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BANACH SPACES OF BOUNDED SOLUTIONS OF 4u = Pu (P > 0)
ON HYPERBOLIC RIEMANN SURFACES

MITSURU NAKAI

Consider a nonnegative Holder continuous 2-form P(z)dxdy on a
hyperbolic Riemann surface R (z = 2 + 1y). We denote by PB(R) the
Banach space of solutions of the equation 4du = Pu on R with finite
supremum norms. We are interested in the question how the Banach
space structure of PB(R) depends on P. Precisely we consider two such
2-forms P and @ on R and compare PB(R) and QB(R). If there exists
a bijective linear isometry T of PB(R) to QB(R), then we say that PB(R)
and @QB(R) are isomorphic. If moreover |u — Tu| is dominated by a
potential p, on R for every # in PB(R), then we say that PB(R) and
QB(R) are canonically isomorphic. Intuitively this means that u and
Tu have the same ideal boundary values. Using these terminologies our
problem is formulated as follows:

1° When are Banach spaces PB(R) and QB(R) isomorphic?

2° When are Banach spaces PB(R) and QB(R) canonically isomorphic?

For this purpose we consider the set 45, which we call the nondensity
point set associated with P(z)dxdy, of points z* in the Wiener harmonic
boundary 4 of R such that there exists a neighborhood U* of z* in the
Wiener compactification R* of R such that

[, 6eOPQEG <o @=¢+i

for some and hence for every z in R where G(z,£) is the harmonic Green’s
function on B. We shall see that the set 4, is a compact Stonean space
with the relative topology of R*. Qur main result in this paper is that
the Banach space structure of PB(R) is completely determined by the
space 4. More precisely the questions 1° and 2° can be answered in
terms of 4, as follows:
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THE MAIN THEOREM. Banach spaces PB(R) and QB(R) are isomor-
phic (canoncally isomorphic, resp.) if and only if spaces dp and 4y are
homeomorphic (identical, resp.).

Sufficient conditions to the question 2° thus far obtained by Royden
[18], Nakai [14], Maeda [9], Lahtinen [7], etc. are then direct conse-
quences of the above theorem. These will be discussed in nos. 15-18.
In nos. 1-5 we shall discuss behaviors of functions in PB(R) on the
Wiener compactification R* of E. The Heins canonical extension ¥ is
one of the important tools in our study. Another important tool, the
reduction operator Tp, is discussed in nos. 6-7. The structure of 4,
will be studied in nos. 8-11. The main theorem will then be proven in
nos. 12-13. An alternate definition of 4, is appended in no. 14.

Wiener compactification

1. Let P(z)dxdy be a 2-form on a Riemann surface R such that P(z)
is a Holder continuous function of each local parameter z = x + iy, i.e.
|P(z,) — P(z)| < K |2, — 2,|* for every pair of points z, and 2, in the para-
metric disk of z with a Ke(0,~) and an «<(0,1]. Then the elliptic
equation du(z) = P(z)u(z) can be invariently defined on R where du(z)dxdy
= dxdu(z). Denote by P(U) the linear space of solutions of 4u = Pu on
an open subset U of R. We also use the standard notation H(U) for
P(U) with P = 0.

LEMMA. The absolute value |u| of any w in P(U) is subharmonic on
U for every open subset U of R if and only if P(x)dxdy is nonnegative,
i.e. P(z) > 0 for every choice of local parameters z.

Proof. Suppose P >0 and we P(U). Then 4|u(z)] = P(z)|u(z)| >0
on the open set U’ = {2z ¢ U; u(z) # 0}, i.e. |u| is subharmonic on U’. The
submean value property is clearly valid for |u| at each point of U — U".
Therefore |u| is subharmonic on U. To show that P > 0 is necessary,
let z be an arbitrary point in R. If we take a sufficiently small regular
parametric disk U with z its center, then the Dirichlet problem of Au
= Pu is solvable for U with continuous boundary values ¢ and the solution
is nonnegative (positive, resp.) for ¢ > 0 (p > 0, resp.) (cf. Miranda [10]).
If u is the solution with ¢ =1, then, since |u| = u > 0 is subharmonie,
P(z) = du(z)/u(z) > 0. Q.E.D.
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2. Hereafter, we always assume that P(z) > 0. For simplicity such
a 2-form P()dzdy, i.e. Holder continuous and nonnegative, will be
referred to as a density on R. We denote by PB(R) the subspace of
P(R) consisting of solutions « with finite supremum norms:

ul = ullz = sztelglu(z)l .

