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A direct numerical simulation study of self-similar compressible flat-plate turbulent
boundary layers (TBLs) with pressure gradients (PGs) has been performed for
inflow Mach numbers of 0.5 and 2.0. All cases are computed with smooth PGs
for both favourable and adverse PG distributions (FPG, APG) and thus are akin
to experiments using a reflected-wave set-up. The equilibrium character allows for
a systematic comparison between sub- and supersonic cases, enabling the isolation
of pure PG effects from Mach-number effects and thus an investigation of the
validity of common compressibility transformations for compressible PG TBLs.
It turned out that the kinematic Rotta–Clauser parameter βK calculated using the
incompressible form of the boundary-layer displacement thickness as length scale
is the appropriate similarity parameter to compare both sub- and supersonic cases.
Whereas the subsonic APG cases show trends known from incompressible flow,
the interpretation of the supersonic PG cases is intricate. Both sub- and supersonic
regions exist in the boundary layer, which counteract in their spatial evolution. The
boundary-layer thickness δ99 and the skin-friction coefficient cf , for instance, are
therefore in a comparable range for all compressible APG cases. The evaluation
of local non-dimensionalized total and turbulent shear stresses shows an almost
identical behaviour for both sub- and supersonic cases characterized by similar βK ,
which indicates the (approximate) validity of Morkovin’s scaling/hypothesis also for
compressible PG TBLs. Likewise, the local non-dimensionalized distributions of the
mean-flow pressure and the pressure fluctuations are virtually invariant to the local
Mach number for same βK-cases. In the inner layer, the van Driest transformation
collapses compressible mean-flow data of the streamwise velocity component well
into their nearly incompressible counterparts with the same βK . However, noticeable
differences can be observed in the wake region of the velocity profiles, depending
on the strength of the PG. For both sub- and supersonic cases the recovery factor
was found to be significantly decreased by APGs and increased by FPGs, but also to
remain virtually constant in regions of approximated equilibrium.
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1. Introduction

Most investigations of compressible turbulent boundary layers (TBLs) have been
performed for zero streamwise pressure gradient (ZPG). In contrast to the ZPG TBL
case, however, PG-influenced TBLs are difficult to study systematically since the
pressure distribution can arbitrarily change in the streamwise direction, rendering the
history of every spatially evolving PG TBL fairly unique (Vinuesa et al. 2017). The
dynamic properties of the TBL are strongly influenced by this history even in the
ZPG case (Perry, Marusic & Jones 2002) and thus strongly depend upon the specific
distribution of the streamwise PG. In the incompressible regime, a fundamental part
of understanding PG effects is therefore gained from self-similar PG TBLs, meaning
that all or at least the most important terms of the governing equations have the
same proportionality in their streamwise evolution. Since Reynolds-number effects
are largely excluded and history effects clearly and reproducibly defined due to the
equilibrium character of the resulting flow, PG effects can be isolated and generalized
conclusions drawn, see Stratford (1959), Skåre & Krogstad (1994), Skote, Henningson
& Henkes (1998), Lee & Sung (2008), Kitsios et al. (2016), Bobke et al. (2017),
Kitsios et al. (2017) and Lee (2017).

In many aspects, the understanding of PG effects is more intricate in the
compressible regime, even without taking the aspect of self-similarity into account.
PGs are additionally linked for instance to Mach number and thus wall-temperature/
heat-flux variations in the streamwise direction. Supersonic boundary layers possess
both a subsonic near-wall region and a supersonic outer part, and the overall effects
of PGs are not readily predictable since the thickening of the boundary layer is the
result of two opposing effects. While streamtubes tend to diverge for APGs in the
subsonic near-wall region, they tend to converge in the supersonic outer part of the
boundary layer (Smits & Dussauge 2006). Mainly caused by its spatially parabolic
character and the presence of strong density variations in the wall-normal direction,
the response of the supersonic PG TBL also highly depends on the way the PG is
imposed. Different set-ups invoke additional phenomena strongly superimposing on
the effect of ‘pure’ PGs. For compression ramps, for instance, the boundary layer
is mainly affected by a (slightly oscillating) shock and a small region of separated
flow in the corner, both significantly amplifying the level of turbulent fluctuations,
see Ardonceau (1984), Dussauge & Gaviglio (1987), Smits & Muck (1987), Selig
et al. (1989), Adams (2000), Wu & Martin (2007), Fang et al. (2015) and Sun, Hu &
Sandham (2017), among others. Boundary layers over convex/concave curved surfaces,
on the other hand, are additionally influenced by streamline curvature, wall-normal
PGs, bulk dilatation and Görtler vortices, see Bradshaw (1973, 1974), Jayaram, Taylor
& Smits (1987), Donovan, Spina & Smits (1994), Bowersox & Buter (1996), Arnette,
Samimy & Elliott (1998), Luker et al. (2000), Tichenor, Humble & Bowersox (2013)
and Wang, Wang & Zhao (2016a), for instance.

As a consequence, nearly everything known about pure PG effects on compressible
TBLs has been gained from investigations of reflected-wave set-ups where the PG is
imposed by a smoothly shaped body placed above a flat plate. The principal strain
rate and the bulk dilatation are only slightly changed in the near-wall region along
the streamwise direction in such flows (Wang, Wang & Zhao 2016b). Hence, the
reflected-wave set-up is the only case which really allows the isolation and thus a
meaningful discussion of pure PG effects in the compressible regime. Although the
gross effects of PGs on compressible TBLs are understood or at least well described,
a lot of fundamental questions remain.
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One of the main problem seems to be that only a few experimental realizations (and
no DNS data at all) of the reflected-wave set-up are available in the literature, and
thus data being accurate or complete enough to verify theoretical results are lacking,
see, e.g. Fernholz, Finley & Mikulla (1981), Fernholz et al. (1989), Fernando & Smits
(1990), Smith & Smits (1997), Franko & Lele (2014), Wang et al. (2016b) and Wang,
Wang & Zhao (2017). Compressibility transformations such as Morkovin’s scaling or
van Driest’s transformation are derived under somewhat restrictive conditions which
are assumed to be only approximately valid for the special case of the compressible
ZPG TBL. Both, however, represent the basis for the description and thus our
understanding of compressible TBLs, since they directly connect the compressible
and incompressible regimes. This does not imply that they do not hold for PG cases,
but due to the scarcity of data, their validity is not proven. In fact, experimental data
transformed via van Driest’s transformation show good agreement with incompressible
data correlations for various wall-heating conditions and modest PGs. However, since
the exact incompressible counterparts of the compressible problems are generally
not known and often not even realizable for incompressible flows, this agreement is
primarily qualitative (Cebeci & Bradshaw 1984). Furthermore, also the influence of
PGs on the turbulent Prandtl number, the recovery factor and thus on the adiabatic
wall temperature is unknown. All are of central importance for the derivation of
turbulence models, as their success largely depends on the possibly physics-based
modelling/universality of these values.

When considering the importance of compressible PG flows for e.g. commercial
aviation or gas turbines, it would be highly desirable to extend the knowledge about
pure PG effects on compressible TBLs by using DNS. These studies should be done
with the same systematic approach as has been used for the incompressible regime
so far by investigating self-similar PG TBLs. It is surprising, however, that virtually
nothing is known from the analytical or numerical/experimental perspective about the
canonical case of the compressible self-similar PG TBLs at all, despite the fact that
its understanding/description should actually be the first step to understand PG effects
in general in the compressible regime. It is not even clear to which degree any kind
of self-similarity can be obtained in the turbulent compressible regime, if at all. It can
certainly be expected that the compressible turbulent boundary-layer equations allow
self-similar solutions due to the close relationship between the Favre-averaged and the
incompressible Reynolds-averaged representations which are used as a starting point
for self-similarity investigations. However, the concept of compressible self-similarity
must compensate both Reynolds-number and compressibility effects caused by Mach-
number variations in the streamwise direction, and its existence is not readily apparent.

1.1. Objectives of this study
It is the primary goal of this study to systematically investigate the effects of pure
PGs on compressible TBLs by considering locally self-similar compressible PG TBLs
via DNS. The equilibrium character of this canonical case should allow generalizable
insight into the isolated effects of pure PGs on compressible turbulence and thus a
well-described starting point for related investigations. Furthermore, it should allow
for a direct comparison between compressible and incompressible cases (which
are expected to be mutual counterparts) and thus the evaluation of compressibility
transformations and Morkovin’s hypothesis (Morkovin 1961), which have only been
proven for ZPG TBLs so far.
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The achievement of approximate self-similarity, however, cannot be assessed for
flow data without understanding the theoretical conditions for self-similarity. Critical
assumptions which have to be made for a compressible self-similarity analysis,
however, cannot be verified without having data available. To this end, both a
theoretically derived self-similarity analysis and results of carefully conducted DNS
of self-similar compressible PG TBL are presented for the first time. Since only few
investigations are available in the literature providing any detailed reference data of
compressible PG TBLs, reliable DNS results are sought in general even without taking
the aspect of self-similarity into account. The present investigations are therefore
subdivided into two parts, the present first part which is mainly focused on the DNS
results, and a second part which is mainly focused on the derivation/validation of
compressible self-similarity, see Gibis et al. (2019).

