On Appell's Function $P(\theta, \phi)$

By PIERRE HUMBERT, Université de Montpellier.

(Received 11th January, 1932. Read 15th January, 1932.)

§1. Appell's functions, $P(\theta, \phi)$, $Q(\theta, \phi)$ and $R(\theta, \phi)$ are defined by the expansion¹

$$e^{j\theta+j^{2}\phi} = P(\theta, \phi) + jQ(\theta, \phi) + j^{2}R(\theta, \phi)$$

where $j^3 = 1$, affording, both for the third order and the field of two variables, a very direct generalization of the circular functions, as

 $e^{i\theta} = \cos\theta + i\,\sin\theta.$

They can be written as follows:

$$\begin{split} P(\theta, \phi) &= \frac{1}{3} \left(e^{\theta + \phi} + e^{j\theta + j^2 \phi} + e^{j^2 \theta + j \phi} \right), \\ Q(\theta, \phi) &= \frac{1}{3} \left(e^{\theta + \phi} + j^2 e^{j\theta + j^2 \phi} + j e^{j^2 \theta + j \phi} \right), \\ R(\theta, \phi) &= \frac{1}{3} \left(e^{\theta + \phi} + j e^{j\theta + j^2 \phi} + j^2 e^{j^2 \theta + j \phi} \right), \end{split}$$

and they satisfy the fundamental relation

$$P^3 + Q^3 + R^3 - 3PQR = 1.$$

I showed recently that they are of great help to solve numerous problems connected with the equation

$$\Delta_{3} v = rac{\partial^{3} v}{\partial x^{3}} + rac{\partial^{3} v}{\partial y^{3}} + rac{\partial^{3} v}{\partial z^{3}} - 3 rac{\partial^{3} v}{\partial x \, \partial y \, \partial z} = 0$$

and allied equations.²

The object of this short note is to state some elementary remarks on the function $P(n\theta, n\phi)$ where *n* is an integer, and to make more conspicuous the analogy between it and $\cos n\theta$.

 $\S 2$. Let us consider the expression

$$E = \log \left(1 - a e^{\theta + \phi}\right) \left(1 - a e^{j\theta + j^2 \phi}\right) \left(1 - a e^{j^2 \theta + j \phi}\right),$$

¹ P. Appell, C. R., 84 (1877), 540.

² Atti della Pont. Accad. delle Scienze, Anno 83 (1929-30), 128. Cf. J. Devisme, C. R., 193 (1931), 981.

PIERRE HUMBERT

where a is an arbitrary constant, and try to expand it in ascending powers of a. We have

$$egin{aligned} E &= \log\left(1-ae^{ heta+\phi}
ight)+\log\left(1-ae^{j heta+j^{2}\phi}
ight)+\log\left(1-ae^{j^{2} heta+j\phi}
ight) \ &= &-\sum\limits_{n}rac{lpha^{n}\,e^{n(heta+\phi)}}{n}-\sum\limits_{n}lpha^{n}\,rac{e^{n(j heta+j^{2}\phi)}}{n}-\sum\limits_{n}lpha^{n}\,rac{e^{n(j^{2} heta+j\phi)}}{n} \ &= &-\sum\limits_{n}3a^{n}\,P(n heta,\,n\phi)/n. \end{aligned}$$

Now we can write, as $1 + j + j^2 = 0$,

$$\begin{split} E &= \log\left[1 - ae^{\theta + \phi} - ae^{j\theta + j^2\phi} - ae^{j^2\theta + j\phi} + a^2e^{-j\theta - j^2\phi} + a^2e^{-j^2\theta - j\phi} + a^2e^{-\theta - \phi} - a^3\right] \\ &= \log\left[1 - 3aP\left(\theta, \phi\right) + 3a^2P\left(-\theta, -\phi\right) - a^3\right]. \end{split}$$

So we obtain the function $P(n\theta, n\phi)$ through the generating function

$$-\log [1 - 3aP(\theta, \phi) + 3a^2P(-\theta, -\phi) - a^3],$$

the coefficient of a^n being $\{3P(n\theta, n\phi)\}/n$.

The noteworthy analogy with the circular functions arises from the fact that the coefficient of a^n in the expansion of

$$-\log\left[1-2\alpha\cos\theta+\alpha^2\right]$$

is $(2 \cos n\theta)/n$.

§3. The expansion just obtained,

$$-\log\left[1-3aP\left(heta,\phi
ight)+3a^2P\left(- heta,-\phi
ight)-a^3
ight]=\sum\limits_n 3a^nrac{P(n heta,n\phi)}{n},$$

shows that $P(n\theta, n\phi)$ can be expressed as a *polynomial* with respect to $P(\theta, \phi)$ and $P(-\theta, -\phi)$. We observe that

$$P\left(- heta,\ -\phi
ight)=P^{2}(heta,\ \phi)-Q\left(heta,\ \phi
ight)R\left(heta,\ \phi
ight),$$

so that $P(n\theta, n\phi)$ is a polynomial with respect to P and QR. For instance

$$P(2\theta, 2\phi) = P^2 + 2QR = 3P^2(\theta, \phi) - 2P(-\theta, -\phi)$$

 $P(3\theta, 3\phi) = 1 + 9PQR = 9P^3(\theta, \phi) - 9P(\theta, \phi)P(-\theta, -\phi) + 1.$

Our expansion leads readily to the following general result:

$$rac{P\left(n heta,\;n\phi
ight)}{n} = \sum\limits_{p} \sum\limits_{q} rac{(-1)^q}{n+2p+q} \sum\limits_{p} C_{(n+2p+q)/3} \ \ _q C_{(n+q-p)/3} \ \ P^p\left(heta,\;\phi
ight) P^q\left(- heta,\;-\phi
ight)$$

with $p \leq n$, $q \leq \frac{1}{2}(n-p)$. The symbol ${}_{s}C_{r}$ stands for the number of combinations of r objects s at a time. Of course $\frac{1}{3}(n+2p+q)$ and $\frac{1}{3}(n+q-p)$ must be positive integers.

54

§4. Similar formulae can, of course, be written for $Q(n\theta, n\phi)$ and $R(n\theta, n\phi)$. We may use the relations

$$egin{aligned} Q\left(- heta,\,-\phi
ight) &= Q^2 - RP \ R(- heta,\,-\phi) &= R^2 - PQ. \end{aligned}$$

If we take $\phi = 0$, the function P reduces to one of the sines of the third order,

$$f_1(\theta) = \frac{1}{3} \left(e^{\theta} + e^{j\theta} + e^{j^2\theta} \right),$$

and we obtain the expansion

$$-\log \left[1-3 a \, f_1\left(heta
ight)+3 a^2 \! f_1\left(\,- heta
ight)-a^3
ight]=\Sigma \, 3 a^n f_1\left(n heta
ight)\!/n,$$

showing that $f_1(n\theta)$ can be expressed as a polynomial with respect to $f_1(\theta)$ and $f_1(-\theta)$.

We may, perhaps, suggest the following researches:

- (a) To express $P(n\theta, n\phi)$ as an hypergeometric function of two variables and of the third order (one of the functions introduced by J. Kampé de Fériet).
- (b) To extend the result to sines of the 4th, etc., order, with one or two variables.

(c) To find a generating function for $P(h\theta, k\phi)$.