We also use the standard notation HB(R) for PB(R) with P =0. Then
(PB(R),||-|) is a Banach space. We wish to determine the Banach space
structure of PB(R). We say that R is hyperbolic if there exists the
harmonic Green’s function on R. Nonhyperbolic surfaces are called
parabolic. The Ahlfors-Ohtsuka characterization (cf. [19]) says that R
is parabolic if and only if there does not exist any nonconstant positive
superharmonic function on R. Therefore if R is parabolic and u ¢ PB(R),
then, since ||u| — |u| is a nonnegative superharmonic function on R,
||| — |u| and hence u is a constant. This proves the following Brelot
[1,2]-Ozawa [17] theorem :

LEMMA. If R is parabolic, then PB(R) = {0} for densities P = 0 and
HB(R) = R (the real number field).

In view of this lemma the Banach space PB(R) is of no interest if
R is parabolic, and for this reason, hereafter, we always assume that
R is hyperbolic.

3. The Wiener compactification R* of a hyperbolic Riemann surface
R is a compact Hausdorff space containing R as its open and dense sub-
set such that C(R*) = {f|R; f e C(R*)} is the totality of bounded con-
tinuous Wiener functions on R. If F e C(R*), then f = F|R is of course
defined only on R but we always make the convention that f(z*) = F(2*)
for 2* e R* — R. Typical examples of Wiener functions on R are sub-
harmonic functions s on R such that |s| is bounded or more generally
dominated by superharmonic functions. Denote by 4 the set of points
z* in R* such that

liminf p(z) = 0

2ER,z2—2*

for every potential p on R, i.e. a superharmonic function p on R whose
greatest harmonic minorant is zero. The set 4 is contained in the Wiener
boundary R* — R of R and referred to as the Wiener harmonic boundary
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of R. For a subset A of R* we denote by A the closure of A in R*
and by 9A the relative boundary (A — Int A) N R with respect to B. Let
U be an open subset of R and s be a subharmonic function U bounded
from above. The maximum principle says that if

(1) limsups(z) < M

2€U ,z2—2*

for every z* in U) U (U N 4), then s< M on U.

An open subset W of R will be called normal if W is analytic. We
do not exclude W with oW = ¢, i.e. W = R, from our family of normal
open sets. We denote by 4% the open subset 4 N (W — W) of 4. We
can define an operator zy : C(R*) — C(R*) such that =y, f|W e H(W), and
awf|(R¥ — W)U @W)U A" = f for every feC(R*). For details of
Wiener compactification and the operator z,,, we refer to Constantinescu-
Cornea [3] or Sario-Nakai [19].

4. For a normal open subset W of R (including the case W = R)
we denote by PB(W ;oW) the family {ue PB(W)NCR);u|R — W = 0}.
We also use the notation HB(W ;oW) for PB(W;oW) with P=0. If
W = R, then PB(W;oW) = PB(W; ¢) = PB(W). By the same proof as
in no. 1 we see that « U 0 = max (%,0), —(x N 0) = —min (%, 0), and |u]
=uUO0—uN0 are subharmonic on R for every uwc PB(W ;3W). There-
fore PB(W;oW)C C(R*). By the maximum principle 1), ||u|z = ||ull;
for every ue PB(W;oW). For a regular region 2, i.e. relatively compact
and normal region in R, and a continuous function ¢ in C(8£2), we denote
by P? the function in P(Q) N C(2) such that P?|62 = ¢. We also use
the notation H? for P? with P=0. We define a linear operator
A% PB(W; oW) — PB(R) by
(2) 2Zu = lim P?

Q-R

for every ue PB(W ;3W). Then it satisfies
(3) AAuld =uld.

In particular 2% is isometric and hence injective. We use the notation
A% for 2% with P=0. These operators are referred to as canonical ex-
tensions (Heins [6]).

