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Abstract

Background. Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous
neurodevelopmental disorder defined by characteristic behavioral and cognitive features.
Abnormal brain dynamic functional connectivity (dFC) has been associated with the disorder.
The full spectrum of ADHD-related variation of brain dynamics and its association with
behavioral and cognitive features remain to be established.
Methods. We sought to identify patterns of brain dynamics linked to specific behavioral and
cognitive dimensions using sparse canonical correlation analysis across a cohort of children
with and without ADHD (122 children in total, 63 with ADHD). Then, using mediation ana-
lysis, we tested the hypothesis that cognitive deficits mediate the relationship between brain
dynamics and ADHD-associated behaviors.
Results. We identified four distinct patterns of dFC, each corresponding to a specific dimen-
sion of behavioral or cognitive function (r = 0.811–0.879). Specifically, the inattention/hyper-
activity dimension was positively associated with dFC within the default mode network
(DMN) and negatively associated with dFC between DMN and the sensorimotor network
(SMN); the somatization dimension was positively associated with dFC within DMN and
SMN; the inhibition and flexibility dimension and fluency and memory dimensions were
both positively associated with dFC within DMN and between DMN and SMN, and nega-
tively associated with dFC between DMN and the fronto-parietal network. Furthermore, we
observed that cognitive functions of inhibition and flexibility mediated the relationship
between brain dynamics and behavioral manifestations of inattention and hyperactivity.
Conclusions. These findings document the importance of distinct patterns of dynamic func-
tional brain activity for different cardinal behavioral and cognitive features related to ADHD.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous condition manifest in
problems of inattention, hyperactivity, impulsivity, and deficits in cognitive function
(Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). These problems are believed to be dri-
ven by atypical brain structural (Aoki, Cortese, & Castellanos, 2018) and functional network
organization (Cortese et al., 2016). Abnormal functional connectivity (FC) within and between
default-mode, cognitive control, and attention networks (Castellanos & Aoki, 2016; Li et al.,
2014) has been identified in individuals with ADHD. Most studies have traditionally investi-
gated static connectivity in case–control comparisons, which assume a stable homogenous pat-
tern of FC over time. Both empirical observations and emerging theoretical perspectives
indicate that the brain connectome is time-varying and dynamic in ways that are themselves
clinically relevant. Thus, measuring brain dynamic fluctuations may provide unique insight
into dysfunctional brain organization and its relation to specific behavioral issues in ADHD
(Rolls, Cheng, & Feng, 2021). Most previous studies of dynamic FC (dFC) in ADHD rely
on case–control study designs, testing for categorical differences between patients and controls.
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These studies reported greater variability in brain FC over time at
the global brain level (de Lacy & Calhoun, 2019), locally within
default mode network (DMN) (Mowinckel et al., 2017) or
between DMN and other brain systems (e.g. salience and central
executive networks) in patients with ADHD (Cai, Chen, Szegletes,
Supekar, & Menon, 2018; Shappell et al., 2021).

Existing brain dynamic studies in ADHD mainly rely on case–
control study designs, testing for group-level differences between
patients and controls, which are unable to capture heterogeneity
within patients and their relation to clinical features
(Satterthwaite et al., 2015). Recently, two neuroimaging
meta-analyses of whole brain structural and functional studies
of ADHD found no significant spatial convergence of altered
gray matter volume and functional alterations in patients com-
pared with healthy controls (Cortese, Aoki, Itahashi,
Castellanos, & Eickhoff, 2021; Samea et al., 2019). They suggested
the lack of significant spatial convergence may be accounted for
heterogeneity of patients. Therefore, in recent years, there is grow-
ing support for a dimensional model of ADHD in which ADHD
symptoms (e.g. inattentive and hyperactive/impulsive) are consid-
ered as continuously distributed from the general population to
patients (Asherson & Trzaskowski, 2015; Singh & Rose, 2009).
Moreover, there is a growing understanding that dimensional fea-
tures of psychopathology have distinct relations to alterations in
brain function that extend beyond patients whose conditions
are sufficiently severe to meet diagnostic criteria (Clark,
Cuthbert, Lewis-Fernandez, Narrow, & Reed, 2017; van Os,
Linscott, Myin-Germeys, Delespaul, & Krabbendam, 2009).
Notably, Shaw et al., found a pattern of cortical thinning occurred
in typically developing children (TDC) who have varying levels of
impulsive and hyperactive behaviors resembling that of children
with ADHD (Shaw et al., 2011). Another study demonstrated
reductions in cortical surface area in frontal, cingulate, and tem-
poral regions in patients with ADHD that were linked to ADHD
traits in the general population (Hoogman et al., 2019). Thus,
there is potential merit in studying ADHD-linked features in
both healthy individuals and those with ADHD.