The present study is structured as follows: in order to allow for a clear understanding
of the present DNS study, both the numerical methodology and the numerical set-ups
employed are summarized in § 2. The following results section is split into two parts.
While the first part (§ 3) mainly characterizes the spatial evolution of the resulting
compressible flow fields, the validity of compressibility transformations applied to
local mean-flow-field profiles is assessed in the second part (§ 4). Concluding remarks
are given in § 5.

2. Methodology and numerical set-up
First the modelling of the free-stream pressure distributions is presented, followed

by a summary of the simulation parameters. To enable a clear interpretation of the
results in the following, effects which are mainly caused by density variations due
to a fixed non-small Mach number are referred to as compressibility effects. Shock-
wave phenomena (by APGs), which may possibly occur, are referred to as supersonic
effects. Quantities with an overbar represent quantities averaged in both the spanwise
direction and time. The subscripts ‘w’ and ‘e’ refer to wall and free-stream quantities,
respectively, see Wenzel et al. (2018b) for details.

2.1. Methodology of the present study
DNS results are computed for the canonical case of the self-similar (equilibrium)
compressible PG TBL both for moderate APG and FPG cases. Therefore, all cases
should be characterized by long distances of a constant kinematic Rotta–Clauser
parameter βK = (δ∗K/τw)(dpe/dx), where δ∗K is the kinematic displacement thickness
(see § 3.2.1), τw the mean wall shear stress and dpe/dx the pressure gradient in
streamwise direction evaluated at the edge of the boundary layer. It was found
that those regions still yield the state of approximate streamwise self-similarity
in the compressible regime, see § 4.1.1 and Gibis et al. (2019) for a detailed
discussion. The use of both sub- and supersonic inflow Mach numbers should
further allow for a meaningful comparison between the incompressible/subsonic
and the compressible/supersonic regimes. As summarized in table 1, three nearly
incompressible APG cases are investigated with inflow Mach numbers of M∞,0 = 0.5,
yielding Rotta–Clauser parameters of βK = 0.19, 0.58 and 1.05. The subscript ‘∞’
represents far-field values, the subscript ‘0’ values evaluated at the inflow of the
domain. For the compressible, supersonic regime four APG cases and one FPG case
are investigated with inflow Mach numbers of M∞,0 = 2.0, yielding βK = 0.15, 0.42,
0.55 and 0.69 for the APG and βK = −0.18 for the FPG case. Additionally, ZPG
cases are computed for both inflow Mach numbers with the same set-up to provide
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reference data for all PG cases. In order to benefit from the verified reliability of the
ZPG set-ups, see Wenzel et al. (2018b), the same inflow Reynolds number of about
Reθ ≈ 300 is chosen for all cases.

2.2. Numerical method
All computations are performed with the compressible high-order in-house DNS code
NS3D; fundamentals are described in Babucke (2009), Linn & Kloker (2008, 2011),
Keller & Kloker (2014, 2016) and Wenzel et al. (2018a). With the velocity vector
u=[u, v,w]T with components in the streamwise, wall-normal and spanwise directions
x, y and z, the dimensionless solution vector is Q = [ρ, ρu, ρv, ρw, E]T , where ρ
and E are the density and the total energy, respectively. Velocities and length scales
are normalized by the streamwise reference velocity u∞ and the reference length
L= δ99,0, respectively, where δ99,0 is the boundary-layer thickness at the inflow of the
domain. Temperature or density are normalized by the reference temperature T∞ and
the reference density ρ∞; similarly for the thermal conductivity ϑ and the dynamic
viscosity µ. Specific heats and the pressure p are non-dimensionalized by u2

∞/T∞
and ρ∞u2

∞, respectively. The ratio γ = cp/cv = 1.4 and the Prandtl number Pr= 0.71
are assumed constant. The temperature dependence of the viscosity is modelled by
Sutherland’s law and the linear law below the Sutherland temperature. The equations
are solved on a block-structured Cartesian grid spanning a rectangular integration
domain.

Either sixth-order subdomain-compact finite differences (FDs) or eighth-order
explicit FDs are used for the three spatial directions, see Keller & Kloker (2013) or
Babucke (2009), Keller (2016) and Dörr (2018), respectively; compact FDs are more
stable for the supersonic cases. The classical explicit fourth-order Runge–Kutta scheme
is used for time integration, coupled with alternating forward- and backward-biased
FDs for the convective first derivatives, see Kloker (1997) and Babucke (2009).

2.3. Numerical set-up and boundary conditions
The numerical set-ups for the sub- and supersonic cases differ somewhat. For instance,
the thickening of the boundary layer is less for supersonic than for subsonic APG
cases, which effectively allows longer simulation domains for the same domain width
in the supersonic case. Caused by the opposing effect of APGs on the effective grid
resolution – increasing in the subsonic and decreasing in the supersonic case in terms
of wall units for a fixed grid step – also the numerical grid has to be designed
independently for both regimes. Furthermore, the pressure distribution noticeably
varies across the far field – initially it is determined for the edge of the boundary
layer but prescribed at the upper boundary of the simulation domain. The height of
the domain thus has to be restricted to a minimum to minimize the distortion of
the pressure distribution reaching the boundary layer. The set-ups for the sub- and
supersonic cases are described below independently.

2.3.1. Subsonic cases
A sketch of the subsonic simulation domain is presented in figure 1. The main

region of the computational box (red framed in figure 1a,b) is designed with
a height of at least three boundary-layer thicknesses δ99,end in the wall-normal
y-direction, measured at the end of the main region xend for the most restricting
βK = 1.05 case. The width is approximately π δ99,end in the spanwise z-direction.
Measured in boundary-layer thicknesses at the inflow of the simulation domain
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(a)

(b)

FIGURE 1. (Colour online) Simulation domain for present subsonic PG simulations.
The yellow coloured regions represent sponge zones, blue shaded regions between xend
and xmax regions where grid stretching is applied in the streamwise direction to make
spatial filtering effective. The red-bordered zone represents the main region of the
simulations. (a) Simplified simulation domain for the calculation of physical mean values
for sponge-zone application. (b) Simulation domain for the final calculation. The yellow
coloured sponge regions force the unsteady flow to the previously calculated mean-flow
values, which are set as new base-flow values.

(Reθ ≈ 300), the main region of the computational box has a dimension of
340 δ99,0 × 34 δ99,0 × 12π δ99,0, respectively. The length of the PG set-up in the
streamwise x-direction thus corresponds to 73 % of the ZPG case discussed in
Wenzel et al. (2018b) whereas the width corresponds to 150 %.

At the solid wall, the flow field is treated as fully adiabatic at every time instance
with (dT/dy)w = 0, which suppresses any heat exchange between the wall and fluid;
the pressure at the wall is calculated by (dp/dy)w = 0. For the velocity components,
the no-slip impermeable wall BC is applied. At the outflow, the time derivative,
respectively the complete space operator, is extrapolated with ∂Q/∂t|N = ∂Q/∂t|N−1
corresponding to a first-order extrapolation. At the top of the domain, p, T and thus
also ρ are kept constant. The velocity components u and w are specified by d/dy= 0;
the wall-normal velocity component v is calculated from the continuity equation
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under the assumption of dρ/dy = 0 such that dv/dy = −1/ρ(d(ρu)/dx + d(ρw)/dz).
Caused by the non-characteristic behaviour of this BC, the additional application of
numerical grid stretching and filtering and/or additional sponge zones is necessary
if sound-wave reflection should be suppressed. At the inflow, a digital-filtering
synthetic-eddy-method (SEM) approach is used to generate an unsteady, turbulent
inflow condition, see Wenzel et al. (2018b) or Wenzel (2019). The spanwise direction
is treated as periodic.

In order to allow a smooth transition process with a defined state from the
pseudo-physical to a fully developed turbulent state, a ZPG region with a spatial
extent of 30δ99,0 is applied at the inflow of the domain before the PG is forced, see
§ 2.4. The induction distance for reaching fully developed turbulence is therefore the
same as for the ZPG case at M∞ = 0.5 (1xind/δ99,0 ≈ 28, see table 2 and Wenzel
et al. (2018b)), and similar for all PG distributions. A sponge region is applied
outside the boundary layer at the inflow to prevent the included far-field flow from
being unduly distorted by the transient process, see Schmidt (2014), Kurz & Kloker
(2014) and Wenzel (2019). The sponge zone fixes the constant pressure region in
the far field through the inflow region, which otherwise is strongly influenced by
the retroactive effect of the PG applied further downstream. Only in the streamwise
direction, geometrical grid stretching is applied to the numerical grid in the outflow
region, see Wenzel (2019).