To see that (2) is well defined and (3) is valid, set v, =% U 0 and
v, = —(@NO0). Since |ul|>HJ > Pj >v, >0, {P?} is increasing and
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thus PJ, converges to a u; ¢ PB(R) as £ exhausts B (¢ = 1,2) and there-
fore P = P2 — P}, to u, — u,, i.e. (1) is well defined. Similarly HJ,
converges incleasingly to an h; e HB(R) which is the least harmonic
majorant of the subharmonic function »; on B and hence p; = h; — v,
is a potential on R (1 =1,2). Since

2w —u| <y — o] + |ty — 0| < By —v) + (hy —v) =p
with p = p, + p,, a potential on R,

[AZu(z*) — u(z®)| = lim |[2Fu(z) — u®)| < liminfp) =0
2ER,z—z2*

Z2E R,z—z*
for every point z*e 4, i.e. (3) is valid.

5. Denote by PB(W;dW)* the family {u e PB(W;oW);u >0}. We
maintain that PB(W;oW)* generates PB(W;oW); more precisely, for
any ue PB(W ;9W) there exist u, e PB(W ;oW)* (i = 1,2) such that

(4) U=U — U, U|ld=uU0|4, wd=—-w@NO)4.

The proof of (4) is similar to that of (2) and (8). Let v, =2« U0 and
v, = —(uN0). Asin no. 4 we see that HZ > u;, > v, > 0, where u;, =
P78 on WN2 and u,, =0 on £ — WN L, and that u; = lim,_, u,, ex-
ists in PB(W;oW)* and h, =lim,_., H? exists in HBR)* (i =1,2).
Since % = U, — U,,, we deduce u = u, — u,. Moreover 0 < u; — v; < hy
—v; = p; and p; is a potential (¢t = 1,2). Therefore (4) is true.

Reduction operator

6. Since we have assumed that our base Riemann surface R is
hyperbolic, there exists the harmonic Green’s function G(z,8) = Gz(2,0)
on B. Let W be a normal open subset of R. The harmonic Green’s
function Gy (2,0) on W is defined as follows. Let W = |, W, be the
decomposition of W into connected components W, such that each W, is
a normal region. If both of z and { belong to the same W,, then Gy (z,%)
= Gy (2,8); otherwise G (2,8) = 0. Including the case W = R, we define
a linear operator T% : PB(W; oW)— HB(W ; oW) by

(5) TWu = u + ij G (-, QUOP(O)dEdy .
27 Jr

To see that (5) is well defined, first let we PB(W ;dW)*. Then by the
Green formula
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g7 =gy L j Grnal-» DUOPQdEdy .

Since u is subharmoniec, lim,_, HY"? exists in HB(W ; 9W). Observe that
{Gyno(-, Du@)}, is increasing, and therefore the Lebesgue-Fatou theorem
yields (5) for > 0. The general case follows from the decomposition
(4). Similarly, as above,

HE = P2 + | G, OPIOPQdsdy
for ue PB(W; oW)* and by making 2 tend to R we deduce
B = tpu+ o[ Gal, D@OQOPQdsdy
Since 0 < u < A%u and Gy < Gg, we conclude that
0< Thu—u< 2 [ Gal, DAFOPQdEdy = p

with p a potential on R. By the decomposition (4) we can also conclude
that |T%u — u| is dominated by a potential on R for general ue PB(W ; aW).
Therefore we see that

(6) T¥u|d = u|4

for every ue PB(W;oW). In particular T% is isometric and hence
injective.

7. The operator T, = TZ is referred to as a reduction operator
since Tp» reduces the study of PB(R) to that of more tractable class
HB(R) (cf. Singer [20]). In this sense it is important to determine when
T is surjective. As a preparatory observation we state the following: If

(1) jw G-, OPQdEdy < oo

for some ze¢ R and hence by the Harnack inequality for every z e R, then
T% is surjective. To prove this take an e HB(W ; oW)*. Since 0 < Pyn?
< h, {PJ"?} is decreasing and converges to a ue PB(W:oW)*. Then

h=PY0e 4 »élﬂ Grrnol-, OPT (PO dEdy .

