M. NakaiNagoya Math. J.Vol. 53 (1974), 141-155

BANACH SPACES OF BOUNDED SOLUTIONS OF $\Delta u = Pu$ ($P \ge 0$) ON HYPERBOLIC RIEMANN SURFACES

MITSURU NAKAI

Consider a nonnegative Hölder continuous 2-form P(z)dxdy on a hyperbolic Riemann surface R (z=x+iy). We denote by PB(R) the Banach space of solutions of the equation $\Delta u=Pu$ on R with finite supremum norms. We are interested in the question how the Banach space structure of PB(R) depends on P. Precisely we consider two such 2-forms P and Q on R and compare PB(R) and QB(R). If there exists a bijective linear isometry T of PB(R) to QB(R), then we say that PB(R) and QB(R) are isomorphic. If moreover |u-Tu| is dominated by a potential p_u on R for every u in PB(R), then we say that PB(R) and QB(R) are canonically isomorphic. Intuitively this means that u and Tu have the same ideal boundary values. Using these terminologies our problem is formulated as follows:

- 1° When are Banach spaces PB(R) and QB(R) isomorphic?
- 2° When are Banach spaces PB(R) and QB(R) canonically isomorphic?

For this purpose we consider the set Δ_P , which we call the nondensity point set associated with P(z)dxdy, of points z^* in the Wiener harmonic boundary Δ of R such that there exists a neighborhood U^* of z^* in the Wiener compactification R^* of R such that

$$\int_{U^* \cap R} G(z, \zeta) P(\zeta) d\xi d\eta < \infty \qquad (\zeta = \xi + i\eta)$$

for some and hence for every z in R where $G(z,\zeta)$ is the harmonic Green's function on R. We shall see that the set Δ_P is a compact Stonean space with the relative topology of R^* . Our main result in this paper is that the Banach space structure of PB(R) is completely determined by the space Δ_P . More precisely the questions 1° and 2° can be answered in terms of Δ_P as follows:

Received March 5, 1973.

THE MAIN THEOREM. Banach spaces PB(R) and QB(R) are isomorphic (canoncally isomorphic, resp.) if and only if spaces Δ_P and Δ_Q are homeomorphic (identical, resp.).

MITSURU NAKAI

Sufficient conditions to the question 2° thus far obtained by Royden [18], Nakai [14], Maeda [9], Lahtinen [7], etc. are then direct consequences of the above theorem. These will be discussed in nos. 15–18. In nos. 1–5 we shall discuss behaviors of functions in PB(R) on the Wiener compactification R^* of R. The Heins canonical extension λ_F^w is one of the important tools in our study. Another important tool, the reduction operator T_P , is discussed in nos. 6–7. The structure of Δ_P will be studied in nos. 8–11. The main theorem will then be proven in nos. 12–13. An alternate definition of Δ_P is appended in no. 14.

Wiener compactification

1. Let P(z)dxdy be a 2-form on a Riemann surface R such that P(z) is a Hölder continuous function of each local parameter z=x+iy, i.e. $|P(z_1)-P(z_2)| \leq K\,|z_1-z_2|^\alpha$ for every pair of points z_1 and z_2 in the parametric disk of z with a $K\in(0,\infty)$ and an $\alpha\in(0,1]$. Then the elliptic equation $\Delta u(z)=P(z)u(z)$ can be invariently defined on R where $\Delta u(z)dxdy=d*du(z)$. Denote by P(U) the linear space of solutions of $\Delta u=Pu$ on an open subset U of R. We also use the standard notation H(U) for P(U) with $P\equiv 0$.

LEMMA. The absolute value |u| of any u in P(U) is subharmonic on U for every open subset U of R if and only if P(z)dxdy is nonnegative, i.e. $P(z) \geq 0$ for every choice of local parameters z.

Proof. Suppose $P \geq 0$ and $u \in P(U)$. Then $\Delta |u(z)| = P(z) |u(z)| \geq 0$ on the open set $U' = \{z \in U; u(z) \neq 0\}$, i.e. |u| is subharmonic on U'. The submean value property is clearly valid for |u| at each point of U - U'. Therefore |u| is subharmonic on U. To show that $P \geq 0$ is necessary, let z be an arbitrary point in R. If we take a sufficiently small regular parametric disk U with z its center, then the Dirichlet problem of $\Delta u = Pu$ is solvable for U with continuous boundary values φ and the solution is nonnegative (positive, resp.) for $\varphi \geq 0$ ($\varphi > 0$, resp.) (cf. Miranda [10]). If u is the solution with $\varphi \equiv 1$, then, since |u| = u > 0 is subharmonic, $P(z) = \Delta u(z)/u(z) \geq 0$.

2. Hereafter, we always assume that $P(z) \ge 0$. For simplicity such a 2-form P(z)dxdy, i.e. Hölder continuous and nonnegative, will be referred to as a *density* on R. We denote by PB(R) the subspace of P(R) consisting of solutions u with finite supremum norms:

$$||u|| = ||u||_R = \sup_{z \in R} |u(z)|.$$

We also use the standard notation HB(R) for PB(R) with $P\equiv 0$. Then $(PB(R),\|\cdot\|)$ is a Banach space. We wish to determine the Banach space structure of PB(R). We say that R is hyperbolic if there exists the harmonic Green's function on R. Nonhyperbolic surfaces are called parabolic. The Ahlfors-Ohtsuka characterization (cf. [19]) says that R is parabolic if and only if there does not exist any nonconstant positive superharmonic function on R. Therefore if R is parabolic and $u\in PB(R)$, then, since $\|u\|-|u|$ is a nonnegative superharmonic function on R, $\|u\|-|u|$ and hence u is a constant. This proves the following Brelot [1, 2]-Ozawa [17] theorem:

LEMMA. If R is parabolic, then $PB(R) = \{0\}$ for densities $P \not\equiv 0$ and HB(R) = R (the real number field).