A second issue is that discrete brain dynamic alterations can be
associated with specific behavioral or cognitive features associated
with the disorder. Cai et al., found that higher variability of cross-
network interaction among default mode, salience, and central
executive networks was correlated with inattention symptoms in
ADHD (Cai et al., 2018), and Mowinckel et al., found increased
DMN variability is related to cognitive impairments in ADHD
(Mowinckel et al., 2017). While these early studies are promising,
a full understanding of how local dynamic variability in brain
function relates to different illness-associated behavioral and cog-
nitive features requires further research (Insel et al., 2010).

Canonical correlation analysis (CCA) is a statistical tool for
identifying relationships between two multi-dimensional vari-
ables, such as regional brain features and behavioral alterations
in ADHD. This approach can evaluate the complex relationships
between brain imaging data and clinical measures in a more inte-
grated way than examining a large number of univariate correla-
tions. In the present study, we applied an advanced machine
learning technique called sparse CCA (sCCA) (Witten,
Tibshirani, & Hastie, 2009) to simultaneously model multi-
dimensional clinical and brain imaging measures and their rela-
tionships (Smith et al., 2015). Compared with traditional CCA,
sCCA adds elastic net regularization to sparse features to be cap-
able of discovering complex linear relationships between two
high-dimensional datasets. sCCA has been successfully applied

in studies of neurodegenerative diseases (Avants et al., 2014), psy-
chopathology (Li et al., 2022; Xia et al., 2018), and brain-behavior
relationships in healthy individuals (Smith et al., 2015).

To date, no study has explored the relationship among brain
dynamics, cognitive functions, and behaviors to determine whether
cognitive deficits mediate the relationship between dimensions of
dynamic organization of brain function and behavioral features
related to ADHD. Therefore, the present study aimed to delineate
multivariate dFC patterns associated with ADHD-related behaviors
and cognitive functions, and to clarify the relationship among them.
First, we sought to establish relationships between distinct patterns
of brain dynamics and behavioral and cognitive dimensions.
Second, using mediation analysis, we tested the hypothesis that cog-
nitive deficits mediate the relationship between brain dynamics and
ADHD-associated behaviors.

Materials and methods

Participants and clinical assessments

A total of 161 right-handed children (6–16 years old) were
recruited from local schools, including 85 drug-naive children
with ADHD and 76 TDC. This study was approved by the local
research ethics committee of West China Hospital of Sichuan
University. All participants and their guardians provided written
informed consent. Diagnosis of ADHD, and the absence of other
Axis I psychiatric disorders, was determined by two experienced
clinical psychiatrists using the Chinese Revision of the Patient
Edition of the Structured Clinical Interview for DSM-IV
(SCID-CR). TDC were screened using the SCID-CR
Non-patient Edition to exclude individuals with any Axis I psy-
chiatric diagnoses. This was done to better link findings specific-
ally to ADHD. Also, clinical interviews were performed to exclude
individuals with a known history of psychiatric illness in their
first-degree relatives. Exclusion criteria for all participants
included: (1) previous head trauma, neurologic disorders, or
neurosurgery; (2) significant systemic physical illnesses; (3) max-
imum head displacement more than 1.5 mm or maximum rota-
tion greater than 1.5° during resting-state functional magnetic
resonance imaging (rfMRI) scanning; (4) inability to complete
cognitive function tests; (5) full-scale IQ below 90 based on
Wechsler Intelligence Scale for Children, Chinese Revision; and
(6) contraindications to MR imaging. After data acquisition and
quality control (online Supplementary Fig. S1), the final partici-
pant sample comprised 122 individuals (63 with ADHD; Table 1).

Behavioral assessment included the Children Behavior
Checklist (CBCL) and the revised Conners’ Parent Rating Scale
(CPRS), with ratings provided by parents. Cognitive testing
included the Visual Memory Test of episodic memory (Temple,
Davis, Silverman, & Tremont, 2006), the Stroop Test of inhibitory
cognitive control (Jensen & Rohwer, 1966), the Wisconsin Card
Sorting Test (WCST) of cognitive flexibility (Nelson, 1976), the
Fluency Test used to evaluate the integrity of semantic systems
(Shao, Janse, Visser, & Meyer, 2014), and forward Digital Span
Test to assess short-term memory (Karatekin, 2004) (online
Supplementary Methods 1.1 and Table 1). The behavioral and
cognitive scores were continuously distributed from TDC to
ADHD with considerable overlap (online Supplementary
Fig. S2). Group differences of age, sex, and behavioral and cogni-
tive scores are shown in online Supplementary Table S1, with
children with ADHD generally showing more serious behavior
problems and worse cognitive function than TDC. We then tested
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Table 1. Demographic and clinical characteristics of all participants in the present study