In view of (7) the Lebesgue convergence theorem is applicable to deduce
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b=t i.j G (-, DUOP©dedy ,
27 Jr

i.e. T%u = h. Since HB(W ; dW)* generates HB(W ; dWW), we obtain the
required conclusion.

Nondensity points

8. We introduce the set 4, of points z* in 4 such that there exists
a neighborhood U* of z* in R* such that

(8) [, 6ue.0P@ady < o

for some and hence for every point z in R. Such a point z* will be
referred to as a nondensity point of P with the weight G. If we denote
by 4y for 4, with P=0, then 4,; = 4. Clearly the nondensity point
set 4, is open. Since 4 is a Stonean space i.e. every point in 4 has a
base of compact and open neighborhoods in 4, the same is true of 4.
Another kind of nondensity point was first introduced in Glasner-Katz
[5] (cf. also [15]) for the Royden harmonic boundary. In the definition
(8) we can moreover assume that U* N R is a normal open subset of R
since we can replace U* by a smaller neighborhood (cf. [3],[19]). First
we remark that '

(9) u[A—AP:O

for every uec PB(R). In fact, let 2* e 4 with u(z*) 0. We can choose
a neighborhood U* of 2* such that |u(2)| > [u(z*)]/2 on U* N R. By (5),
u is Gg(-, OP(Q)dEdy-integrable on E. Therefore

j G(z,c>P<c>dsdnS—2,~j Gz, 0 |u(©)| PQdedy < oo
UnE |[u(z*)| Jusnz

i.e. z¥cdp. This proves (9).

9. Let K be a compact and open set in 4,. We can find a neigh-
borhood W* of K in R* such that W = W* N R is normal in R and (7)
is valid since K is compact. Choose a ¢ e C(R*) such that ¢|K =1 and
p|(R* — W*)U (U — K) =0. Such a ¢ exists since K is open and com-
pact in 4 and K N (R* — W*) = ¢. Observe that zy,9o e HB(W ; W) with
ape|K =1 and npo|K=0 (cf. no. 3). By (0, TY%; PB(W; W) —
HB(W ;oW) 1is surjective and hence (T%)'omype PB(W;oW) with
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(T omyp|K =1 and (TE)'omyp|d — K =0 (cf. (6)). Finally set ex
= (T onppe PB(R). By (3), ex|K =1 and ex|d — K= 0. Put
ep = sup eg ,

Kcdp
where K runs over all compact open subsets of 4,. The conditionally
monotone compactness of PB(R) assures that ¢, c PB(R). Clearly 0 <
er <1 on 4. Since every point 2* € 4 has such a K with z* ¢ K, we see

that ep|d, = 1. With (9) we now conclude that

(10) ePGPB(R), 0_<_ep£1, epldpzl, ePIA—APZO.

The function e, will be refered to as the P-unit (cf. Singer [21]). It is
easy to see that e, is the greatest function in PB(R) dominated by 1
and actually
ep = lim Pf .
Q2-R
Therefore e, is the P-elliptic measure in the terminology of Royden [18].
Since ep|d e C(4) and ep|4 is the characteristic function of 4, we obtain
the following

THEOREM. The nondensity point set dp is compact and open in 4.

10. We denote by C(4;4p) the family {peC(d);p|d — 4p = 0}.
Clearly C(d4; 4p) is isomorphic to C(4p) as Banach spaces by the natural
correspondence zp: C(4; 4p) — C(dp) given by zpu = u|dp. We define an
operator, the boundary restriction, pp: PB(R) — C(d; 45) by ppu = u|4
for every ue PB(R). We write py for pp, with P=0. By ), pp is
isometric. We prove

THEOREM. The boundary restriction pp s surjective.

Proof. Let ¢oeC(d; 45) and W* be an open neighborhood of 4, in

R* such that W = W*N R is normal and (7) is valid for W. We can

extend ¢ to B* so that ¢ € C(R*) with o(R* — W*)U (4 — 4p) = 0. Then

as inno. 9 u = a5 o (T¥) oy belongs to PB(R) and u |4 = ¢, i.e. ppu = ¢.
Q.E.D.