In view of this lemma the Banach space PB(R) is of no interest if R is parabolic, and for this reason, hereafter, we always assume that R is hyperbolic.

3. The Wiener compactification R^* of a hyperbolic Riemann surface R is a compact Hausdorff space containing R as its open and dense subset such that $C(R^*) = \{f \mid R; f \in C(R^*)\}$ is the totality of bounded continuous Wiener functions on R. If $F \in C(R^*)$, then $f = F \mid R$ is of course defined only on R but we always make the convention that $f(z^*) = F(z^*)$ for $z^* \in R^* - R$. Typical examples of Wiener functions on R are subharmonic functions s on R such that |s| is bounded or more generally dominated by superharmonic functions. Denote by Δ the set of points z^* in R^* such that

$$\lim_{z \in R, z \to z^*} \inf p(z) = 0$$

for every potential p on R, i.e. a superharmonic function p on R whose greatest harmonic minorant is zero. The set Δ is contained in the Wiener boundary $R^* - R$ of R and referred to as the *Wiener harmonic boundary*

of R. For a subset A of R^* we denote by \overline{A} the closure of A in R^* and by ∂A the relative boundary $(\overline{A} - \operatorname{Int} A) \cap R$ with respect to R. Let U be an open subset of R and s be a subharmonic function U bounded from above. The maximum principle says that if

$$\lim_{z \in \mathcal{T}, z \to z^*} \sup s(z) \le M$$

for every z^* in $(\partial U) \cup (\overline{U} \cap \Delta)$, then $s \leq M$ on U.

An open subset W of R will be called *normal* if ∂W is analytic. We do not exclude W with $\partial W = \phi$, i.e. W = R, from our family of normal open sets. We denote by Δ^W the open subset $\Delta \cap (\overline{W} - \overline{\partial W})$ of Δ . We can define an operator $\pi_W \colon C(R^*) \to C(R^*)$ such that $\pi_W f \mid W \in H(W)$, and $\pi_W f \mid (R^* - \overline{W}) \cup (\partial W) \cup \Delta^W = f$ for every $f \in C(R^*)$. For details of Wiener compactification and the operator π_W , we refer to Constantinescu-Cornea [3] or Sario-Nakai [19].

4. For a normal open subset W of R (including the case W=R) we denote by $PB(W;\partial W)$ the family $\{u \in PB(W) \cap C(R); u | R-W=0\}$. We also use the notation $HB(W;\partial W)$ for $PB(W;\partial W)$ with $P\equiv 0$. If W=R, then $PB(W;\partial W)=PB(W;\phi)=PB(W)$. By the same proof as in no. 1 we see that $u\cup 0=\max(u,0), -(u\cap 0)=-\min(u,0),$ and $|u|=u\cup 0-u\cap 0$ are subharmonic on R for every $u\in PB(W;\partial W)$. Therefore $PB(W;\partial W)\subset C(R^*)$. By the maximum principle (1), $||u||_R=||u||_A$ for every $u\in PB(W;\partial W)$. For a regular region Ω , i.e. relatively compact and normal region in R, and a continuous function φ in $C(\partial\Omega)$, we denote by P_{φ}^{α} the function in $P(\Omega)\cap C(\overline{\Omega})$ such that $P_{\varphi}^{\alpha}|\partial\Omega=\varphi$. We also use the notation H_{φ}^{α} for P_{φ}^{α} with $P\equiv 0$. We define a linear operator $\lambda_{\varphi}^{W}: PB(W;\partial W) \to PB(R)$ by

$$\lambda_P^{w} u = \lim_{a \to R} P_u^a$$

for every $u \in PB(W; \partial W)$. Then it satisfies

$$\lambda_P^{\mathbf{w}} u | \Delta = u | \Delta.$$

In particular λ_F^w is isometric and hence injective. We use the notation λ_H^w for λ_F^w with $P \equiv 0$. These operators are referred to as canonical extensions (Heins [6]).

To see that (2) is well defined and (3) is valid, set $v_1 = u \cup 0$ and $v_2 = -(u \cap 0)$. Since $||u|| \ge H^{g}_{v_i} \ge P^{g}_{v_i} \ge v_i \ge 0$, $\{P^{g}_{v_i}\}$ is increasing and

thus $P_{v_i}^g$ converges to a $u_i \in PB(R)$ as Ω exhausts R (i=1,2) and therefore $P_u^g = P_{v_1}^g - P_{v_2}^g$ to $u_1 - u_2$, i.e. (1) is well defined. Similarly $H_{v_i}^g$ converges incleasingly to an $h_i \in HB(R)$ which is the least harmonic majorant of the subharmonic function v_i on R and hence $p_i = h_i - v_i$ is a potential on R (i=1,2). Since

$$|\lambda_P^W u - u| \le |u_1 - v_1| + |u_2 - v_2| \le (h_1 - v_1) + (h_2 - v_2) = p$$

with $p = p_1 + p_2$, a potential on R,

$$|\lambda_P^W u(z^*) - u(z^*)| = \lim_{z \in R, z \to z^*} |\lambda_P^W u(z) - u(z)| \le \lim_{z \in R, z \to z^*} \inf p(z) = 0$$

for every point $z^* \in \mathcal{A}$, i.e. (3) is valid.