　 Abbreviation Mean ± S.D. Range

Age (years) / 10.3 ± 2.3 7–16

Number of boys / 106 /

Number of girls / 16 /

Corners’ Parent Rating Scale

Conduct problems Con_C 9.1 ± 7.9 0–32

Study problems Con_S 5.2 ± 3.6 0–12

Psychosomatic problems Con_P 0.7 ± 1.2 0–5

Impulsivity-hyperactivity Con_IH 4.1 ± 3.4 0–12

Anxiety Con_A 1.3 ± 1.7 0–8

Hyperactivity index Con_HI 9.4 ± 7.3 0–30

Achenbach Children Behavior Checklist

Social withdrawn CBCL_soc 3.3 ± 3.5 0–16

Somatic complaints CBCL_S 1.3 ± 2.0 0–7

Anxious/Depressed CBCL_AD 4.0 ± 4.3 0–19

Uncommunicative CBCL_U 3.8 ± 3.3 0–12

Thought problems CBCL_T 1.2 ± 1.8 0–7

Attention problems CBCL_A 6.4 ± 4.5 0–18

Delinquent problems CBCL_D 3.6 ± 3.3 0–17

Aggressive behaviors CBCL_agg 10.0 ± 8.5 0–37

Internalizing CBCL_I 8.5 ± 8.0 0–37

Externalizing CBCL_E 13.7 ± 11.2 0–54

Visual Memory

Immediate score VM1 20.1 ± 3.3 7–24

Delayed score VM2 19.2 ± 3.5 7–24

Stroop Test

Stroop-C No. right STRC_R 110.3 ± 1.9 103–112

Stroop-C No. error STRC_E 1.4 ± 1.6 0–6

Stroop-C No. correction STRC_C 1.0 ± 1.3 0–4

Stroop-C total score STRC_S 111.2 ± 1.2 107–112

Stroop-C total time STRC_T 82.4 ± 27.4 50–180

Stroop-CW No. right STRCW_R 100.2 ± 9.6 72–112

Stroop-CW No. error STRCW_E 10.7 ± 9.8 0–40

Stroop-CW No. correction STRCW_C 5.5 ± 5.4 0–27

Stroop-CW total score STRCW_S 104.0 ± 14.4 11–112

Stroop-CW total time STRCW_T 221.9 ± 96.1 95–610

Fluency Test

Word Total score VFT_T 18.7 ± 5.9 8–42

Word No. error VFT_E 0.1 ± 0.3 0–2

Word No. perseverative VFT_P 0.7 ± 1.3 0–5

Word No. correct VFT_C 17.7 ± 6.1 4–42

Ideational No. correct IFT 13.4 ± 6.6 3–28

non-VFT No. correct nVFT 15.8 ± 8.1 3–35

Wisconsin Card Sorting Test

(Continued )
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the main effect of diagnosis and sex, as well as the diagnosis × sex
interactions on the cognitive or behavioral ratings (online
Supplementary Table S2). We have also tested for group differ-
ences of cognitive or behavioral scores for boys and girls, as
well as sex differences of cognitive and behavioral scores of
TDC and ADHD, respectively (online Supplementary Table S3).
For all participants, there was no sex difference in almost
all cognitive and behavioral ratings, and there were no significant
associations between age and behavioral ratings, but signifi-
cant correlations between age and some scores of cognitive per-
formance were found as expected (online Supplementary
Table S4).

MR data acquisition and preprocessing

All participants underwent rfMRI and high-resolution T1-weighted
MR imaging by using a 3-T MRI system (Trio; Siemens). The
rfMRI data were obtained with a gradient-echo echo-planar imaging
sequence with the following parameters: repetition time (TR) = 2000
ms; echo time (TE) = 30ms; flip angle = 90°; slice thickness = 5mm
with no gap, field of view = 240 × 240mm2, matrix size = 64 × 64,
voxel size = 3.75 × 3.75 × 5mm3. Each brain volume comprised 30
axial slices to cover the whole brain, and each functional imaging ses-
sion contained 205 volumes. High-resolution three-dimensional
structural MRI was obtained with a magnetization prepared rapid
gradient echo sequence (TR/TE = 1900/2.5 ms; flip angle = 9°; slice
thickness = 1mm; field of view = 256 × 256mm2; matrix size =
256 × 256; number of sagittal slices = 176). During scanning, partici-
pants were instructed to keep their heads still and relax with their
eyes closed without falling asleep or having systematic thought.
Earplugs and foam padding were used to reduce noise and head
motion.

MR image preprocessing was performed using the toolbox for
Data Processing & Analysis of Brain Imaging (rfmri.org/DPABI).
The first five volumes of rfMRI data were removed to reduce
equilibration effects, leaving a total of 200 volumes for statistical
analysis. The remaining functional images underwent slice-timing
correction and were realigned to reduce displacement between
volumes. Individual structural images were co-registered to the
mean of functional images after realignment. The transformed
structural images were then segmented into gray matter, white
matter, and cerebrospinal fluid. To control for head motion and
physiological noise, Friston-24 head motion parameters, linear
trend, and signals from the white matter, cerebrospinal fluid,
and global signal were regressed out. We performed global signal
regression. Previous studies have suggested that the temporal vari-
ability of FC is sensitive to head motion induced artifacts
(Laumann et al., 2017), and global signal regression is effective

for reducing this problem (Lydon-Staley, Ciric, Satterthwaite, &
Bassett, 2019). The Diffeomorphic Anatomical Registration
Through Exponentiated Lie algebra tool was used to compute
transformations from individual native space to the Montreal
Neurological Institute template and to resample functional images
to 3 × 3 × 3 mm3 resolution. Then, the normalized data were tem-
porally filtered between 0.01 and 0.08 Hz. Participants with a
maximum head displacement more than 1.5 mm or maximum
rotation greater than 1.5° were excluded from the analysis.