Due to the limited height of the simulation domain, the realizable total grid cell
increase and thus the effect of the numerical filter is limited in the wall-normal
direction in the far field of the domain. Possible reflections occurring at the far-field
boundary are therefore suppressed by the application of additional sponge zones.
These are to damp the unsteady flow to a prescribed mean flow not known a priori.
To generate this mean flow, a precursor simulation is computed on a preliminary
set-up for all PG cases, see figure 1(a). Weak reflections occurring at the far-field
boundary are not treated by this set-up since they have been found to average out
in the temporal mean. The accuracy of the resulting flow field has been verified
by a comparison with the ZPG case given in Wenzel et al. (2018b). At the outlet
of the simulation domain, a small sponge zone is applied to avoid a temporal drift
of the outlet pressure. This sponge damps the flow field to a spatially undeveloped
reference solution defined a priori. Hence, to minimize the distortion of the flow
field, its effectiveness is reduced to 30 % of the inflow sponge. The resulting mean
flow is used as a new base flow for the final set-up in a second step, which allows
the application of additional sponge zones at the far-field boundary and the outflow
region, both with the same effectiveness as the inflow sponge. A sketch of the final
set-up is given in figure 1(b).

2.3.2. Supersonic cases
A sketch of the supersonic simulation domain is depicted in figure 2. Caused by the

spatially hyperbolic behaviour of the supersonic flow, the pressure information is only
allowed to move along the angle of the flow’s local characteristics. Thus, prescribed
by the far-field BC at the top of the domain, the information of the particular PG is
diagonally transmitted as Mach waves (shock waves if the PG is too strong) down to
the plate (black solid lines in figure 2) where they are reflected (black dashed lines).
The final pressure field results from the superposition of the prescribed, incoming and
the reflected, outgoing waves. Both yield a complex flow field with lines of constant
pressure being almost perpendicular to the wall for regions of fully established wave
systems (cyan coloured solid lines). The induction length (inflow region in figure 2)
therefore depends on the Mach number, the length of the ZPG inflow region and the
height of the simulation domain. Hence, it is fixed by the particular numerical set-up.
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Lines of constant pressure
Incoming characteristics through top
Outgoing characteristics reflected from wall

FIGURE 2. (Colour online) Simulation domain for present supersonic PG simulations. The
yellow and blue shaded regions represent sponged and grid-stretched zones, respectively.
The main region of the simulation is red bordered. Pressure information introduced at the
far field moves diagonally to the wall (black solid lines) and is reflected (black dashed
lines). The final pressure field is depicted by cyan coloured solid lines.

For the present simulations, the main region of the computational box (red
framed in figure 2) is designed with a height of at least three boundary-layer
thicknesses δ99,end in the wall-normal y-direction and a width of approximately
π δ99,end in the spanwise z-direction for the most restricting βK = 0.69 case.
Measured in boundary-layer thicknesses at the inflow of the simulation domain
(Reθ ≈ 300), the main region of the computational box has a dimension of
500 δ99,0 × 34 δ99,0 × 12π δ99,0, respectively. The length of the PG set-up in the
streamwise x-direction thus corresponds to 107 % of the ZPG cases discussed in
Wenzel et al. (2018b) and 147 % of the previously presented subsonic PG cases.

The outflow is parabolized by neglecting the second x-derivatives; biased difference
stencils are used for the first x-derivatives. At the top of the simulation domain, a
subsonic characteristic outflow BC is applied according to Poinsot & Lele (1991)
(see also Babucke (2009), Franko & Lele (2014)). Its implementation allows upward
travelling (outgoing) disturbances to leave the integration domain, whereas downward
travelling (incoming) disturbances are set to zero in order to avoid reflections. This
BC, in fact, allows the mean pressure to adapt at the upper boundary, see below.
A detailed justification and discussion of its use is given in Wenzel (2019).

Following the same ideas as for the subsonic set-ups, a ZPG region with a spatial
extent of 80 δ99,0 is applied at the inflow of the domain before the PG is forced (see
next section for details). The induction distance until turbulence is fully developed is
therefore the same as for the ZPG case at M∞ = 2.0 (1xind/δ99,0 ≈ 60, see table 2
and Wenzel et al. (2018b)), and identical for all different PG distributions. As for the
subsonic cases, an identically dimensioned sponge region is applied at the inflow of
the domain to absorb the shock system which is caused by the transient process of
the inflow BC. It is noted that the prescribed wall-normal velocity component v, to
which the flow field is damped down in the sponge region, has to closely match the
one generated by the boundary layer itself. A mismatch of both velocities causes a
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discontinuity (exemplarily given in figure 2 as dotted lines at the inflow), which is
reflected by the upper boundary and thus affects the flow field in the whole simulation
domain. A detailed derivation of an analytical velocity adaption procedure can be
found in Gibis (2018). The outflow region of the simulation domain is only slightly
stretched and filtered to avoid reflections from the outflow BC in the subsonic near-
wall regions of the boundary layer. It was found that no additional outflow sponge
region is required.

2.4. Modelling of the free-stream pressure distribution

In the incompressible regime, the self-similar state of the PG TBL is usually predicted
by evaluation of the non-dimensional Rotta–Clauser parameter βK = (δ∗K/τw) (dpe/dx),
which must be constant for all streamwise positions. Following the idea of Townsend
(1956), this state is achieved if the streamwise velocity at the edge of the boundary
layer ue follows the power-law relation uPG(x)= α(x− xorigin)

m, with the PG strength
exponent m, a scaling parameter α = uPG(xPG,start) and the virtual origin of the
boundary layer xorigin. Based on the analytical investigations and the assumptions made
therein, both definitions are assumed to approximately still hold for the compressible
regime, see Gibis et al. (2019).

The corresponding temperature and pressure distributions are calculated from the
one-dimensional isentropic gas equations

TPG(x)= Tt −
γ − 1

2
uPG(x)2

γR
, pPG(x)= pt(

1+ γ − 1
2

MPG(x)2
)γ /(γ−1) , (2.1a,b)

with the Mach number M2
PG= u2

PG/(γRTPG), the total temperature Tt and total pressure
pt calculated at the inflow of the simulation domain as well as the isentropic exponent
γ . The distribution of the far-field density is calculated from the equation of state
ρPG = pPG/(RTPG). The particular values describing the respective velocity and thus
the pressure distributions are summarized in table 1. Note that the definition of the
pressure distribution at the top of the simulation domain yielding a requested βK-value
is the result of an iterative procedure, since both the correlation between m and βK

as well as the exact value of xorigin are unknown a priori.
Figure 3 visualizes both the initially implied (pPG, uPG) and the resulting pressure

and velocity distributions after being adapted by the particular BC (ptop, utop, vtop), all
evaluated at the top of the simulation domains. The subsonic pressure distributions
are fixed by the subsonic free-stream BC to the prescribed values pPG = ptop in
figure 3(a) and thus also approximately the streamwise velocity component uPG≈ utop

in figure 3(b). The supersonic initial distributions are adapted by the free-stream BC
in such a way that the pressure at the far-field boundary matches the pressure
of the resulting flow field inside the domain, see Franko & Lele (2014) and
Wenzel (2019). The resulting pressure distributions still follow an approximated
power-law relation (blue/cyan for the prescribed distributions pPG, grey for the
resulting distributions ptop, only given for the cAPGβK=0.69 and cFPGβK=−0.18 case).
The resulting distributions for the streamwise velocity component utop are given in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.670


248 C. Wenzel, T. Gibis, M. Kloker and U. Rist

Start PG xorigin m Smooth βK β

[x/δ99,0] [x/δ99,0] [−] [x/δ99,0] [−] [−]
(1) (red) iZPG — — — — 0.00 0.00
(2) (red) iAPGβK=0.19 30 −33.3 −0.07 — 0.19 0.21
(3) (red) iAPGβK=0.58 30 −33.3 −0.15 — 0.58 0.62
(4) (red) iAPGβK=1.05 30 −33.3 −0.20 — 1.05 1.08

(5) (blue) cZPG — — — — 0.00 0.00
(6) (blue) cAPGβK=0.15 80 −183.3 −0.08 10–135 0.15 0.24
(7) (blue) cAPGβK=0.42 80 −183.3 −0.20 10–135 0.42 0.64
(8) (blue) cAPGβK=0.55 80 −183.3 −0.25 10–135 0.55 0.82
(9) (blue) cAPGβK=0.69 80 −183.3 −0.29 10–135 0.69 1.00
(10) (cyan) cFPGβK=−0.18 80 −183.3 0.10 10–135 −0.18 −0.34

TABLE 1. Initial values for the PG cases. Given parameters are the starting point of the
PG region in boundary-layer thicknesses at the inflow of the domain δ99,0, the virtual
origin of the velocity distribution xorigin, the PG strength exponent m, smoothed regions
between ZPG and PG regions and the resulting βK and β parameters, if computed with
the incompressible and compressible displacement thicknesses δ∗K and δ∗, respectively.

figure 3(b) and show reciprocal trends. The wall-normal velocity component vtop is
given in figure 3(c). Whereas subsonic APG and supersonic FPG cases correspond
to diverging nozzle flows with positive v-components, supersonic APG and subsonic
FPG cases correspond to converging nozzle flows with negative v-components. It is
noted that the strongest APG case decelerates the far-field flow by approximately
35 %, resulting in a maximum wall-normal velocity component vtop of approximately
8 % of the streamwise velocity component utop.