11. The surjectiveness question of the canonical extension A% can
now be settled in terms of 4p:
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THEOREM. The canonical extension A% is surjective if and only if
W — W is a neighborhood of A, in R*.

Proof. Suppose 2% is surjective. Then there exists a uw e PB(W; aW)
such that A%u = ep. Since u|4 = AFu|d = ep|4, we see that u|d, = 1.
In view of u|R* — W =0, W — oW is a neighborhood of 4,. Conversely
if W — oW is a neighborhood of 4, then we can choose an open neigh-
borhood Wi of 4, such that W — oW D Wi, W, = W¥ N R is normal in
R, and (7) is valid for W,. The canonical extension A%>": PB(W,; oW,)
— PB(W ; 0W) relative to W can be defined by

Aoy = lim P20W
2-R
on Wand 0 on R — W. As in no. 4, 2%>"u|d =u|d. Let ve PB(R)
and ¢ € C(R*) with ¢|(R* — W)U — 4p) =0 and ¢|4p = 1. Then u =
TE)omy (ov) e PB(W,,dW,) and wu|4d = v|4. Thus %°: PB(W,; oW, —
PB(R) is surjective. Since A%° = A% o A%>" and A%°

Pl
PB(W,; 0W,) —~Z—> PB(R)
)Wo,Wl
P ZW
PB(W ; oW)
is surjective, A% must be surjective. Q.E.D.

Canonical isomerphisms

12. Let P and @ be two densities on a hyperbobic Riemann surface
R. A linear isomorphism Ty, of PB(R) onto QB(R) will be referred
to as a canonical isomorphism if |T, pu — u| is dominated by a potential
p = p, on R for every ue PB(R). This is equivalent to that

1 Toruld=uld

for every u e PB(R) (cf. Constantinescu-Cornea [3]). By (1) we see that
Tq r is an isometry and thus Ty » is a special Banach space isomorphism
of PB(R) onto QB(R). In such a case we say that PB(R) and QB(R)
are canonically isomorphic. We are ready to prove one of our main
result in this paper:

THEOREM. Banach spaces PB(R) and QB(R) are canonically isomor-
phic if and only if nondensity point sets 4p and 4, are identical.
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Proof. Suppose PB(R) and QB(R) are canonically isomorphic. Let
z*edp. There exists a pe C(4; 4p) with ¢(z*) = 1. By Theorem in no.
10, there exists a u e PB(R) with ppu = ¢. Then Ty ,u|d = u|4 shows
that (Tq ru)(2*) = u(z*) = o(2*) =1 and (9) yields that z* e 4, i.e. 4, C 4,.
Since the reverse inclusion can be shown similarly, we conclude that
dp = 44. Conversely assume that 4, = 4. Then the operator T = pg'pp:
PB(R) — QB(R) can be defined as a bijective mapping and Tu|d = u|4
for every u e PB(R). Therefore T fulfills the condition of canonical iso-
morphism and T = T, p, i.e. PB(R) and QB(R) are canonically isomorphic.

r Q.E.D.
PB(R) ——> QB(R)

pr Tﬂé '

Cd; 47) ———> C; 4g)

13. We simply say that PB(R) and QB(R) are isomorphic if there
exists a Banach space isomorphism (i.e. bijective linear isometry) of PB(R)
onto QB(R). Then we obtain another of our main result:

THEOREM. Banach spaces PB(R) and QB(R) are isomorphic if and
only if nondensity point sets 4dp and 4, are homeomorphic.

Actually we can prove a bit more general assertion without adding
any elaboration. Let P(Q,resp.) be a density on a hyperbolic Riemann
surface R(S,resp.). We can speak of isomorphisms of PB(R) onto QB(S)
as Banach spaces and also nondensity point sets 4, and 4, relative to
Wiener compactifications R* and S* of R and S, respectively. The above
theorem is, then, a special case, i.e. R = S, of the following:

THEOREM. Banach spaces PB(R) and QB(S) are isomorphic if and
only if nondensity point sets 4, and 4, are homeomorphic.