Dynamic functional network construction

The dynamic functional network was built using the preprocessed
rfMRI data. We partitioned the brain using the Power atlas
(Power et al., 2011), excluding 33 brain regions that were not
assigned to a specific network and four cerebellar regions. The
remaining 227 brain regions are considered components of one
of ten well-established large-scale resting-state networks (Mohr
et al., 2016): the sensorimotor network (SMN), cingulo-opercular
network (CON), auditory network (AUD), DMN, visual network
(VIS), fronto-parietal network (FPN), salience network (SAN),
subcortical network (SUB), ventral attention network (VAN),
and dorsal attention network (DAN) (Fig. 1a). A sliding-window
approach with 22-TR (44s) window size and one TR step was
used to measure windowed FC matrices, as previous studies
have suggested that time windows of 30s to 60s can successfully
capture patterns of resting-state fluctuations of dFC (Luo et al.,
2021; Preti, Bolton, & Van De Ville, 2017; Yin et al., 2022; You
et al., 2022). The dFC matrices were estimated by the standard
deviation across all windows between all pairs of brain regions
(Fig. 1a). Higher dFC represents more temporal fluctuation and
instability of FC across time windows.

To validate the consistency of dFC measures regardless of dif-
ferent methods, we used a flexible least squares (FLS) method in
the DynamicBC toolbox (restfmri.net/forum/DynamicBC)
(online Supplementary Methods 1.2). dFC matrices obtained
using the FLS approach were very similar to those obtained by
the sliding-window approach (online Supplementary Fig. S3).

sCCA

We used sCCA to find relationships between high-dimensional
brain imaging data and clinical data (Witten et al., 2009) (Fig. 1
and online Supplementary Methods 1.3). To limit the influence
of potential confounders on sCCA results, we regressed age, sex,
and mean framewise displacement out of dFC data, and regressed
age and sex out of behavioral and cognitive data. Before sCCA, we

Table 1. (Continued.)

　 Abbreviation Mean ± S.D. Range

Total correct matches WCST_C 33.3 ± 8.7 10–46

Total errors WCST_E 11.7 ± 10.5 1–38

Perseverative errors WCST_PE 3.0 ± 4.0 0–16

Noperseverative errors WCST_NE 8.7 ± 7.2 1–29

Categories completed WCST_cat 5.0 ± 1.9 0–7

Digital span (forward) DS 8.1 ± 1.9 5–12

Abbreviations: S.D., standard deviation; Stroop-C/CW, Stroop Color/Color-Word Test; No., number of; VFT, Verbal Fluency Test.
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used the Relief algorithm (Kira & Rendell, 1992) to select the top
1% of dFC features with the highest weight, and the selected dFC
features were entered into dFC-behavior and dFC-cognition
sCCA, respectively. We used elastic net regularization to deter-
mine the best sparsity parameters for computing the canonical
correlations (online Supplementary Fig. S4). Permutation tests
(1000 times) were used to assess the significance of the canonical
correlations, and false discovery rate (FDR) correction was used to
preserve experiment-wise Type I error rate at p < 0.05. We also
explored the multivariate relationships between dFC and clinical
assessments within each group, separately.

A bootstrapping procedure was used to estimate mean and
standard error for canonical correlations and to identify reliable
features that were consistently significant regarding the random
resampling. We next calculated Pearson’s correlation between
each original variable and the corresponding canonical variate
to confirm that these stable features were significantly related to
their respective linear combined variates. Finally, to understand
the meaning of each significant canonical variate and facilitate
visualization, we calculated the sum of absolute loading values
of dFC features at the network level (higher loadings indicating

more importance of individual variates for corresponding canon-
ical variates).

In order to validate whether different feature selection meth-
ods affect our sCCA result, principal component analysis was per-
formed to reduce feature dimension. We also used dFC matrices
obtained by the FLS methods to measure sCCA. These findings
were similar to the main analysis (online Supplementary Figs S6
and S7).