5. Denote by $PB(W; \partial W)^+$ the family $\{u \in PB(W; \partial W); u \geq 0\}$. We maintain that $PB(W; \partial W)^+$ generates $PB(W; \partial W)$; more precisely, for any $u \in PB(W; \partial W)$ there exist $u_i \in PB(W; \partial W)^+$ (i = 1, 2) such that

(4)
$$u = u_1 - u_2, \quad u_1 | \Delta = u \cup 0 | \Delta, \quad u_2 | \Delta = -(v \cap 0) | \Delta.$$

The proof of (4) is similar to that of (2) and (3). Let $v_1 = u \cup 0$ and $v_2 = -(u \cap 0)$. As in no. 4 we see that $H^a_{v_i} \geq u_{ig} \geq v_i \geq 0$, where $u_{ig} = P^{W \cap B}_{v_i}$ on $W \cap \Omega$ and $u_{ig} = 0$ on $\Omega - W \cap \Omega$, and that $u_i = \lim_{g \to R} u_{ig}$ exists in $PB(W; \partial W)^+$ and $h_i = \lim_{g \to R} H^a_{v_i}$ exists in $HB(R)^+$ (i = 1, 2). Since $u = u_{1g} - u_{2g}$, we deduce $u = u_1 - u_2$. Moreover $0 \leq u_i - v_i \leq h_i - v_i = p_i$ and p_i is a potential (i = 1, 2). Therefore (4) is true.

Reduction operator

6. Since we have assumed that our base Riemann surface R is hyperbolic, there exists the harmonic Green's function $G(z,\zeta)=G_R(z,\zeta)$ on R. Let W be a normal open subset of R. The harmonic Green's function $G_W(z,\zeta)$ on W is defined as follows. Let $W=\bigcup_n W_n$ be the decomposition of W into connected components W_n such that each W_n is a normal region. If both of z and ζ belong to the same W_n , then $G_W(z,\zeta)=G_{W_n}(z,\zeta)$; otherwise $G_W(z,\zeta)=0$. Including the case W=R, we define a linear operator $T_P^w:PB(W;\partial W)\to HB(W;\partial W)$ by

(5)
$$T_P^W u = u + \frac{1}{2\pi} \int_{\mathbb{R}} G_W(\cdot, \zeta) u(\zeta) P(\zeta) d\xi d\eta.$$

To see that (5) is well defined, first let $u \in PB(W; \partial W)^+$. Then by the Green formula

$$H_u^{W\cap \mathcal{Q}} = u + \frac{1}{2\pi} \int_{\mathcal{Q}} G_{W\cap \mathcal{Q}}(\cdot, \zeta) u(\zeta) P(\zeta) d\xi d\eta$$
.

Since u is subharmonic, $\lim_{a\to \mathbb{R}} H_u^{W\cap a}$ exists in $HB(W; \partial W)$. Observe that $\{G_{W\cap a}(\cdot, \zeta)u(\zeta)\}_a$ is increasing, and therefore the Lebesgue-Fatou theorem yields (5) for $u \geq 0$. The general case follows from the decomposition (4). Similarly, as above,

$$H_u^{a}=P_u^{a}+rac{1}{2\pi}\int_{a}G_{a}(\,\cdot\,,\zeta)P_u^{a}(\zeta)P(\zeta)d\xi d\eta$$

for $u \in PB(W; \partial W)^+$ and by making Ω tend to R we deduce

$$\lambda_H^W u = \lambda_P^W u + \frac{1}{2\pi} \int_R G_R(\cdot, \zeta)(\lambda_P^W u)(\zeta) P(\zeta) d\xi d\eta$$
.

Since $0 \le u \le \lambda_P^w u$ and $G_w \le G_R$, we conclude that

$$0 \le T_P^{\mathsf{w}} u - u \le \frac{1}{2\pi} \int_{\mathbb{R}} G_{\mathbb{R}}(\cdot, \zeta) (\lambda_P^{\mathsf{w}} u)(\zeta) P(\zeta) d\xi d\eta = p$$

with p a potential on R. By the decomposition (4) we can also conclude that $|T_P^w u - u|$ is dominated by a potential on R for general $u \in PB(W; \partial W)$. Therefore we see that

$$(6) T_P^W u | \Delta = u | \Delta$$

for every $u \in PB(W; \partial W)$. In particular T_P^w is isometric and hence injective.

7. The operator $T_P = T_P^R$ is referred to as a reduction operator since T_P reduces the study of PB(R) to that of more tractable class HB(R) (cf. Singer [20]). In this sense it is important to determine when T_P is surjective. As a preparatory observation we state the following: If

(7)
$$\int_{W} G_{R}(\cdot,\zeta)P(\zeta)d\xi d\eta < \infty$$

for some $z \in R$ and hence by the Harnack inequality for every $z \in R$, then T_P^w is surjective. To prove this take an $h \in HB(W; \partial W)^+$. Since $0 \le P_h^{W \cap g} \le h$, $\{P_h^{W \cap g}\}$ is decreasing and converges to a $u \in PB(W: \partial W)^+$. Then

$$h = P_h^{W \cap B} + \frac{1}{2\pi} \int_B G_{W \cap B}(\cdot, \zeta) P_h^{W \cap B}(\zeta) P(\zeta) d\xi d\eta.$$

In view of (7) the Lebesgue convergence theorem is applicable to deduce

$$h = u + \frac{1}{2\pi} \int_{\mathbb{R}} G_{W}(\cdot, \zeta) u(\zeta) P(\zeta) d\xi d\eta$$
,

i.e. $T_P^w u = h$. Since $HB(W; \partial W)^+$ generates $HB(W; \partial W)$, we obtain the required conclusion.