Proof. Suppose there exists a homeomorphism « of 4, onto 4,.
Then ¢ — Ap = poa™" is a Banach space isomorphism of C(4) onto C(4,).

PB(R) ——> QB(S)

v G

Cd; dp) Cd; 4¢)

Js =

Cy) —2 5 Cly)
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Then T = pplorg'ocAorpopp is a Banach space isomorphisms of PB(R)
onto QB(S). Conversely assume that there exists a Banach space iso-
morphism T of PB(R) onto QB(E). Then A = rtgopgoTopplocs! is a
Banach space isomorphism of C(4p) onto C(dy). In such a case there
exists a

PB(R) ——> QB(S)

Tp;l po

Cd; 4p) C(d; 4y)
i, s
Cdp) — C4y

homeomorphism « of 4, and 4, and an a e C(dy) with [a| =1 such that
Ap = a-poa™ (cf. e.g. Dunford-Schwartz [4]); in particular 4, and 4,
are homeomorphic. Q.E.D.

14. Suppose there exists a neighborhood U* of z* ¢ 4 such that
(12) [ Goroist <o @©=vnR

for every z in U. We can replace U* by a W*C U* which is also a
neighborhood of z* such that W = W* N R is normal and (12) with U
replaced by W is valid. Let Ac¢ HB(W ;oW) such that 0 < /2 <1 and
h(z¥) = 1. Then as in no. 7 T% : PB(W; oW) — HB(W ; dW) is surjective
and T%v|4d = v|4 for every vePB(W;oW), where 4 is the Wiener
harmonic boundary of W. There exists a projection p of the Wiener
compactification W of W onto the closure W of W in R* such that p|W
is an identity, p~'(d") C 4, and p: W U p~'(4") — W U 47 is homeomorphic
(cf. e.g. Constantinescu-Cornea [1] and [19]), where 47 = 4 N (W — oW).
Therefore T%2v|4" = v|47. Since T%v|oW = v|oW = 0, T¥v|0W = v|oW
= 0 and hence T%v|0W = v|0W = 0 and hence T%v|4 = v|4. In particu-
lar, if v = (T%)"'h, then v(z*) = (THv)(2*) = h(z*) =1 and z* e 4,. Thus
we have shown the following

THEOREM. A point z* in 4 belongs to dp if and only if (12) is valid.

Applications
15. A subset KC R is said to be B-negligible if there exists a po-
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tential p such that p > 1 on K. In this case, since liminf, 5, . p(2) =
0 for z*cd, we see that KN4 =¢. Conversely, if KN4 = ¢, then
there exists a pe C(R*) such that 0< o<1, ¢|K=1, and ¢|4 = 0.
Then there exists a potential p with ¢ <p on R (cf. [3)). Hence p >1
on K and therefore K is B-negligible. Thus we have the following
characterization: A subset K C R is B-negligible if and only if R* — K
is a neighborhood of 4. Compact sets in R are trivial examples of B-
negligible sets. From Theorem in no. 12 the following ecriterion of
Royden follows at once:

COROLLARY (ORDER COMPARISON THEOREM). If there exists a con-
stant ce[l, c0) such that ¢'P < Q < c¢P on R except possibly for a B-
negligible set K, then PB(R) and QB(R) are canonically isomorphic.

In general, @ < c¢P on R — K implies

j G 0QQdedy < ¢ j G 0P©Oddy .

Since B — K — (3(R — K)) is a neighborhood of 4, the above inequality
implies that 4, C 4,. In passing we insert here a consequence of 4, C 4,
i.e. a consequence of @ < ¢P on R — K with B-negligible K. Since 4,
is also compact and open in 4,, the function zp given by zp = ¢ on 4p
and zp = 0 on 4y — 4 belongs to C(4y) for every pe C(dp), ie. v: C(dp)
— C(dy) is a linear isometry. Then T = pglorg'ororpopp is a linear
isometry of PB(R) into QB(R) with Tu|d = u|d for every ue PB(R).
Returning to the above corollary, we also see that 4, D 4y from ¢™'P < Q.
Thus 4, = 4y ; PB(R) and QB(R) are canonically isomorphic. This criterion
was obtained by Royden [18] for compact exceptional set K and by Loeb
[8] in an abstract setting. The present formulation is stated in [16].