2.5. Simulation parameters
The grid resolution for all subsonic cases is based on the most restricting one which
is the iZPG case (i for quasi incompressible), which thus allows the application of the
same resolution criteria as for the ZPG study evaluated in Wenzel et al. (2018b). For
all supersonic cases, the grid resolution is based on the most restricting cAPGβK=0.69

case. Its grid resolution is comparable to the ZPG M∞ = 2.0 case given in Wenzel
et al. (2018b). A grid convergence analysis for the two most restricting cases is
given in appendix A. The numerical grid for the sub- and supersonic cases consists
of 2500 × 270 × 820 and 5000 × 300 × 960 grid points in the three dimensions,
respectively, both with additional 200 points appended in the outflow region in the
streamwise direction. Whereas each subsonic set-up consists of 597 780 000 total
grid points, each supersonic set-up consists of 1 497 600 000 total grid points. The
resulting grid resolution in wall units is summarized in table 3(b) for all cases; it
is evaluated for the usable region where almost constant βK-values can be found,
see figure 10. Table 3(a) summarizes additional information characterizing the spatial
extent of the numerical simulation domain for all cases. The reference thermodynamic
flow properties are the inflow far-field temperature T∞ = 288.15 K, inflow far-field
density ρPG,∞ = 1.225 kg m−3, Prandtl number Pr = 0.71, specific gas constant
R = 287 J kg−1 K−1 and ratio of specific heats γ = 1.4 and are set equal for all
cases.
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FIGURE 3. (Colour online) (a) Pressure p for subsonic cases (left axis) and supersonic
cases (right axis), and (b,c) u- and v-velocity components. All distributions are evaluated
at the top of the simulation domain (index ‘top’). Red lines correspond to subsonic, blue
and cyan lines to supersonic cases. Whereas the subsonic far-field BC fixes the pressure
distribution ptop = pPG, the supersonic BC allows the pressure to adapt. The initially
prescribed values (index ‘PG’) are represented as coloured lines, the adapted states (index
‘top’) as grey lines only given for cAPGβK=0.69 and cFPGβK=−0.18.

Data averaging is performed over both time and spanwise direction and does not
start before the flow has passed the whole simulation domain at least twice. An
overview of the time-averaging periods 1t used for all cases is given in table 2.
Consistently for all cases, time averages were performed over a flow-through time
corresponding to approximately 250 local boundary-layer thicknesses δ99, see 1tue/δ99
in table 2.
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1tue/δ
∗ 1tue/δ99 1tu2

τ/νw FTT 1xind/δ99,0

(1) iZPG 3373–1540 621–282 10 841–8720 5.3 28
(2) iAPGβK=0.19 3375–1510 674–296 11 008–7824 6.6 28
(3) iAPGβK=0.58 2463–1152 554–250 8457–5540 7.0 28
(4) iAPGβK=1.05 2527–1248 617–300 8956–5716 9.6 28

(5) cZPG 2379–984 712–295 8867–6874 5.4 60
(6) cAPGβK=0.15 2208–207 665–346 9753–8734 6.2 60
(7) cAPGβK=0.42 1777–967 544–266 7994–7246 5.0 60
(8) cAPGβK=0.55 2454–1294 751–353 11 057–9650 6.8 60
(9) cAPGβK=0.69 1927–987 594–271 8760–7419 5.4 60
(10) cFPGβK=−0.18 1394–639 412–204 5989–4123 4.0 60

TABLE 2. Summary of time-averaging parameters measured at the begin and end of the
usable region, see figure 10. 1tue/δ

∗ and 1tue/δ99 give the number of local boundary-layer
thicknesses δ99 and local displacement thicknesses δ∗, which have been streamed through
during 1t. 1tu2

τ ,0/νw represents 1t in wall units 1t+. The number of flow-through times
(FTT) gives the number of time-averaged runs through the main region. 1xind./δ99,0 gives
the induction distance needed to reach a fully turbulent state, see Wenzel et al. (2018b).

3. Results for the untransformed, compressible flow fields
No DNS data are available in the literature for the reflected-wave set-up. It is

the primary goal of this section to characterize the resulting flow-field data first by
evaluating the spatial evolution of essential boundary-layer quantities. Additionally,
some characteristic features of the instantaneous turbulent flow fields are shortly
presented; their detailed interpretation will be part of future studies. The most
common compressibility transformations are evaluated and discussed in § 4.

3.1. Two- and three-dimensional flow fields
Figures 4 and 5 show the mean-pressure field p/p∞,0 and the wall-normal velocity
component v/u∞,0 of (a) the strongest subsonic iAPGβK=1.05 case, (b) the strongest
supersonic cAPGβK=0.69 case and (c) the supersonic cFPGβK=−0.18 case; the outflow
region is cropped. The boundary-layer thickness δ99 is depicted by black dash-
dotted lines.

A fully developed pressure field – characterized by lines of constant pressure
along y outside the boundary layer (black solid lines) – is achieved for the subsonic
iAPGβK=1.05 case for x/δ99,0 ' 50 (figure 4a). For the supersonic cases, this induction
distance is elongated up to x/δ99,0 ' 200, see figure 4(b,c) and p. 245. Both the
subsonic iAPGβK=1.05 case in figure 5(a) and the supersonic cFPGβK=−0.18 case in
figure 5(c) are characterized by positive wall-normal velocity components v/u∞,0 at
the top of the simulation domain, while the supersonic cAPGβK=0.69 case in figure 5(b)
is characterized by negative v/u∞,0. Note, however, that v/u∞,0 is almost completely
positive inside the boundary layer for the supersonic cAPGβK=0.69 case. This is caused
by the strong deceleration of the supersonic flow where the subsonic displacing
behaviour dominates the boundary layer; compare the red solid v = 0 and black
dash-dotted δ99-lines.

Snapshots of the streamwise velocity component u/ue(x) are given in figures 6 and 7
for a subset of the simulation domain extracted at Reτ = 490 (FPG at Reτ = 360) to
get an impression of the unsteady flow fields, see also figures 29 and 30. While the
subsonic iZPG and iAPGβK=1.05 cases are depicted in figure 6(a,b), respectively, the
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FIGURE 4. (Colour online) Mean-flow pressure field p/p∞,0 for (a) the strongest subsonic
iAPGβK=1.05 case, (b) the strongest supersonic cAPGβK=0.69 case and (c) the supersonic
cFPGβK=−0.18 case.
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FIGURE 5. (Colour online) Mean-flow field of the wall-normal velocity component v/u∞,0
for (a) the strongest subsonic iAPGβK=1.05 case, the strongest supersonic cAPGβK=0.69 case
and the supersonic cFPGβK=−0.18 case.

supersonic cAPGβK=0.69, cZPG and cFPGβK=−0.18 cases are depicted in figure 7(a,b,c),
respectively. The time-averaged boundary-layer thickness δ99 (only emphasized in the
present plots with an overbar) and the instantaneous boundary-layer thickness δ99 are
depicted as blue dash-dotted and solid lines, respectively. Grey iso-lines represent nine
equidistantly distributed levels of the streamwise velocity component u/ue(x) between
0.1 and 0.9. Solely for the supersonic cases in figure 7, the instantaneous sonic line
is depicted as a black bold solid line.

Compared with the incompressible iZPG case in figure 6(a), the subsonic APG
case shows a coarsening of turbulent structures with increasing APG strength, see
figure 6(b). For the supersonic cases in figure 7 the inverse trend is found, turbulent
structures are refined for the APG case (figure 7c) and coarsened for the FPG
(figure 7a) in comparison to the ZPG case (figure 7b). Whereas the sonic line is
pushed to the wall for the supersonic FPG case, it is lifted for the APG case in the
streamwise direction. Details will be discussed in the following sections.