Nondensity points

8. We introduce the set Δ_P of points z^* in Δ such that there exists a neighborhood U^* of z^* in R^* such that

(8)
$$\int_{U^* \cap R} G_R(z,\zeta) P(\zeta) d\xi d\eta < \infty$$

for some and hence for every point z in R. Such a point z^* will be referred to as a nondensity point of P with the weight G. If we denote by Δ_H for Δ_P with $P \equiv 0$, then $\Delta_H = \Delta$. Clearly the nondensity point set Δ_P is open. Since Δ is a Stonean space i.e. every point in Δ has a base of compact and open neighborhoods in Δ , the same is true of Δ_P . Another kind of nondensity point was first introduced in Glasner-Katz [5] (cf. also [15]) for the Royden harmonic boundary. In the definition (8) we can moreover assume that $U^* \cap R$ is a normal open subset of R since we can replace U^* by a smaller neighborhood (cf. [3], [19]). First we remark that

$$(9) u|\Delta - \Delta_P = 0$$

for every $u \in PB(R)$. In fact, let $z^* \in \Delta$ with $u(z^*) \neq 0$. We can choose a neighborhood U^* of z^* such that $|u(z)| > |u(z^*)|/2$ on $U^* \cap R$. By (5), u is $G_R(\cdot, \zeta)P(\zeta)d\xi d\eta$ -integrable on R. Therefore

$$\int_{\mathit{U}^*\cap\mathit{R}} G(z,\zeta) P(\zeta) d\xi \, d\eta \leq \frac{2}{|\mathit{u}(z^*)|} \int_{\mathit{U}^*\cap\mathit{R}} G(z,\zeta) \, |\mathit{u}(\zeta)| \, P(\zeta) d\xi \, d\eta < \infty \ ,$$

i.e. $z^* \in \mathcal{A}_P$. This proves (9).

9. Let K be a compact and open set in Δ_P . We can find a neighborhood W^* of K in R^* such that $W = W^* \cap R$ is normal in R and (7) is valid since K is compact. Choose a $\varphi \in C(R^*)$ such that $\varphi \mid K = 1$ and $\varphi \mid (R^* - W^*) \cup (\Delta - K) = 0$. Such a φ exists since K is open and compact in Δ and $K \cap (R^* - W^*) = \varphi$. Observe that $\pi_W \varphi \in HB(W; \partial W)$ with $\pi_W \varphi \mid K = 1$ and $\pi_W \varphi \mid K = 0$ (cf. no. 3). By (7), $T_P^W \colon PB(W; \partial W) \to HB(W; \partial W)$ is surjective and hence $(T_P^W)^{-1} \circ \pi_W \varphi \in PB(W; \partial W)$ with

 $(T_P^W)^{-1} \circ \pi_W \varphi | K = 1$ and $(T_P^W)^{-1} \circ \pi_W \varphi | \mathcal{\Delta} - K = 0$ (cf. (6)). Finally set $e_K = \lambda_P^W \circ (T_P^W)^{-1} \circ \pi_W \varphi \in PB(R)$. By (3), $e_K | K = 1$ and $e_K | \mathcal{\Delta} - K = 0$. Put

$$e_P = \sup_{K \subset d_P} e_K ,$$

where K runs over all compact open subsets of Δ_P . The conditionally monotone compactness of PB(R) assures that $e_P \in PB(R)$. Clearly $0 \le e_P \le 1$ on Δ . Since every point $z^* \in \Delta_P$ has such a K with $z^* \in K$, we see that $e_P | \Delta_P = 1$. With (9) we now conclude that

(10)
$$e_P \in PB(R)$$
, $0 \le e_P \le 1$, $e_P | \Delta_P = 1$, $e_P | \Delta - \Delta_P = 0$.

The function e_P will be referred to as the *P-unit* (cf. Singer [21]). It is easy to see that e_P is the greatest function in PB(R) dominated by 1 and actually

$$e_P = \lim_{arrho o R} P_1^{arrho} \; .$$

Therefore e_P is the *P-elliptic measure* in the terminology of Royden [18]. Since $e_P | \Delta \in C(\Delta)$ and $e_P | \Delta$ is the characteristic function of Δ_P , we obtain the following

THEOREM. The nondensity point set Δ_P is compact and open in Δ .

10. We denote by $C(\Delta; \Delta_P)$ the family $\{\varphi \in C(\Delta); \varphi | \Delta - \Delta_P = 0\}$. Clearly $C(\Delta; \Delta_P)$ is isomorphic to $C(\Delta_P)$ as Banach spaces by the natural correspondence $\tau_P : C(\Delta; \Delta_P) \to C(\Delta_P)$ given by $\tau_P u = u | \Delta_P$. We define an operator, the boundary restriction, $\rho_P : PB(R) \to C(\Delta; \Delta_P)$ by $\rho_P u = u | \Delta$ for every $u \in PB(R)$. We write ρ_H for ρ_P with $P \equiv 0$. By (1), ρ_P is isometric. We prove

Theorem. The boundary restriction ρ_P is surjective.