Mediation analysis

Pearson correlations were computed to identify significant rela-
tionships between pairs of dimension scores (linear combination
scores) for cognition and behavior. The correlation analysis
revealed that the inhibition and flexibility cognitive dimension
score significantly correlated with inattention/hyperactivity
dimension score (r = −0.429, p < 0.001), while the other three
pairs didn’t show a significant correlation. Therefore, we inferred
that cognitive functions involving inhibitory control and cognitive
flexibility could mediate the relationship between dFC and
inattention/hyperactivity. We selected overlapping dFCs

Fig. 1. The schematic of sparse canonical correlation analysis (sCCA). (a): After preprocessing, time courses of resting-state functional magnetic resonance imaging
data were extracted from 227 spherical regions of interest (ROIs) of the cortical and subcortical structures. ROIs of the same color belong to the same network as
defined by Power et al. Using the sliding-window approach, we calculated the functional connectivity (FC) matrix of each time window. Then the dynamic FC (dFC)
matrix of each subject was estimated by the standard deviation across all sliding windows. (b): Behavior and cognition scores were obtained, which were entered
into sCCA as clinical features, respectively. (c): sCCA seeks a linear combination of dFC features and clinical features that maximize their correlation. Abbreviations:
SMN, sensorimotor network; CON, cingulo-opercular network; AUD, auditory network; DMN, default mode network; VIS, visual network; FPN, fronto-parietal net-
work; SAN, salience network; SUB, subcortical network; VAN, ventral attention network; DAN, dorsal attention network; CPRS, Corners’ Parent Rating Scale; CBCL,
Achenbach Children Behavior Checklist; VM, Visual Memory; WCST, Wisconsin Card Sorting Test; DS, Digital Span.
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significantly correlated to both the cognition and behavior dimen-
sions for the mediation analysis. Then we calculated the mean
value of all dFCs positively or negatively correlated with the cog-
nition dimension score respectively to represent two types of
overlapping dFCs (named positive links and negative links that
mean dFCs with positive/negative loadings in canonical correl-
ation, respectively). We treated overlapping dFCs as independent
variables, cognitive function as a mediator, and behavioral pro-
blems as the outcome. Covariates used in this model included
age and sex. The total effect, direct effect, and indirect effect
were estimated (online Supplementary Methods 1.4).

Results

Canonical correlation patterns

Linked dimensions of behavior/cognition and dFC
Each canonical variate was determined by a weighted set of dFC fea-
tures with cognitive or behavioral features (Fig. 2 and online
Supplementary Results 2.2). For dFC-behavior relationships as
examined using sCCA, two canonical variate pairs were significantly
correlated. Based on the highly weighted item compositions, the two
significant behavioral dimensions (canonical variates) represented
behavioral traits of ‘inattention/hyperactivity’ and ‘somatization’
(rmean = 0.857, pFDR < 0.001; rmean = 0.836, pFDR = 0.042, respect-
ively) (online Supplementary Fig. S5b). For dFC-cognition sCCA,
two pairs were significant, the two significant cognitive dimensions
represented cognitive traits of ‘inhibition and flexibility’ and ‘fluency
and memory’ based on their highly weighted item compositions
(rmean = 0.864, pFDR < 0.001; rmean = 0.855, pFDR < 0.001, respect-
ively) (online Supplementary Fig. S5d). Then, we applied the load-
ing values obtained from all participants to ADHD and TDC
separately and found there was no significant difference in the
canonical correlation coefficient of the significant canonical variate
pairs between ADHD and TDC (online Supplementary Table S6).
We performed sCCA in TDC and ADHD groups separately and
found quite similar dFC patterns in the two groups for each behav-
ioral and cognitive dimension, and the dFC patterns in each group
resembled those obtained when all participants were considered
together (online Supplementary Table S7).

Characteristics of linked dimensions
The inattention/hyperactivity dimension was comprised of factor
scores including hyperactivity index, attention problems, and study
problems (loading value: v = 0.535; 0.506; 0.648, respectively)
(Fig. 2b). Scores on each of these three factors were stable and
strongly correlated with the canonical variate representing inatten-
tion/hyperactivity (online Supplementary Fig. S9a). At the network
level, the inattention/hyperactivity behavior dimension mainly corre-
lated with dFC within DMN (sum of absolute loading value: sum_u
= 0.425) and between DMN and other networks, especially in the
following pairs: DMN-SMN (sum_ u = 0.567) and DMN-FPN
(sum_u = 0.509) (Fig. 2c). Positive loadings of dFC within DMN
and negative loadings of dFC between DMN and SMN were most
prominent (Fig. 3a and online Supplementary Fig. S10a).

The somatization dimension was composed of psychosomatic
problems, somatic complaints, as well as internalizing features
(v = 0.545; 0.671; 0.412, respectively). Their loading value and
correlations with the canonical variate are shown in Fig. 2e and
online Supplementary Fig. S9b. This behavior dimension was
mainly associated with dFC within DMN (sum_u = 0.572) and
SMN (sum_u = 0.215), as well as between the two networks

(sum_u = 0.791) and between SMN and VIS (sum_u = 0.648)
(Fig. 2f). This dimension was characterized by positive loadings
of dFC within DMN and SMN, as well as both positive and nega-
tive loadings of dFC between DMN and SMN regions (Fig. 3a and
online Supplementary Fig. S10b).

