On Appell's Function $\boldsymbol{P}(\theta, \phi)$

By Pierre Humbert, Université de Montpellier.

(Received 11th January, 1932. Read 15th January, 1932.)
\S 1. Appell's functions, $P(\theta, \phi), Q(\theta, \phi)$ and $R(\theta, \phi)$ are defined by the expansion ${ }^{1}$

$$
e^{j \theta+j^{2} \phi}=P(\theta, \phi)+j Q(\theta, \phi)+j^{2} R(\theta, \phi)
$$

where $j^{3}=1$, affording, both for the third order and the field of two variables, a very direct generalization of the circular functions, as

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

They can be written as follows:

$$
\begin{aligned}
& P(\theta, \phi)=\frac{1}{3}\left(e^{\theta+\phi}+e^{j \theta+j^{2} \phi}+e^{j 2 \theta+j \phi}\right), \\
& Q(\theta, \phi)=\frac{1}{3}\left(e^{\theta+\phi}+j^{2} e^{j \theta+j^{2} \phi}+j e^{j^{2 \theta+j \phi}}\right), \\
& R(\theta, \phi)=\frac{1}{3}\left(e^{\theta+\phi}+j e^{j \theta+j^{2} \phi}+j^{2} e^{j \theta+j \phi}\right),
\end{aligned}
$$

and they satisfy the fundamental relation

$$
P^{3}+Q^{3}+R^{3}-3 P Q R^{\prime}=1
$$

I showed recently that they are of great help to solve numerous problems connected with the equation

$$
\Delta_{3} v=\frac{\partial^{3} v}{\partial x^{3}}+\frac{\partial^{3} v}{\partial y^{3}}+\frac{\partial^{3} v}{\partial z^{3}}-3 \frac{\partial^{3} v}{\partial x \partial y \partial z}=0
$$

and allied equations. ${ }^{2}$
The object of this short note is to state some elementary remarks on the function $P(n \theta, n \phi)$ where n is an integer, and to make more conspicuous the analogy between it and $\cos n \theta$.
§ 2. Let us consider the expression

$$
E=\log \left(1-\alpha e^{\theta+\phi}\right)\left(1-\alpha e^{j \theta+j^{2} \phi}\right)\left(1-\alpha e^{j^{2 \theta+j \phi}}\right),
$$

[^0]where a is an arbitrary constant, and try to expand it in ascending powers of a. We have
\[

$$
\begin{aligned}
E= & \log \left(1-a e^{\theta+\phi}\right)+\log \left(1-a e^{j \theta+j^{2} \phi}\right)+\log \left(1-\alpha e^{i \theta^{i \theta+j \phi}}\right) \\
& =-\sum_{n} \frac{\alpha^{n} e^{n(\theta+\phi)}}{n}-\sum_{n} \alpha^{n} \frac{e^{n\left(j \theta+j^{\prime \prime} \phi\right)}}{n}-\sum_{n} \alpha^{n} \frac{n\left(j^{2} \theta+j \phi\right)}{n} \\
& =-\sum_{n} 3 \alpha^{n} P(n \theta, n \phi) / n .
\end{aligned}
$$
\]

Now we can write, as $1+j+j^{2}=0$,

$$
\begin{aligned}
E & =\log \left[1-\alpha e^{\theta+\phi}-\alpha e^{j \theta+j^{2} \phi}-\alpha e^{j \theta+j \phi}+\alpha^{2} e^{-j \theta-j^{2} \phi}+\alpha^{2} e^{-j^{2} \theta-j \phi}+\alpha^{2} e^{-\theta-\phi}-\alpha^{3}\right] \\
& =\log \left[1-3 a P(\theta, \phi)+3 \alpha^{2} P(-\theta,-\phi)-a^{3}\right] .
\end{aligned}
$$

So we obtain the function $P(n \theta, n \phi)$ through the generating function

$$
-\log \left[1-3 a P(\theta, \phi)+3 a^{2} P(-\theta,-\phi)-a^{3}\right]
$$

the coefficient of α^{n} being $\{3 P(n \theta, n \phi)\} / n$.
The noteworthy analogy with the circular functions arises from the fact that the coefficient of a^{n} in the expansion of

$$
-\log \left[1-2 a \cos \theta+\alpha^{2}\right]
$$

is $(2 \cos n \theta) / n$.
§3. The expansion just obtained,

$$
-\log \left[1-3 \alpha P(\theta, \phi)+3 \alpha^{2} P(-\theta,-\phi)-\alpha^{3}\right]=\sum_{n} 3 a^{n} \frac{P(n \theta, n \phi)}{n}
$$

shows that $P(n \theta, n \phi)$ can be expressed as a polynomial with respect to $P(\theta, \phi)$ and $P(-\theta,-\phi)$. We observe that

$$
P(-\theta,-\phi)=P^{2}(\theta, \phi)-Q(\theta, \phi) R(\theta, \phi)
$$

so that $P(n \theta, n \phi)$ is a polynomial with respect to P and $Q R$. For instance

$$
\begin{gathered}
P(2 \theta, 2 \phi)=P^{2}+2 Q R=3 P^{2}(\theta, \phi)-2 P(-\theta,-\phi) \\
P(3 \theta, 3 \phi)=1+9 P Q R=9 P^{3}(\theta, \phi)-9 P(\theta, \phi) P(-\theta,-\phi)+1
\end{gathered}
$$

Our expansion leads readily to the following general result:
$\frac{P(n \theta, n \phi)}{n}=\sum_{p} \sum_{q} \frac{(-1)^{q} 3^{p+q}}{n+2 p+q}{ }_{p} C_{(n+2 p+q) / 3} \quad C_{(n+q-p) / 3} \quad P^{p}(\theta, \phi) P^{q}(-\theta,-\phi)$
with $p \leqslant n, q \leqslant \frac{1}{2}(n-p)$. The symbol ${ }_{s} C_{r}$ stands for the number of combinations of r objects s at a time. Of course $\frac{1}{3}(n+2 p+q)$ and $\frac{1}{3}(n+q-p)$ must be positive integers.
§4. Similar formulae can, of course, be written for $Q(n \theta, n \phi)$ and $R(n \theta, n \phi)$. We may use the relations

$$
\begin{aligned}
& Q(-\theta,-\phi)=Q^{2}-R P \\
& R(-\theta,-\phi)=R^{2}-P Q
\end{aligned}
$$

If we take $\phi=0$, the function P reduces to one of the sines of the third order,

$$
f_{1}(\theta)=\frac{1}{3 i}\left(e^{\theta}+e^{j \theta}+e^{j-\theta}\right),
$$

and we obtain the expansion

$$
-\log \left[1-3 a f_{1}(\theta)+3 \alpha^{2} f_{1}(-\theta)-\alpha^{3}\right]=\sum_{\mu} 3 \alpha^{n} f_{1}(n \theta) / n
$$

showing that $f_{1}(n \theta)$ can be expressed as a polynomial with respect to $f_{1}(\theta)$ and $f_{1}(-\theta)$.

We may, perhaps, suggest the following researches:
(a) To express $P(n \theta, n \phi)$ as an hypergeometric function of two variables and of the third order (one of the functions introduced by J. Kampé de Fériet).
(b) To extend the result to sines of the $4^{\text {th }}$, etc., order, with one or two variables.
(c) To find a generating function for $P(h \theta, k \phi)$.

[^0]: ${ }^{1}$ P. Appell, C. R., 84 (1877), 540.
 ${ }^{2}$ Atti della Pont. Accad. delle Scienze, Anno 83 (1929-30), 128. Cf. J. Devisme, C. R., 193 (1931), 981.