Proof. Let $\varphi \in C(\mathcal{A}; \mathcal{A}_P)$ and W^* be an open neighborhood of \mathcal{A}_P in R^* such that $W = W^* \cap R$ is normal and (7) is valid for W. We can extend φ to R^* so that $\varphi \in C(R^*)$ with $\varphi(R^* - W^*) \cup (\mathcal{A} - \mathcal{A}_P) = 0$. Then as in no. 9 $u = \lambda_W^P \circ (T_P^W)^{-1} \circ \pi_W \varphi$ belongs to PB(R) and $u \mid \mathcal{A} = \varphi$, i.e. $\rho_P u = \varphi$. Q.E.D.

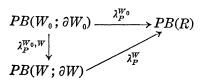
11. The surjectiveness question of the canonical extension λ_P^w can now be settled in terms of Δ_P :

THEOREM. The canonical extension λ_P^w is surjective if and only if $\overline{W} - \overline{\partial W}$ is a neighborhood of Δ_P in R^* .

Proof. Suppose λ_P^W is surjective. Then there exists a $u \in PB(W; \partial W)$ such that $\lambda_P^W u = e_P$. Since $u \mid \Delta = \lambda_P^W u \mid \Delta = e_P \mid \Delta$, we see that $u \mid \Delta_P = 1$. In view of $u \mid R^* - \overline{W} = 0$, $\overline{W} - \overline{\partial W}$ is a neighborhood of Δ_P . Conversely if $\overline{W} - \overline{\partial W}$ is a neighborhood of Δ_P , then we can choose an open neighborhood W_0^* of Δ_P such that $\overline{W} - \overline{\partial W} \supset W_0^*$, $W_0 = W_0^* \cap R$ is normal in R, and (7) is valid for W_0 . The canonical extension $\lambda_P^{W_0,W} : PB(W_0; \partial W_0) \to PB(W; \partial W)$ relative to W can be defined by

$$\lambda_P^{W_0,W} u = \lim_{\Omega \to R} P_u^{\Omega \cap W}$$

on W and 0 on R-W. As in no. 4, $\lambda_P^{w_0,W}u|\Delta=u|\Delta$. Let $v\in PB(R)$ and $\varphi\in C(R^*)$ with $\varphi|(R^*-\overline{W_0})\cup(\Delta-\Delta_P)=0$ and $\varphi|\Delta_P=1$. Then $u=(T_P^{w_0})^{-1}\circ\pi_{W_0}(\varphi v)\in PB(W_0,\partial W_0)$ and $u|\Delta=v|\Delta$. Thus $\lambda_P^{w_0}:PB(W_0;\partial W_0)\to PB(R)$ is surjective. Since $\lambda_P^{w_0}=\lambda_P^{w_0}\circ\lambda_P^{w_0,W}$ and $\lambda_P^{w_0}$



is surjective, λ_P^W must be surjective.

Q.E.D.

Canonical isomorphisms

12. Let P and Q be two densities on a hyperbobic Riemann surface R. A linear isomorphism $T_{Q,P}$ of PB(R) onto QB(R) will be referred to as a *canonical isomorphism* if $|T_{Q,P}u-u|$ is dominated by a potential $p=p_u$ on R for every $u \in PB(R)$. This is equivalent to that

$$(11) T_{\alpha,P} u | \Delta = u | \Delta$$

for every $u \in PB(R)$ (cf. Constantinescu-Cornea [3]). By (1) we see that $T_{Q,P}$ is an isometry and thus $T_{Q,P}$ is a special Banach space isomorphism of PB(R) onto QB(R). In such a case we say that PB(R) and QB(R) are canonically isomorphic. We are ready to prove one of our main result in this paper:

THEOREM. Banach spaces PB(R) and QB(R) are canonically isomorphic if and only if nondensity point sets Δ_P and Δ_Q are identical.

Proof. Suppose PB(R) and QB(R) are canonically isomorphic. Let $z^* \in \mathcal{\Delta}_P$. There exists a $\varphi \in C(\mathcal{\Delta}; \mathcal{\Delta}_P)$ with $\varphi(z^*) = 1$. By Theorem in no. 10, there exists a $u \in PB(R)$ with $\rho_P u = \varphi$. Then $T_{Q,P} u \mid \mathcal{\Delta} = u \mid \mathcal{\Delta}$ shows that $(T_{Q,P} u)(z^*) = u(z^*) = \varphi(z^*) = 1$ and (9) yields that $z^* \in \mathcal{\Delta}_Q$, i.e. $\mathcal{\Delta}_P \subset \mathcal{\Delta}_Q$. Since the reverse inclusion can be shown similarly, we conclude that $\mathcal{\Delta}_P = \mathcal{\Delta}_Q$. Conversely assume that $\mathcal{\Delta}_P = \mathcal{\Delta}_Q$. Then the operator $T = \rho_Q^{-1} \rho_P$: $PB(R) \to QB(R)$ can be defined as a bijective mapping and $Tu \mid \mathcal{\Delta} = u \mid \mathcal{\Delta}$ for every $u \in PB(R)$. Therefore T fulfills the condition of canonical isomorphism and $T = T_{Q,P}$, i.e. PB(R) and QB(R) are canonically isomorphic.

$$PB(R) \xrightarrow{T} QB(R)$$

$$\downarrow^{\rho_P} \qquad \qquad \uparrow^{\rho_Q^{-1}}$$

$$C(\Delta; \Delta_P) \xrightarrow{\text{id.}} C(\Delta; \Delta_Q)$$

13. We simply say that PB(R) and QB(R) are isomorphic if there exists a Banach space isomorphism (i.e. bijective linear isometry) of PB(R) onto QB(R). Then we obtain another of our main result:

THEOREM. Banach spaces PB(R) and QB(R) are isomorphic if and only if nondensity point sets Δ_P and Δ_Q are homeomorphic.