Analysis of cognitive functions identified an inhibition and
flexibility dimension that was comprised of Stroop and WCST
scores. Stroop-CW total time (v =−0.310) and WCST number of
errors (v =−0.311) contributed most to this dimension (Fig. 2h
and online Supplementary Fig. S9c). The fluency and memory
dimension captured the association between Verbal Fluency Test
(VFT) scores and Visual Memory (VM) test scores (Fig. 2k and
online Supplementary Fig. S9d). Both cognitive dimensions corre-
lated with dFCs within SMN (sum_u = 0.240; 0.413), and within
the VIS (sum_u = 0.231; 0.359) and DMN networks (sum_u =
0.178; 0.293). Associations of these three networks with each
other and with other networks were also identified, chiefly includ-
ing dFCs between SMN-DMN (sum_u = 0.655; 1.031), SMN-VIS
(sum_u = 0.447; 0.413), DMN-VIS (sum of u = 0.556; 0.556), and
DMN-FPN (sum_u = 0.404; 0.513) (Fig. 2i and l). At the single
dFC link level, the two dimensions were characterized by positive
loadings of dFC within DMN and between DMN and SMN/VIS
as well as negative loadings of dFC between DMN and FPN
(Fig. 3b, online Supplementary Fig. S10c, and d).

There were several features shared across all dimensions. At the
network level, shared dFCs were mainly located within DMN and
between DMN and other networks (Fig. 3d). These dFCs could be
mapped to specific nodes, and 16 brain regions consistently con-
tributed to all four dimensions, in which seven belonged to
DMN, and three belonged to each of SMN and VIS (Fig. 3c).

Mediation analysis

The relationships between dFC and behavioral ratings of inatten-
tion/hyperactivity were mediated by cognitive functions of inhib-
ition and flexibility (Fig. 4). Positive links were mainly located
between DMN and SMN or VIS (Fig. 4a), while negative links
were mainly located between DMN and FPN (Fig. 4b).

Positive links had an inverse association with behavior problem
severity [total effect =−0.559, 95% CI (−0.706 to −0.400), p <
0.001]. The inhibition/flexibility dimension had significant indirect
effects (IE) on the relationship between positive dFC links and
behavioral features of inattention/hyperactivity [IE =−0.096, 95%
CI (−0.188 to −0.010), p = 0.030], and the proportion of mediation
explained for this relationship was 16.7% (Fig. 4a). Interestingly, the
relationship between negative links and the behavioral dimension
were also mediated by inhibition and flexibility [total effect =
0.378, 95% CI (0.212–0.540), p < 0.001]. The mediation effect of
inhibition and flexibility on these dFC-behavior relations was sig-
nificant [IE = 0.122, 95% CI (0.048–0.220), p = 0.002], and the pro-
portion of mediation explained was 31.7% (Fig. 4b).

Discussion

In the present study, we examined the clinical relevance of dFC
for cognitive and behavioral features of ADHD. We identified
four specific patterns of dynamic brain activity within and
between well-established brain networks, each related to a differ-
ent cognitive or behavioral dimension of ADHD. These effects
were most consistently seen in the DMN. Our work provides
potential markers for the identification of children with ADHD
likely to demonstrate specific behavioral or cognitive problems,
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Fig. 2. Scatter plot and contributions of behavior/cognition and dynamic functional connectivity (dFC) within/between networks for each significantly linked
dimension. (a, d, g, j): The scatter plots of linear combinations of dFC and behavior/cognition scores, respectively, demonstrate the correlated multivariate patterns
of dFC and clinical variates. (b, e, h, k): The loadings of clinical variates for each dimension. (c, f, i, l): The sum of the absolute values of loadings of dFC at the
within- and between-networks level. For the abbreviations of clinical measurements and brain networks see Table 1 and Fig. 1.
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but more importantly helps explain how specific functional brain
features contribute to specific behavioral features of the disorder.
It is important to note that similar patterns of brain-behavior/
cognition relations, though not the severity of the alterations,
were seen in children with ADHD and healthy controls. This
finding highlights the dimensional presentation of these associa-
tions in youth regardless of whether individuals meet the criteria
for ADHD. Further, we observed that the cognitive functions of
inhibition and flexibility mediated the association between brain
functional dynamics and behaviors of inattention and hyperactiv-
ity. This is consistent with the model that functional brain altera-
tions in ADHD disrupt neurocognitive processes in ways that
contribute to the behavioral characteristics that define the dis-
order. Overall, our findings demonstrate that distinct patterns of
alterations in the dynamic activity within and between brain net-
works contribute to different behavioral and cognitive features of
ADHD.

dFC patterns correlate with specific behavior and cognitive
dimensions

In the sCCA examining relations between dFC and behavioral
data, two canonical variates pairs were significant. The first pair

reflected a specific pattern of dFC features related to attention
problems and hyperactivity. The dFC pattern that was most
strongly associated with this dimension included positive loadings
of dFC within DMN and negative loadings of dFC between DMN
and SMN or FPN. In accordance with our results, Lin et al.,
adopted a similar computational approach but their analysis
was based on static FC data. They found that FC patterns most
strongly related to the inattention hyperactivity behavioral dimen-
sion mainly included hyperconnections between DMN and other
networks (Lin et al., 2018).