16. Let G?(z,0) be the Green’s function on R for the equation du
= Pu whose existence is always assured for any R (even for compact R)
if P%0 (Myrberg [11,12,138]). In the present case, since we have as-
sumed that R is hyperbolic, G¥(z,{) exists for every density P including
P =0; as before we write G(2,0) for G¥(z,{) with P=0. Consider
conditions

(13) [ 1PO - Qldtdy < oo ;
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(14) [ 6601PO - ey <« ;
(15) [ @0+ 6% 01PO - QOldsdy < oo ;
(16) [ (@000 + 6% 0P©)isdy < oo .

Here K is a B-negligible set in R and (14)-(16) are assumed to be valid
for one and hence by the Harnack inequality for every z in S. Since

GP(2,0) < G(z,0) and j G OPOdEd) < oo
because of

ep=1— J_j GP(-, OP(Odedy
27 J=r

(see the proof of the corollary below) it is clear that the following im-
plications are valid: (13) — (14) — (15) = (16).

COROLLARY (INTEGRAL COMPARISON THEOREM). If one of conditions
(13)-(16) is valid, then PB(R) and QB(R) are canonically isomorphic.

This was obtained in [14] for K = ¢ and in the present form in [16]
(cf. also Maeda [9]). The fact that (14) and hence (13) implies 4 = 4q
is entirely clear. To show (15) or (16) implies 4, = 4y, we may assume
that K = ¢ in (15) since we can replace K by its normal open subset W
whose 4 contains 4 (cf. no. 14). The Green formula yields

Q¢ = P + % j G4(-, OPO(PQ) — QO)deds .

Since ep = lim, ., P? and ¢y = lim,. @, (15) and the Lebesgue conver-
gence theorem imply

eq = €p + 2—1ﬂ L G-, Der(OPQ) — QO)dedy .
Similarly
Q=1— ij G3(-, DQOdEdy
2r Ja

and the Lebesgue-Fatou theorem yield
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eo=1— | 6°,0Q0ddy .
27 Jr
Set
h=Trep = ep + L f G(-, Dep(OP©Q)dedy .
27 Jr

Observe that
o[ 6%, 0eeddy < [ 6o, 00©dsdy =1 - ¢
2z JB 2 Jr

and

1 f G-, D es(OP@Qdedy < -1 j G(-, 0epQP@)dedy = h — ep .
27 Jr 2r Jr

Therefore |eg — ep| < (b — ep) + (1 — ¢g). Since k|4 = Tpep|d = ep|4,
leg —er| <1 — g

on 4. If z*ed,, then ey(z*) = 1 and hence ex(z*) = 1, i.e. 2* € 4. Thus
we conclude that 4, C 4p, and similarly 4, C 4y, ie. 4p = 4,.

17. Each of the conditions (14)-(16) takes the following form for
R=0:

an [ 6eoP@dd <,

where again K is a B-negligible set. Clearly 4, = 4 is equivalent to (17)
for some B-negligible K. Thus we have

COROLLARY. Banach spaces PB(R) and HB(R) are canonically iso-
morphic, i.e. the reduction operator Tp: PB(R) — HB(R) is surjective, if
and only if (17) is valid for some B-negligible set K.

The sufficiency of (17) for K = ¢ was obtained in [14]. The con-
dition (17) for K = ¢ may not be necessary is remarked by Lahtinen
[7]. The assertion in the present form is stated in [16].

18. Let %2, be the least harmonic majorant of the P-unit e, (the
P-elliptic measure). Clearly ip = Tpep. Then ep|d = hp|d. Therefore
dp = 44 if and only if hp = hy and we have the following

COROLLARY. Banach spaces PB(R) and QB(R) are canonically iso-
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morphic if and only if hp = hy. In particular PB(R) and HB(R) are
canonically isomorphic if and only if hp = 1.

That hp = hy is sufficient and that hp, = 1 is necessary and sufficient
are recent results of Lahtinen [7], in which he also studies the class PB(R)
for not necessarily P > 0 (cf. also Myrberg [13]).
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