Figures 8 and 9 illustrate iso-levels of the λ2-criterion computed from the
non-dimensionalized flow field ui = ui/u∞,0 with λ2 = −0.05 ue(x)/u∞,0 for the
previously discussed cases. Snapshots of the complete simulation domain are given
in figures 29 and 30. In accordance with the instantaneous velocity fields given
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the (a) subsonic iZPG case and the (b) strongest subsonic iAPGβK=1.05 case at Reτ = 490.
Left plots: xy-plane. Right plots: zy-plane.
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supersonic cAPGβK=0.69 case at Reτ = 490 (FPG at Reτ = 360). Left plots: xy-plane. Right
plots: zy-plane. The sonic line representing M = 1 is depicted as black bold line.

before, the λ2-structures are thinned out for APGs in the subsonic and FPGs in the
supersonic regime, and refined by APGs in the supersonic regime if compared to
the respective ZPG case. A detailed investigation of compressible PG effects on the
turbulent structures will be part of future studies.
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FIGURE 8. (Colour online) Snapshots of vortices by iso-surfaces of the λ2-criterion with
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iAPGβK=1.05 case at Reτ = 490. Colour depicts the fluctuation amplitude of the streamwise
velocity component u′/u∞,0. Left plots: subset of the simulation domain in top view. Right
plots: close-ups of the white bordered regions in the left plots, see also figures 29 and 30.

3.2. Boundary-layer characterization
In this section the evolution of the most important boundary-layer quantities is
described.

3.2.1. Evaluation of the Rotta–Clauser parameter
Both the kinematic and the compressible results of the Rotta–Clauser parameter

β(K) = (δ∗(K)/τw)(dpe/dx) are shown in figure 10, where the kinematic displacement
thickness is δ∗K =

∫ δ99

0 (1 − u/ue) dy and the compressible displacement thickness
δ∗ = ∫ δ99

0 (1− (ρ u)/(ρeue)) dy. It is shown in Part 2 of this study (Gibis et al. 2019)
and by the DNS results discussed below that the βK-parameter correctly characterizes
the self-similar state of the compressible TBL and hence enables a comparison of
PG influences between compressible and incompressible flows. The compressible
definition β turns out to be less relevant because the compressible displacement
thickness is not a good characterizing length scale for the outer part of the boundary
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case and (c) the strongest supersonic cAPGβK=0.69 case at Reτ = 490 (FPG at Reτ = 360).
Colour depicts the fluctuation amplitude of the streamwise velocity component u′/u∞,0 in
the same representation as in figure 8, see also figures 29 and 30.

layer, as shown in Gibis et al. (2019). Since all simulations start with a ZPG region at
the inflow (see § 2.4), an induction distance is needed before the individual β(K)-values
become approximately constant (grey dashed lines). Expressed in various Reynolds
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FIGURE 10. (Colour online) Clauser parameters β(K)= (δ∗(K)/τw)(dpe/dx) for the computed
results. Red lines represent the four subsonic cases, blue and cyan lines the six supersonic
cases. Coloured horizontal lines represent curve fits of their solid line counterparts.
Grey dashed lines represent induction regions, where β(K) is not yet constant. Expressed
in various Reynolds numbers, both the start and the end of the coloured regions are
summarized in table 3(a) for all cases.

numbers, the start and the end of the (almost) constant regions are summarized in
table 3(a) for all cases.

An evaluation of the resulting β(K)-values in figure 10 yields almost perfectly
constant values for the subsonic APG cases, slightly rising values for the supersonic
APG cases and slightly decreasing values for the supersonic FPG case. Due to the
additional consideration of density variations in the wall-normal direction, β-values
are increased compared to the βK-values. As shown in the next section, δ∗K and
δ∗ and thus also βK and β are not proportional to each other in their streamwise
evolution for the supersonic cases due to the varying influence of compressibility. The
βK-distributions are therefore slightly steeper compared to β. Whereas the subsonic
cases are characterized by βK = 0.19, 0.58 and 1.05, the supersonic cases yield
βK = 0.15, 0.42, 0.55 and 0.69 for the APG and βK =−0.18 for the FPG case. The
corresponding β-parameters are summarized in table 1.

Constant βK-values mainly characterize the resulting mean flow but do not inevitably
warrant perfect self-similarity of higher moments in the streamwise direction, since
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influences resulting from history effects occurring in the induction sections cannot
be excluded. Nevertheless, the achieved constancy of the distributions suggests an
approximated state of local self-similarity for all PG cases for at least 50 average
boundary-layer thicknesses δ99,av but not exactly for x→∞. Detailed investigations
are given in Gibis et al. (2019).

3.2.2. Evolution of the boundary layer
All supersonic APG cases follow the same qualitative trends; thus only the cases

cAPGβK=0.42 and cAPGβK=0.69 are depicted.
Figure 11(a) illustrates the spatial evolution of the boundary-layer thickness δ99/δ99,0

and the wall-normal position of the sonic line δSL/δ99,0 in green (line style in
accordance with the boundary-layer thickness), the latter of which separates sub-
and supersonic parts of the supersonic boundary-layer cases. The ratios of the
boundary-layer thicknesses θ/δ99 and δ∗/δ99 are depicted in figures 11(b) and 11(c)
for the sub- and supersonic cases, respectively. Solely for the supersonic cases, the
ratios of the kinematic boundary-layer thicknesses are given in figure 11(d). For all
three panels (b,c,d), results depicted by symbols belong to the y-axis located on the
left-hand side of the plot; results depicted by lines belong to the y-axis located on
the right-hand side of the plot.

For the quasi-incompressible cases, the boundary-layer thickens strongly with
increasing APG strength (figure 11a) resulting in a maximum of twice the thickness
of the ZPG case for the iAPGβK=1.05 case. When the pressure rises in subsonic
flows, the velocity decreases more rapidly than the density increases. This results
in a decompression of the streamtubes and thus an increase in the boundary-layer
thickness (Spina, Smits & Robinson 1994).

Given in figure 11(b), the ratio of the momentum thickness θ/δ99 (red symbols, left
y-axis) as well as the ratio of the displacement thickness δ∗/δ99 (red lines, right
y-axis) are almost constant and thus almost proportional to each other in the
streamwise direction, δ99 ∝ δ∗ ∝ θ . As a consequence, also the shape factor H = δ∗/θ
is almost constant as will be further discussed in § 3.3.1.

For the compressible, supersonic APG cases, the boundary-layer thickness δ99/δ99,0
is first reduced and then increased compared to the cZPG case and thus leads to
an intersection point, see figure 11(a). Following Spina et al.’s (1994) argument,
this counterintuitive behaviour is caused by the unique character of the supersonic
boundary layer that consists of both sub- and supersonic regions. In contrast to
the subsonic regions, the density increases more rapidly than the velocity decreases
in supersonic regions for APGs, meaning that streamtubes are compressed in the
supersonic part above the green sonic line and decompressed in the subsonic part
below the sonic line. When the subsonic region of the boundary layer becomes large,
which means that the sonic line is noticeably lifted off the wall (approximately for
M∞ / 1.8, cf. Spina et al. (1994)), the APG causes the boundary-layer thickness to
increase and the wall shear stress to decrease. As given in table 3(a), the usable
region of the cAPGβK=0.42 and cAPGβK=0.69 cases covers Mach-number ranges of
1.82 > Me > 1.50 and 1.74 > Me > 1.33, respectively, which approximately confirms
the Spina et al.’s (1994) switch-over value of M∞ / 1.8. For the compressible,
supersonic cFPGβK=−0.18 case, the supersonic part dominates the boundary layer,
which thus is thickened up in its spatial development compared to the cZPG case.

Discussing the momentum and displacement thickness distributions for all
supersonic cases in figure 11(c) next, only the ratio of the momentum thickness
θ/δ99 (symbols, left y-axis) is approximately constant in the streamwise direction.
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FIGURE 11. (Colour online) Boundary-layer values for regions of constant β(K). Subsonic
and supersonic cases are coloured red and blue, respectively, the supersonic FPG case
cyan. Depicted are (a) the boundary-layer thickness δ99/δ99,0 and the sonic lines in green
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The ratio of the displacement thickness δ∗/δ99 (lines, right y-axis) is strongly
decreased for the APG and increased for the FPG cases, approximately leading
to δ99 ∝ θ 6∝ δ∗. As a consequence also the shape factor H is not constant anymore
for the compressible results as will be further discussed in § 3.3.1. An evaluation
of the kinematic boundary-layer values in figure 11(d) can reproduce almost the
same trends as for the nearly incompressible cases in figure 11(b), yielding again
the approximate dependency of δ99 ∝ θK ∝ δ∗K and thus the approximate constancy of
HK = δ∗K/θK .