Mounting evidence indicates that alterations in DMN function
are associated with ADHD (Kaboodvand, Iravani, & Fransson,
2020), particularly in relation to attention lapses (Castellanos &
Aoki, 2016; Weissman, Roberts, Visscher, & Woldorff, 2006). A
previous study found that increased temporal variability of FC
within DMN was related to reduced cognitive performance in
patients with ADHD (Mowinckel et al., 2017). Increased temporal
fluctuation of FC within DMN indicates that the FC among nodes
of DMN is more variable over time. The functional instability of
DMN nodes may reduce its temporal coherence and functional
interactions with other networks, as we observed less variable
dynamic cross-network interaction between DMN and SMN or
FPN. Importantly, these two task-active networks mediate

Fig. 3. Both positive and negative loadings for specific dynamic functional connectivity (dFC) links contributed to each behavior dimension (a) and to each cog-
nition dimension (b). By searching for the overlapped dFC that contributed significantly to different dimensions, we found overlapped nodes (c) and dFC shown at
the network level (d) that significantly contributed to every dimension. The size of the spheres in panel C denotes the sum of their absolute loadings. In panel D, the
colored grids represent the sum of the absolute loadings of shared dFCs at the network level, and more yellow color of the grid represents the higher mean value of
network-level contribution for all dimensions. For the abbreviations of brain networks see Fig. 1 and for the abbreviations of specific brain areas in panels A and B
see online Supplementary Table S5.
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motor reactivity to sensory input and attention to external events,
both of which are key areas of disturbance associated with ADHD.
This interpretation is consistent with our findings, as we observed
that decreased dFC between DMN and SMN/FPN was related to
more severe inattention and hyperactivity.

Another significant canonical variates pair captured the asso-
ciation between somatization and a brain dynamic pattern that
mainly involved dFC within and between SMN and DMN, as
well as between those two networks and other networks (e.g.
SMN-VIS, DMN-FPN). The dimension of somatization was com-
posed of psychosomatic problems, somatic complaints, and
internalizing. Some prior static FC analyses reported findings
consistent with our findings related to dynamic changes in FC.
For example, Ernst et al., found that lower static connectivity of
DMN predicted higher internalizing symptoms in a healthy
population (Ernst et al., 2019). Previous studies have shown that

connections between SMN and DMN are related to somatization
(Otti et al., 2013; Zhao et al., 2017). One possible explanation for
this relationship is that abnormal dynamic interactions between
SMN and DMN may induce an experience of endogenous bodily
experiences without peripheral pathology.

For the analysis of canonical correlates between dFCs and cog-
nitive functions, two cognition dimensions were correlated with
dFC patterns mainly characterized by dFC within SMN, VIS,
and DMN, as well as among the three networks. Difficultly ignor-
ing extraneous stimuli is one of the core clinical deficits of
ADHD, and the DMN plays an important role in regulating the
allocation of attention between external stimuli and internal men-
tal activities (Silberstein, Pipingas, Farrow, Levy, & Stough, 2016).
Flexible shifts of brain function between the DMN and other net-
works are known to support sensorimotor and higher cognitive
functions including cognitive flexibility and working memory

Fig. 4. The significant results of mediation analysis
showed that the overlapped dynamic functional con-
nectivity (dFC) with negative (a) and positive (b) links
on behaviors of inattention and hyperactivity through
cognition of inhibition and flexibility, respectively. Path
a is the direct effect of dFC on cognition, and path b
is the direct effect of cognition on behaviors. DE (direct
effect) is the direct effect of dFC on behaviors after con-
trolling for cognition. IE (indirect effect) is the mediation
effect of dFC on behaviors through cognition. TE (total
effect) is the total effect of DE and IE. Covariates used
in the models included age and sex.
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(Chadick & Gazzaley, 2011; Dajani & Uddin, 2015; Fornito,
Harrison, Zalesky, & Simons, 2012; Sweeney et al., 1996;
Takeuchi et al., 2015; Vatansever, Menon, Manktelow, Sahakian,
& Stamatakis, 2015). Previous fMRI studies have demonstrated
that patients with ADHD showed deactivation of occipital regions
during spatial tasks (Vance et al., 2007) and occipital hyperactiva-
tions during the performance of behavioral inhibition, working
memory, and attentional tasks (Dillo et al., 2010; Hale,
Bookheimer, McGough, Phillips, & McCracken, 2007).
Interestingly, we found dynamics of FC between DMN and
SMN or VIS positively correlated with cognitive function, indicat-
ing that more flexible functional communication among the three
brain networks was related to better cognitive function.

