certainly there exists s{\ G S\ with (^,52) in E, 

f\(s°\)f2(s2) = e, a n d / i ( ^ ) = k, sof2(s2) = k~x. Since this holds /X2 -a.e. on 52, the 

result follows. • 

Just as in Section 5, this resolves the uniqueness question, since if 

P\(s\)p2(s2) = q\{s\)q2{s2), a.e. on E, 

then 

(q\(s\TXp\(s\))(p2{s2)q2(s2)^) = e, a.e. on E, 

so for some k G G, 

^i(vi)"Vi(^i) = k, a.e. o n 5 j , 

7^2(^2)^2(^2) ' = k~], a.e. on 52, 

or ^1 = p\k~x, a.e. and ^2 = &/?2» a.e. 

Clearly we could interchange S\ and 52 . 

EXAMPLES. The conditions in the above result will hold in each of the following 

cases. 

(i) S\ = S2 — /, a closed interval in R with Lebesgue measure, E an open set in 

I x I containing the main diagonal { (s, s) \ s G /} . 

(ii) Suppose S\ is a-compact and connected, and 

E={(sus2)\p(suS2)> 0 } , 
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where p: S\ x S2 —> ^ is lower semicontinuous (so E is open). Suppose there 
exists surjective q:S\ —y S2 with p(s i,#Csi)) > 0 for all si £ Si. Then the 
conditions hold, 

(iii) S] = S2 = [0,1] andp(s\,S2) = \s\ — 521. Then 

* + £, ^ [ O , ; J , 
J 1 - 5 , J i G ( ^ , l ] , 

^ l ) : = ^ - - V - 1 - L - 2 

works in (ii). 
We conclude with a discussion of a problem from the introduction. Suppose Si and S2 

are compact metric spaces, with Borel measures p\ and /z2 respectively, each with full 
support, and suppose E C Si x S2 is open. Consider the subspace 2) of L\ {E,p\ x ^2) 
consisting of these integrable functions h:E—>R which can be written 

h(s\,s2)=Msi)+f2(s2), a.e. on £, 

where/1: Si —* R and/2' S2 —> R are measurable. We shall show that 2) is closed. 
Suppose therefore that hn e^D.n— 1,2,... , that/z G Z>i(£, p\ x/i2), and ||/iw—/*||i —> 

0. Thus for some measurable functions/" = Si —• R and/2" = S2 —> R, 

/*"(*,,s2)=/i>i)+/2"fe), a.e.on£. 

By [15, 3.12], for some subsequence (V), hn' —• /i pointwise a.e. on£. It now follows by 
Corollary 2.4 that there exist functions/i : Si —> R and/2: S2 —> R with 

ZiOi,^) =/i(^i)+/2fe), a.e. on£. 

Since Si and S2 are compact metric spaces they are separable, so Lemma 6.2 shows E is 
a countable union of measurable rectangles. Now Proposition 6.1 applies to show/ and 
fz are measurable, so h G 2) as required. 
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