3.3. Spatial evolution of averaged flow statistics
This section provides the streamwise evolution of important mean-flow parameters as
a function of the local Reynolds numbers Reθ or Reτ in the same representation as
for the ZPG study in Wenzel et al. (2018b). It should be mentioned however that
the interpretation of Reθ may be difficult due to the non-intuitive development of the
compressible PG TBL itself.

3.3.1. Spatial evolution of mean-flow statistics
Figures 12, 13 and 14 give the distribution of the skin-friction coefficient

cf = 2τw/(ρwu2
e) with τw = µ∂u/∂yw ≈ µw(∂u/∂y)w, the skin-friction velocity

Reynolds number Reτ = ρwuτδ99/µw and the compressible (kinematic) shape
factors H(K) = δ∗(K)/θ(K) as functions of the momentum-thickness Reynolds number
Reθ(K) = ρeueθ(K)/µe. Additionally, as a function of the streamwise position x/δ99,0 and
computed from Taw/Te= 1+ r(γ − 1)/2 M2

e , the streamwise evolution of the recovery
factor r is given in figure 15.

The cf -distribution (figure 12) is supplemented by a black solid line representing
a re-calibrated incompressible reference following cf = 0.0274 Re−0.27

θ (re-calibration
is based on the results from Wenzel et al. (2018b)). Note that the re-calibrated
cf -correlation also better represents the Schlatter & Örlü’s (2010) incompressible
dataset. Compressible references for M∞ = 0.5 and 2.0 are computed from the van
Driest II transformation (White 2006) and are depicted as grey dashed lines; see
also Wenzel et al. (2018b). The Reτ - and HK-distributions are supplemented by
the incompressible references according to Schlatter & Örlü (2010) and Chauhan,
Monkewitz & Nagib (2009). Represented as grey dashed lines in figures 13 and 14,
the compressible references are gained by shifting the incompressible correlations to
fit the compressible ZPG results.

For the cf -distributions in figure 12, both the sub- and the supersonic ZPG
cases show excellent agreement with the compressibility transformed re-calibrated
cf -correlation. In accordance to the literature database, the cf -distributions of the
subsonic APG cases are shifted towards lower values for increasing APG strength.
However, they almost follow the same slope as the subsonic ZPG case due to their
(approximate) state of self-similarity. A comparison between the iAPGβK=1.05 case
and the incompressible βK = 1.00 case of Kitsios et al. (2017) (red circles) shows
good agreement. The supersonic APG cases are difficult to interpret due to the strong
coupling of PG and compressibility effects. According to Spina et al. (1994), the
wall shear stress increases monotonically through the region of applied APGs for
supersonic flows where the sonic line is close to the wall, meaning that Me & 1.8.
The cf -distribution, however, remains nearly constant due to the increase in ρeu2

e . All
supersonic APG cases are therefore in a comparable cf -range for Reθ . 1700 where
local Mach numbers are about Me≈ 1.8, see table 3(a). For higher Reynolds numbers,
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FIGURE 12. (Colour online) Skin-friction coefficient cf as function of Reθ . The
incompressible, re-calibrated correlation (black solid line) is given by cf = 0.0274 Re−0.27

θ ,
the compressible one by the van Driest II transformation (grey dashed lines, see White
(2006)).
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FIGURE 13. (Colour online) Skin-friction velocity Reynolds number Reτ as function of
Reθ . The incompressible correlation is given by Reτ = 1.13 Re0.843
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Schlatter & Örlü (2010)), the compressible ones by the simple shift of the incompressible
correlation (grey dashed lines).
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FIGURE 14. (Colour online) (a) Shape factor H and (b) kinematic shape factor HK as
a function of Reθ and Reθ,K , respectively. The incompressible correlation is given as
the shape of the integrated incompressible composite profiles (Chauhan et al. 2009). The
compressible references are gained by a simple shift of the incompressible correlation.

compressibility effects become weaker due to a decrease of the local Mach number
and the cf -distributions are increasingly dominated by PG effects. Since the PG is
stronger for the cAPGβK=0.69 case compared to the cAPGβ=0.42 case, for instance,
the cf -distribution of the cAPGβK=0.69 case is lower compared to the cAPGβK=0.42
case. The interpretation of the supersonic FPG is opposite: compressibility effects
(decreasing cf ) dominate the PG effect (increasing cf ), which thus yields a steeper
downwards running cf -slope compared to the ZPG case.

The interpretation of the Reτ -distributions in figure 13 follows the same arguments
as for the cf -distribution due to their mutual dependency on the non-dimensional
wall shear stress. Subsonic APG cases can be gained by shifting the ZPG results
to higher Reθ - and slightly increased Reτ -values. The supersonic APG and FPG
cases show a consistent behaviour as the cf -distributions discussed before. Note
that the Reτ -distributions for the supersonic APG cases are slightly curved in
the double-logarithmic representation since they have to converge towards the
incompressible distributions when decelerated to almost incompressible Mach
numbers.
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FIGURE 15. (Colour online) Distribution of the recovery factor r as function of
streamwise position x/δ99,0. Red coloured lines represent the subsonic cases, blue and cyan
lines the supersonic cases. Grey dotted lines denote the induction regions where β(K) is
not yet constant, see figure 10.

Calculated in its compressible formulation, the shape-factor distribution H
(figure 14a) is more influenced by compressibility effects than by PG effects, which
makes the interpretation of the compressible results more unambiguous. Whereas the
subsonic APG cases again seem to be obtainable by shifting the ZPG distribution
towards higher values, the shape factors of the supersonic APG cases become
significantly smaller in the streamwise direction caused by the substantial decrease
in the local Mach number. For instance, the Mach number of the cAPGβK=0.69
case is lower at the end of the simulation domain than the Mach number of the
cAPGβK=0.55 case, and its shape factor is lower. For the supersonic FPG case, the
reversed argument holds. When calculated without taking density variations in the
wall-normal direction into account, compressibility influences are almost eliminated
for the kinematic shape-factor distributions HK in figure 14(b). However, a quantitative
comparison between sub- and supersonic cases seems not to be reasonable, see also
figure 11(d). But especially for the self-similarity analysis in Gibis et al. (2019), the
coalescence of sub- and supersonic kinematic shape factors will be utilized in the
definition of appropriate length scales defining the state of the compressible PG TBL.

The recovery factor r is expected to be constant in the streamwise direction for
self-similar flows, see Gibis et al. (2019), but not necessarily with the same value for
different βK-cases. Figure 15 shows the various curves compared to the often used
ZPG reference value r = Pr1/3 ≈ 0.892; constancy of r might be interpreted as an
indicator for the state of self-similarity reached by the thermal boundary layer.

For the subsonic cases, an increasing APG means lower recovery factor values, with
slightly rising trends in the streamwise direction. Whereas its value is approximately
equal to r≈ 0.88 for the iZPG case, its value is about r≈ 0.82 for the strongest APG
case and thus decreased by 7 %. Note that the calculation of r for low Mach numbers
gets very sensitive and does not make sense for zero Mach number.

Although being much less influenced by PGs compared to the subsonic cases,
similar behaviour is observed for the supersonic cases. Whereas r is decreased by
approximately 2 % for the strongest supersonic APG case compared to the ZPG case,
the FPG case value is increased by approximately 1 %. Compared to the subsonic
cases, r is much more constant in the streamwise direction for x/δ99,0 ' 300, but needs
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FIGURE 16. (Colour online) Near-wall behaviour of the streamwise velocity fluctuation
u′+ =

√
u′2/uτ in inner scaling versus Reτ (cf. Schlatter & Örlü 2010). (a) Peak value

of the wall-near maximum u′+max, (b) the wall-normal position of the maximum y+
(
u′+max

)
and (c) the wall slope (∂u′+/∂y+)|w. Black dashed lines are references for the ZPG cases
taken from Wenzel et al. (2018b).

an induction distance of approximately 1x/δ99,0 ≈ 100 to reach the constant state. It
is therefore expected that the thermal boundary layer requires more time/space to
fully adapt to the self-similar state. The effects of the elongated induction distance on
self-similarity of local mean-flow profiles are further discussed in Gibis et al. (2019).

3.3.2. Spatial evolution of averaged fluctuation statistics
The peak value u′+max of the Reynolds fluctuations in the streamwise direction

u′+ =
√

u′2/uτ and their wall-normal position y+(u′+max) are given in figure 16(a,b),
respectively. The wall slope (∂u′+/∂y+)|w is given in figure 16(c). All distributions
are plotted versus Reτ . In order to emphasize their spatial trends, all data (grey solid
lines in the background) are approximated by a coloured linear regression. (The
linear slopes are only rough approximations which are not expected to hold for
higher Reynolds numbers. The supersonic cases, for instance, are decelerated to the
incompressible regime and thus have to converge to the incompressible references.)
Taken from Wenzel et al. (2018b), black dashed lines represent references for both
ZPG cases.