Altered activity within the DMN was a common feature across
the four canonical pairs identified. In support of this finding, a
comprehensive meta-analysis of task-based fMRI studies found
that children with ADHD showed hyperactivation during tasks
within DMN (Cortese et al., 2012). As previously suggested, dis-
rupted connectivity within the DMN may alter interactions of
DMN with task-based networks, and perhaps also the ability to
reduce DMN function when task-active networks are required
for current cognitive demands. Such alterations could contribute
to the disruptions in cognition and behavior seen in ADHD
(Kaboodvand et al., 2020; Rolls et al., 2021). Specially, we
observed higher dFCs between DMN and low-order networks
(brain areas responsible for sensory and sensorimotor processes,
e.g. VIS, SMN) (Liu et al., 2012) mainly correlated with fewer
behavior problems and better cognitive performance as discussed
above. Our results showed that higher dFCs between DMN and
high-order networks (e.g. FPN) mainly correlated with more ser-
ious behavioral problems and poorer cognition, which is consistent
with a previous study (Cai et al., 2018). While higher dFCs between
DMN and high-order networks may lead to a reduced ability to
effectively recruit regional activity to address behavioral demands,
and thus contribute to the disruptions of cognitive function and
the emergence of behavioral problems related to ADHD.
Previous meta-analyses of diffusion tensor imaging studies of
ADHD revealed lower fractional anisotropy values in ADHD com-
pared with TDC in the corpus callosum, inferior fronto-occipital
fasciculus, and inferior longitudinal fasciculus (Aoki et al., 2018),
which might represent structural underpinning of altered dFCs.
This possibility warrants investigation in future research.

The relationships among dFC, cognitive function, and behavior

Mediation analysis indicated that the association between dFC and
inattention/hyperactivity ratings was mediated by cognitive abilities
of inhibitory control and cognitive flexibility. Inhibitory control and
cognitive flexibility have been suggested to be areas of basic neuro-
psychological deficits in ADHD (Castellanos & Tannock, 2002;
Smith, Taylor, Brammer, Toone, & Rubia, 2006). This concept
together with our results implies that etiological factors of ADHD
affect inhibitory control and cognitive flexibility, and are important
factors leading to the manifestation of the ADHD phenotype.

More specifically, increased dynamic interaction between DMN
and high-order networks was associated with more serious behavior
problems. These relationships were in part mediated by disruptions
in the cognitive functions of inhibition and flexibility. These findings
demonstrate a complex pattern of dFC associated with cognitive
functions, the disruption of which contributes to the behavior fea-
tures of ADHD. Moreover, our finding that cognitive function
mediated brain-behavior relationship may provide a rationale for

the use of cognitive therapies focusing on cognitive flexibility and
the cognitive control of automatic response tendencies for the treat-
ment of ADHD, as reducing those deficits may lead to improved
behavioral outcomes (Young, Moghaddam, & Tickle, 2020).

Limitations

Several potential limitations to our study should be considered.
First, we didn’t replicate our findings in an independent sample.
However, we note that our validation analysis using a different
method to quantify dynamics of FC indicated that dFC alterations
were not a result of the specific method and window size choice
used in our primary analyses. Moreover, in the sCCA analysis,
we used different feature selection methods yet obtained similar
results. Second, although we adopted one of the most popular
brain parcellation schemes used in previous studies, using a differ-
ent brain atlas may influence detected dFC patterns. However,
most of our findings of relations between regional brain function
and behavior relevant to ADHD are consistent with the previous
literatures. Third, further work is needed to examine developmen-
tal and sex-specific patterns of brain-behavior/cognition patterns
associated with ADHD, and the degree that they vary over time in
relation to the severity of symptoms and treatment initiation.
Fourth, our current analysis only considered dFC. Future research
might benefit from incorporating multi-modal imaging features
and genomics to more fully understand the mechanisms respon-
sible for the brain-behavior/cognition patterns identified in the
present study (Luo, You, DelBello, Gong, & Li, 2022; Zhao
et al., 2022). Fifth, in clinical samples, comorbidity in patients
with ADHD is common, and patients are typically receiving
medication treatments for ADHD. In our sample, the children
with ADHD were all drug-naive and free from any psychiatric
comorbidities. While this helps link our findings directly and spe-
cifically to ADHD features, it may also limit the generalization of
the present results to the general population of patients with
ADHD. Finally, the IQ cut-off in our study is 90 to avoid
non-ADHD related sources of cognitive impairment, which also
may limit the generalizability of our findings.

Conclusion

In summary, we identified four multivariate patterns of brain dFC
that were each highly correlated with distinct dimensions of
behavior and cognition. The dFC within DMN and in relation
of DMN with other networks was common to all identified brain-
behavior/cognition dimensions, highlighting the importance of
DMN alterations in ADHD. Mediation analysis revealed that cog-
nitive functions of inhibition and flexibility mediate the relation-
ship between brain dynamics and behavioral features of
inattention and hyperactivity. These results provide novel insights
into the complexity of brain function alterations in ADHD, and
the distinct relation of specific patterns of altered regional dFC
with different cognitive and behavioral aspects of ADHD.
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