Actually we can prove a bit more general assertion without adding any elaboration. Let P(Q, resp.) be a density on a hyperbolic Riemann surface R(S, resp.). We can speak of isomorphisms of PB(R) onto QB(S) as Banach spaces and also nondensity point sets \mathcal{L}_P and \mathcal{L}_Q relative to Wiener compactifications R^* and S^* of R and S, respectively. The above theorem is, then, a special case, i.e. R = S, of the following:

THEOREM. Banach spaces PB(R) and QB(S) are isomorphic if and only if nondensity point sets Δ_P and Δ_Q are homeomorphic.

Proof. Suppose there exists a homeomorphism α of Δ_P onto Δ_Q . Then $\varphi \to A\varphi = \varphi \circ \alpha^{-1}$ is a Banach space isomorphism of $C(\Delta_P)$ onto $C(\Delta_Q)$.

$$\begin{array}{ccc} PB(R) & \stackrel{T}{\longrightarrow} & QB(S) \\ \downarrow^{\rho_P} & & \uparrow^{\rho_Q^{-1}} \\ C(\varDelta; \varDelta_P) & & C(\varDelta; \varDelta_Q) \\ \downarrow^{\tau_P} & & \uparrow^{\tau_Q^{-1}} \\ C(\varDelta_P) & \stackrel{A}{\longrightarrow} & C(\varDelta_Q) \end{array}$$

Then $T = \rho_P^{-1} \circ \tau_Q^{-1} \circ A \circ \tau_P \circ \rho_P$ is a Banach space isomorphisms of PB(R) onto QB(S). Conversely assume that there exists a Banach space isomorphism T of PB(R) onto QB(R). Then $A = \tau_Q \circ \rho_Q \circ T \circ \rho_P^{-1} \circ \tau_P^{-1}$ is a Banach space isomorphism of $C(\mathcal{A}_P)$ onto $C(\mathcal{A}_Q)$. In such a case there exists a

$$PB(R) \xrightarrow{T} QB(S)$$

$$\uparrow^{\rho_P^{-1}} \qquad \qquad \downarrow^{\rho_Q}$$

$$C(\Delta; \Delta_P) \qquad \qquad C(\Delta; \Delta_Q)$$

$$\uparrow^{\tau_P^{-1}} \qquad \qquad \downarrow^{\tau_Q}$$

$$C(\Delta_P) \xrightarrow{A} C(\Delta_Q)$$

homeomorphism α of Δ_P and Δ_Q and an $a \in C(\Delta_Q)$ with |a| = 1 such that $A\varphi = a \cdot \varphi \circ \alpha^{-1}$ (cf. e.g. Dunford-Schwartz [4]); in particular Δ_P and Δ_Q are homeomorphic. Q.E.D.

14. Suppose there exists a neighborhood U^* of $z^* \in \Delta$ such that

(12)
$$\int_{U} G_{U}(z,\zeta)P(\zeta)d\xi d\eta < \infty \qquad (U = U^{*} \cap R)$$

THEOREM. A point z^* in Δ belongs to Δ_P if and only if (12) is valid.

Applications

15. A subset $K \subseteq R$ is said to be *B-negligible* if there exists a po-

tential p such that $p \geq 1$ on K. In this case, since $\liminf_{z \in R, z \to z^*} p(z) = 0$ for $z^* \in \mathcal{A}$, we see that $\overline{K} \cap \mathcal{A} = \phi$. Conversely, if $\overline{K} \cap \mathcal{A} = \phi$, then there exists a $\varphi \in C(R^*)$ such that $0 \leq \varphi \leq 1$, $\varphi \mid \overline{K} = 1$, and $\varphi \mid \mathcal{A} = 0$. Then there exists a potential p with $\varphi \leq p$ on R (cf. [3]). Hence $p \geq 1$ on K and therefore K is B-negligible. Thus we have the following characterization: A subset $K \subset R$ is B-negligible if and only if $R^* - \overline{K}$ is a neighborhood of A. Compact sets in R are trivial examples of B-negligible sets. From Theorem in no. 12 the following criterion of Royden follows at once:

COROLLARY (ORDER COMPARISON THEOREM). If there exists a constant $c \in [1, \infty)$ such that $c^{-1}P \leq Q \leq cP$ on R except possibly for a B-negligible set K, then PB(R) and QB(R) are canonically isomorphic.