For the subsonic cases in figure 16(a) first, the peak value of the streamwise
velocity fluctuation u′+max is increased by up to 10 % in the investigated βK- and
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Reτ -range for the strongest APG case. The slope of the linear regression is slightly
increased. For the supersonic APG cases this shift is larger, since both the effect of
a decreasing Mach number in the streamwise direction and APGs supplement each
other. With opposing argumentation, a contrary behaviour is found for the supersonic
FPG case.

For the subsonic cases, the wall-normal position of the fluctuations’ maximum value
y+(u′+max) in figure 16(b) is shifted towards the wall for lower and away from the wall
for higher Reynolds numbers. For increasing APG strength, the slope of the linear
regressions is increased. For the supersonic PG cases, both the effects of varying Mach
number in the streamwise direction and PGs are opposed to each other, which leads
to comparable distributions for the cAPGβK=0.55 and cAPGβK=0.69 cases for instance.
Globally, the maxima are shifted away from the wall for Reτ larger than 350.

The wall slope in figure 16(c) shows a comparable behaviour for both sub- and
supersonic cases, although the slopes of the supersonic cases are somewhat lower
compared to the subsonic ones. More details will be discussed in the next section.

4. Results for the transformed, local flow fields
Sub- and supersonic PG cases are not necessarily assumed to directly compare since

compressibility transformations – which would enable a direct quantification of PG
influences by eliminating the effect of compressibility – might be often only expected
to be ‘valid by definition’ for the strict case of ZPGs. To prove the applicability of
both Morkovin’s scaling/hypothesis and van Driest’s transformation for CPG TBLs,
their underlying assumptions are shortly introduced and evaluated in the first part of
this section. On this basis, the streamwise mean-flow velocity profiles and Reynolds
fluctuations are summarized for all PG cases.

4.1. Discussion of the validity of compressibility transformations

According to Morkovin (1961), the Reynolds fluctuations u′iu′j are (almost) invariant
with respect to the Mach number M, if scaled with the wall-normal density ratio ρ/ρw
and the skin-friction velocity u2

τ

ρ

ρw

u′iu′j
u2
τ

6= f (M). (4.1)

This is generally known as Morkovin’s scaling. Depending on the particular
argumentation, this scaling uses, among others, the assumption that the total stress
τ t=µ(du/dy)− ρu′v′ is constant and equal to τw in the inner region of the boundary
layer (cf. Smits & Dussauge (2006) and Cebeci & Bradshaw (1984) for instance).
For PG cases, however, the shear-stress distribution varies near the wall to first order
by τ t ≈ τw+ (dpe/dx)y and thus directly connects the total shear-stress distribution to
the streamwise pressure gradient (White 2006; Skote et al. 1998). Nevertheless, by
assuming a constant stress region within the inner 20 per cent of the boundary layer
if the PG is weak, see Cebeci & Bradshaw (1984), basic compressible principles like
Morkovin’s scaling are often assumed to approximately hold for the compressible PG
regime.

Implicitly depending on Morkovin’s scaling, the derivation of van Driest’s
transformation as given by

duVD =
(
ρ

ρw

)1/2

du, (4.2)
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which additionally depends on the validity of the inner layer mixing length
l2
m = −u′v′/(∂u/∂y)2 which departs in the outer layer from its inner value even

for ZPG cases, see Wenzel et al. (2018b), for instance. Hence, in contrast to
Morkovin’s scaling, the van Driest transformation is not expected to entirely eliminate
compressibility effects in the outer layer at all, as the mixing length is also expected
to be influenced by PGs. Following the interpretation of Cebeci & Bradshaw (1984),
the van Driest transformed velocity profile

u+VD =
1
k

ln y+ +C+ Π
k

w
(

y
δ99

)
(4.3)

thus only can be interpreted as an adequate solution of compressible PG TBLs, if
its parameters C and Π are calibrated to the particular case by using compressible
reference data. The van Driest transformation itself only gives the framework of
how this solution has to look. Also, the variation of uτ , C and Π in the streamwise
x-direction will not generally correspond to any realizable incompressible boundary
layer. Hence it may not be possible to choose a pressure distribution pe(x) for
an incompressible flow that will reproduce the same velocity profile as in the
compressible flow at each x-position. Cebeci & Bradshaw (1984) therefore concluded
that only ‘the spirit of van Driest’s transformation, although not in its details, would
be retained if compressible boundary layers were calculated using the mixing-length
formula’.

In the following, mainly the plausibility of Morkovin’s scaling – and thus implicitly
the plausibility of van Driest’s transformation in the inner region – is discussed by
evaluation of the mean shear-stress distributions. Further insight into the coupling
between compressibility and PG effects are given afterwards by discussing the
wall-normal distributions of the mean-flow pressure and pressure-fluctuation fields.

4.1.1. Shear-stress distributions
According to Guarini et al. (2000), the total shear stress τ t writes

τ t︸︷︷︸
total stress

= µ
∂u
∂y︸︷︷︸

mean stress

− ρu′′v′′︸ ︷︷ ︸
turbulent stress

+µ′
(
∂u′

∂y
+ ∂v

′

∂x

)
︸ ︷︷ ︸

stress correlation

, (4.4)

where f ′′ denotes fluctuations about the Favre average f̃ = ρf /ρ for an unsteady
quantity f . Normalized by the wall shear stress τw = ρwu2

τ , the mean shear stress,
the turbulent stress and the total stress are given in figure 17(a–c) for all cases,
respectively. The distribution of the shear-stress correlation is almost zero and
therefore not considered in the following. Based on the first-order expansion of
the total shear-stress distribution τ t ≈ τw + (dpe/dx)y, the pressure-corrected total
shear-stress distribution τ t,pc = τ t − (dpe/dx)y is given in figure 17(d). All data are
extracted at Reτ = 490 except for the supersonic FPG case where data are extracted
at Reτ = 360.

Given in figure 17(a), the mean shear-stress distribution is almost constant at the
wall for all cases and only slightly influenced by both compressibility and PG effects
in the buffer layer between the viscous sublayer and the log layer at 3 / y+ / 50.
For the subsonic cases, the mean shear-stress distributions are slightly decreased
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FIGURE 17. (Colour online) Comparison of (a) the mean shear stress µ(∂u/∂y)/τw,
(b) the turbulent shear stress −ρu′′v′′/τw, (c) the total shear stress τ t and (d) the
pressure-corrected total shear stress τ t,pc = τ t − (dpe/dx)y. Supersonic FPG data are
extracted at Reτ = 390, other data at Reτ = 490. Red: ——— iZPG, —— - · iAPGβK=0.19,
— - — iAPGβK=0.58, – · – · – iAPGβK=1.05. Blue: ——— cZPG, ——– – cAPGβK=0.15, — — -
cAPGβK=0.42, – – – – – cAPGβK=0.55, - - - - - - cAPGβK=0.69. Cyan: −− - - – cFPGβK=−0.18.

with increasing APG strength. The supersonic cases are almost identical since effects
of decreasing Mach number (increasing) and increasing effect of APG (decreasing)
cancel each other.

The non-dimensional turbulent stresses −ρu′′v′′/τw in figure 17(b) are strongly
influenced by PG effects over the entire boundary layer for both sub- and supersonic
Mach numbers. For increasing APG strength a peak rises in the outer region whereas
the distributions are reduced for FPGs. In contrast to the mean-flow distributions, the
turbulent stresses are also noticeably influenced in the near-wall region.