In general, $Q \leq cP$ on R - K implies

$$\int_{\scriptscriptstyle{R-\bar{K}}} G(z,\zeta) Q(\zeta) d\xi d\eta \leq c \int_{\scriptscriptstyle{R-\bar{K}}} G(z,\zeta) P(\zeta) d\xi d\eta \ .$$

Since $\overline{R}-\overline{K}=(\overline{\partial(R-K)})$ is a neighborhood of Δ , the above inequality implies that $\Delta_P \subset \Delta_Q$. In passing we insert here a consequence of $\Delta_P \subset \Delta_Q$, i.e. a consequence of $Q \leq cP$ on R-K with B-negligible K. Since Δ_P is also compact and open in Δ_Q , the function $\tau \varphi$ given by $\tau \varphi = \varphi$ on Δ_P and $\tau \varphi = 0$ on $\Delta_Q - \Delta_P$ belongs to $C(\Delta_Q)$ for every $\varphi \in C(\Delta_P)$, i.e. $\tau : C(\Delta_P) \to C(\Delta_Q)$ is a linear isometry. Then $T = \rho_Q^{-1} \circ \tau_Q^{-1} \circ \tau \circ \tau_P \circ \rho_P$ is a linear isometry of PB(R) into QB(R) with $Tu|\Delta = u|\Delta$ for every $u \in PB(R)$. Returning to the above corollary, we also see that $\Delta_P \supset \Delta_Q$ from $c^{-1}P \leq Q$. Thus $\Delta_P = \Delta_Q$; PB(R) and QB(R) are canonically isomorphic. This criterion was obtained by Royden [18] for compact exceptional set K and by Loeb [8] in an abstract setting. The present formulation is stated in [16].

16. Let $G^P(z,\zeta)$ be the Green's function on R for the equation $\Delta u = Pu$ whose existence is always assured for any R (even for compact R) if $P \not\equiv 0$ (Myrberg [11, 12, 13]). In the present case, since we have assumed that R is hyperbolic, $G^P(z,\zeta)$ exists for every density P including $P \equiv 0$; as before we write $G(z,\zeta)$ for $G^P(z,\zeta)$ with $P \equiv 0$. Consider conditions

(13)
$$\int_{R-K} |P(\zeta) - Q(\zeta)| \, d\xi d\eta < \infty \; ;$$

(14)
$$\int_{R-K} G(z,\zeta) |P(\zeta) - Q(\zeta)| \, d\xi d\eta < \infty \; ;$$

(15)
$$\int_{\mathbb{R}^{-K}} (G^P(z,\zeta) + G^Q(z,\zeta)) |P(\zeta) - Q(\zeta)| d\xi d\eta < \infty ;$$

(16)
$$\int_{R-K} (G^{P}(z,\zeta)Q(\zeta) + G^{Q}(z,\zeta)P(\zeta))d\xi d\eta < \infty.$$

Here K is a B-negligible set in R and (14)–(16) are assumed to be valid for one and hence by the Harnack inequality for every z in S. Since

$$G^P(z,\zeta) \leq G(z,\zeta)$$
 and $\int_R G^P(z,\zeta)P(\zeta)d\xi d\eta < \infty$

because of

$$e_P = 1 - \frac{1}{2\pi} \int_{\mathbb{R}} G^P(\cdot, \zeta) P(\zeta) d\xi d\eta$$

(see the proof of the corollary below) it is clear that the following implications are valid: $(13) \rightarrow (14) \rightarrow (15) \rightleftharpoons (16)$.

COROLLARY (INTEGRAL COMPARISON THEOREM). If one of conditions (13)–(16) is valid, then PB(R) and QB(R) are canonically isomorphic.

This was obtained in [14] for $K=\phi$ and in the present form in [16] (cf. also Maeda [9]). The fact that (14) and hence (13) implies $\varDelta_P=\varDelta_Q$ is entirely clear. To show (15) or (16) implies $\varDelta_P=\varDelta_Q$, we may assume that $K=\phi$ in (15) since we can replace R by its normal open subset W whose $\tilde{\varDelta}$ contains \varDelta (cf. no. 14). The Green formula yields

$$Q_{\scriptscriptstyle 1}^{\scriptscriptstyle g} = P_{\scriptscriptstyle 1}^{\scriptscriptstyle g} \, + \, \frac{1}{2\pi} \int_{\scriptscriptstyle g} G_{\scriptscriptstyle g}^{\scriptscriptstyle Q}(\,\cdot\,,\zeta) P_{\scriptscriptstyle 1}^{\scriptscriptstyle g}(\zeta) (P(\zeta) \, - \, Q(\zeta)) d\xi d\eta \; . \label{eq:Q1gauge}$$

Since $e_P = \lim_{g \to R} P_1^g$ and $e_Q = \lim_{g \to R} Q_1^g$, (15) and the Lebesgue convergence theorem imply

$$e_Q=e_P+rac{1}{2\pi}\int_R G^Q(\,\cdot\,,\zeta)e_P(\zeta)(P(\zeta)\,-\,Q(\zeta))d\xi d\eta\;.$$

Similarly

$$Q_{\scriptscriptstyle 1}^{\scriptscriptstyle g}=1-rac{1}{2\pi}\int_{\scriptscriptstyle g}G_{\scriptscriptstyle g}^{\scriptscriptstyle g}(\cdot\,,\zeta)Q(\zeta)d\xi d\eta$$

and the Lebesgue-Fatou theorem yield

$$e_Q = 1 - rac{1}{2\pi} \int_{\mathbb{R}} G^Q(\cdot,\zeta) Q(\zeta) d\xi d\eta \; .$$

Set

$$h = T_P e_P = e_P + \frac{1}{2\pi} \int_{\mathbb{R}} G(\cdot, \zeta) e_P(\zeta) P(\zeta) d\xi d\eta.$$

Observe that

$$\frac{1}{2\pi} \int_{\mathbb{R}} G^{\mathbb{Q}}(\cdot,\zeta) e_{\mathbb{P}}(\zeta) Q(\zeta) d\xi d\eta \leq \frac{1}{2\pi} \int_{\mathbb{R}} G^{\mathbb{Q}}(\cdot,\zeta) Q(\zeta) d\xi d\eta = 1 - e_{\mathbb{Q}}$$

and

$$\frac{1}{2\pi}\int_{\mathbb{R}}G^{\mathbb{Q}}(\cdot,\zeta)e_{\mathbb{P}}(\zeta)P(\zeta)d\xi d\eta \leq \frac{1}{2\pi}\int_{\mathbb{R}}G(\cdot,\zeta)e_{\mathbb{P}}(\zeta)P(\zeta)d\xi d\eta = h - e_{\mathbb{P}}.$$

Therefore $|e_Q-e_P|\leq (h-e_P)+(1-e_Q).$ Since $h|\varDelta=T_Pe_P|\varDelta=e_P|\varDelta,$ $|e_Q-e_P|\leq 1-e_Q$

on Δ . If $z^* \in \Delta_Q$, then $e_Q(z^*) = 1$ and hence $e_P(z^*) = 1$, i.e. $z^* \in \Delta_P$. Thus we conclude that $\Delta_Q \subset \Delta_P$, and similarly $\Delta_P \subset \Delta_Q$, i.e. $\Delta_P = \Delta_Q$.

17. Each of the conditions (14)–(16) takes the following form for $Q \equiv 0$:

(17)
$$\int_{R-K} G(z,\zeta) P(\zeta) d\xi d\eta < \infty ,$$

where again K is a B-negligible set. Clearly $\Delta_P = \Delta$ is equivalent to (17) for some B-negligible K. Thus we have

COROLLARY. Banach spaces PB(R) and HB(R) are canonically isomorphic, i.e. the reduction operator $T_P \colon PB(R) \to HB(R)$ is surjective, if and only if (17) is valid for some B-negligible set K.

The sufficiency of (17) for $K = \phi$ was obtained in [14]. The condition (17) for $K = \phi$ may not be necessary is remarked by Lahtinen [7]. The assertion in the present form is stated in [16].

18. Let h_P be the least harmonic majorant of the P-unit e_P (the P-elliptic measure). Clearly $h_P = T_P e_P$. Then $e_P | \Delta = h_P | \Delta$. Therefore $\Delta_P = \Delta_Q$ if and only if $h_P = h_Q$ and we have the following

COROLLARY. Banach spaces PB(R) and QB(R) are canonically iso-

morphic if and only if $h_P = h_Q$. In particular PB(R) and HB(R) are canonically isomorphic if and only if $h_P = 1$.

That $h_P = h_Q$ is sufficient and that $h_P = 1$ is necessary and sufficient are recent results of Lahtinen [7], in which he also studies the class PB(R) for not necessarily $P \ge 0$ (cf. also Myrberg [13]).

REFERENCES

- [1] M. Brelot: Étude des intégrales de la chaleur $\Delta u = cu$, $c \ge 0$, au voisinage d'un point singulier du coéfficient, Ann. Éc. N. Sup., 48 (1931), 153-246.
- [2] M. Brelot: Sur un théorème de non existence relatif à l'équation $\Delta u = cu$, Bull, Sci. Math., 56 (1932), 389-395.
- [3] C. Constantinescu-A. Cornea: Ideale Ränder Riemannscher Flächen, Springer, 1963.
- [4] N. Dunford-L. Schwartz: Linear Operators, Part I: General Theory, Interscience Publishers, 1957.
- [5] M. Glasner-R. Katz: On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary, J. d'Analyse Math., 22 (1969), 345-354.
- [6] M. Heins: On the Lindelöf principle, Ann. of Math., 61 (1955), 440-473.
- [7] A. Lahtinen: On the solutions of $\Delta u = Pu$ for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn., **515** (1972).
- [8] P. Loeb: An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16 (1966), 167-208.
- [9] F.-Y. Maeda: Boundary value problems for the equation $\Delta u qu = 0$ with respect to an ideal boundary, J. Sci. Hiroshima Univ., 32 (1968), 85-146.
- [10] C. Miranda: Partial Differential Equations of Elliptic Type, Springer, 1970.
- [11] L. Myrberg: Über die Integration der Differential gleichung $\Delta u = c(P)u$ auf offenen Riemannschen Flächen, Math. Scand., 2 (1954), 142-152.
- [12] L. Myrberg: Über die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954).
- [13] L. Myrberg: Über die Integration der Gleichung $\Delta u = c(z)u$ auf einer Riemannschen Fläche im indefiniten Fall, Ann. Acad. Sci. Fenn., **514** (1972).
- [14] M. Nakai: The space of bounded solutions of the equation $\Delta u = pu$ on a Riemann surface, Proc. Japan Acad., 36 (1960), 267-272.
- [15] M. Nakai: Dirichlet finite solutions of $\Delta u = Pu$, and classification of Riemann surfaces, Bull. Amer. Math. Soc., 77 (1971), 381-385.
- [16] M. Nakai: Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.
- [17] M. Ozawa: Classification of Riemann surfaces, Kōdai Math. Sem. Rep., 4 (1952), 63-76.
- [18] H. Royden: The equation 4u=Pu and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959).
- [19] L. Sario-M. Nakai: Classification Theory of Riemann Surfaces, Springer, 1970.
- [20] I. Singer: Image set of reduction operator for Dirichlet finite solutions of $\Delta u = Pu$, Proc. Amer. Math. Soc., 32 (1972), 464-468.
- [21] I. Singer: Boundary isomorphism between Dirichlet finite solutions of $\Delta u = Pu$ and harmonic functions, Nagoya Math. J., 50 (1973), 7-20.

Nagoya University