Computed as the sum of (a) and (b), the total shear-stress distributions in
figure 17(c) are constant for the sub- and supersonic ZPG cases up to approximately
30–40 wall units above the wall and virtually identical. For both the sub- and
supersonic PG cases the distributions are increased with distance to the wall for
APG cases (dp/dx > 0) and decreased for the FPG case (dpe/dx < 0) by following
dp/dx = ∂τ t/∂y (Smits & Dussauge 2006). If the PG term (dpe/dx)y is subtracted
from the total shear-stress distributions as given in figure 17(d), the constant stress
region near the wall is regained for all PG cases. Since the mean shear stresses in (a)
are almost unaffected by PGs and almost constant at the wall, PG effects included in
the total shear-stress distributions by (dpe/dx)y are mainly balanced by the turbulent
stresses at the wall (Smits & Dussauge 2006).
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A comparison between the total shear-stress distributions for the sub- and
supersonic PG cases in (c) shows an almost complete agreement between the
iAPGβK=0.19 and cAPGβK=0.15 cases and the iAPGβK=0.58 and cAPGβK=0.55 cases. If
incompressible and compressible PG cases are chosen to be characterized by the
same kinematic Rotta–Clauser parameter βK , cases are thus constructed with the
same total shear-stress distributions. This in turn implies the Mach-number invariance
of τ t/τw for compressible PG cases,

τ t

τw

∣∣∣∣
PG

= f (PG) 6= f (M). (4.5)

As long as differences in the mean shear-stress distributions are not too large, also the
turbulent stresses −ρu′′v′′/τw are invariant to the Mach number, which further verifies
the applicability of Morkovin’s scaling for the present compressible PG cases

−ρu′′v′′

τw

∣∣∣∣
PG

≈ ρ

ρw

−u′v′

u2
τ

∣∣∣∣
PG

= f (PG) 6= f (M). (4.6)

4.1.2. Pressure distributions
From the shear-stress distributions discussed in the previous section, compressibility

and PG effects have been found to be almost uncoupled for the −u′v′ fluctuations. If it
is further assumed that Morkovin’s scaling also holds for the v′2-fluctuations, meaning
that (ρ/ρw)(v

′2/u2
τ ) 6= f (M), the non-dimensionalized y-momentum equation of the two-

dimensional turbulent boundary-layer equations

pe≈w − p
ρwu2

τ

= ρ

ρw

ṽ′′2

u2
τ

6= f (M) (4.7)

implies that the pressure distributions (pe≈w−p)/(ρwu2
τ )= (pe≈w−p)+ of corresponding

PG cases are comparable for different Mach numbers. (The index ‘e≈w’ should
emphasize that the pressure p can be evaluated both at the edge of the boundary layer
or at the wall.) If it is also assumed that comparable mean pressure distributions yield

comparable pressure fluctuations p′+ =
√

p′2/τw, also their wall-normal distributions
should be comparable for corresponding βK-cases at different Mach numbers.

The mean-pressure and the pressure-fluctuation distributions are depicted in
figure 18(a,b), respectively. The mean-pressure fields are extracted at Reτ = 490,
where data of all cases except for the FPG case are available. Due to the SEM
inflow boundary condition, the wall pressure fluctuations are increased by about ten
per cent in the inflow region of the simulation domain for the subsonic cases. These
initial disturbances have decayed after about half of the simulation domain, such
that reliable pressure-fluctuation distributions are only available for the second half
of the domain for the subsonic cases. The development of other flow quantities like
density or temperature fluctuations are unaffected by the inflow boundary condition,
see Wenzel et al. (2018b). For the supersonic cases, pressure fluctuations are almost
immediately comparable to reference data near the inflow of the domain, as the
general pressure-fluctuation level is higher inside the supersonic boundary layer.
Hence, the pressure-fluctuation profiles given in figure 18(b) are extracted at Reτ =730
to allow a meaningful comparison. Panel (b) is supplemented by incompressible and
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FIGURE 18. (Colour online) (a) Mean-flow pressure distribution (p− pw)
+ = (p− pw)/τw

at Reτ = 490 and (b) pressure fluctuations p′+ =
√

p′2/τw at Reτ = 730. ZPG references:
Schlatter & Örlü (2010) at Reτ = 830 (incompressible), Pirozzoli & Bernardini (2011)
at Reτ = 840 (M∞ = 2.0). Red: ——— iZPG, —— - · iAPGβK=0.19, — - — iAPGβK=0.58,
– · – · – iAPGβK=1.05. Blue: ——— cZPG, ——– – cAPGβK=0.15, — — - cAPGβK=0.42,
– – – – – cAPGβK=0.55, - - - - - - cAPGβK=0.69. Cyan: −− - - – cFPGβK=−0.18.

compressible ZPG reference data taken from Schlatter & Örlü (2010) at Reτ = 830,
and Pirozzoli & Bernardini (2011) at Reτ = 840 and M∞ = 2.0, respectively.

For increasing APG strength, the peak of the mean pressure distributions is lifted
away from the wall and the profiles become fuller, see (a). The distribution of
the subsonic ZPG case is slightly lower compared to the supersonic ZPG case. If
evaluated at comparable βK-values, the distributions are almost identical for the sub-
and supersonic APG cases as emphasized by the grey shaded regions. The pressure
fluctuations in (b) are virtually unaffected by compressibility effects for the ZPG
cases as already shown in Wenzel et al. (2018b) for instance, yielding an excellent
agreement of the subsonic ZPG case and the incompressible and compressible ZPG
references. With increasing APG strength, the fluctuation intensity increases for both
sub- and supersonic cases but still remains almost identical for cases of comparable
βK , yielding

p′2

ρwu2
τ

∣∣∣∣
PG

= f (PG) 6= f (M). (4.8)

4.1.3. Wall-normal velocity fluctuations v′2
Based on the previous argumentation, the close agreement between the mean-

pressure distributions of sub- and supersonic counterparts with similar βK has been
implied by the assumed validity of Morkovin’s scaling for the wall-normal velocity
fluctuations v′2 (or vice versa). To verify the accuracy of the simplified y-momentum
equation of the turbulent boundary-layer equations for compressible PG cases (4.7)
and thus the success of Morkovin’s scaling for the wall-normal velocity fluctuations
v′2, these are given both in unscaled

√
v′2/uτ and Morkovin-scaled

√
ρ/ρw

√
v′2/uτ

representation in figure 19(a,b), respectively. For better comparability, only sub- and
supersonic cases with similar βK-values are considered. All results are extracted at
the three Reynolds-number values Reτ = 490, 610 and 730, diagonally staggered in
ascending order. Represented as circled symbols in (b), some pressure distributions√
(pw − p)/(ρwu2

τ ) are additionally given for selected cases.
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FIGURE 19. (Colour online) Comparison of wall-normal Reynolds fluctuations at Reτ =
490, 610 and 730 in (a) unscaled formulation v′+ =

√
v′2/uτ and (b) density-scaled

formulation v′+M =
√
ρ/ρw

√
v′2/uτ as lines. Filled square symbols in (b) represent

the pressure distribution
√

pw − p/(
√
ρwuτ ) as already given in figure 18(a). Only

corresponding cases of comparable βK-values are given. All red: ——— iZPG, —— - ·
iAPGβK=0.19, — - — iAPGβK=0.58. All blue: ——— cZPG, ——– – cAPGβK=0.15, – – – – –
cAPGβK=0.55.

If the pressure distributions and the corresponding Morkovin-scaled velocity
fluctuations are compared in (b) first, an almost complete agreement can be
established up to the boundary-layer edge δ+99 = Reτ . Thus, both the validity of (4.7)
for compressible PG cases with similar βK-values and the approximate validity
of Morkovin’s scaling for the wall-normal velocity fluctuations v′2 are implied. If
assessed against the untransformed distributions in (a), no complete scaling success
can be found for the ZPG cases. While the incompressible distribution is noticeably
above the compressible one in the unscaled representation in (a), the incompressible
one is noticeably below the compressible one in the density-scaled representation in
(b), see also Wenzel et al. (2018b). In contrast, the scaling success is better for the
APG cases, mainly caused by the smaller Mach numbers of the APG cases at the
given Reynolds numbers.

4.2. Local mean-flow statistics

In the previous section both the non-dimensional turbulent stresses −ρu′v′/τw and
ρv′2/τw have been found to be almost unaffected by compressibility effects for PG
cases with comparable βK-values in the investigated Mach- and Reynolds-number
ranges. The so confirmed validity of Morkovin’s scaling/hypothesis for the given
CPG TBLs further implies the approximate validity of van Driest’s transformation in
the inner region of the TBL as discussed before. In this section, both the profiles
of the local mean-flow velocity u and the streamwise velocity fluctuations u′2 are
investigated in more detail. To this end, all results are discussed separately for the
sub- and supersonic regime first in order to work out the effect of varying PGs on
the respective regime.
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4.2.1. Mean-flow velocity profiles u
The streamwise mean-flow velocity profiles u+ are given in figures 20 and 21 for all

sub- and supersonic cases, respectively, the inner layer on the left, the outer layer on
the right. All results are extracted at the same three Reynolds numbers Reτ = 490, 610
and 730 if available, except for the supersonic FPG case extracted at Reτ = 360. All
velocity profiles are located in regions of well-developed βK-parameter distributions,
see figure 10.

In the subsonic cases (figure 20) often reported results can be seen. Whereas the
velocity profiles are shifted down to lower u+-values in the logarithmic region with
increasing βK , they are lifted in the wake region. Evaluated at y+≈ 50 and y+= δ+99=
Reτ , this shift is almost constant for all given Reynolds numbers.

Mainly due to the varying effect of compressibility in the streamwise direction, the
supersonic APG results as given in figure 21 are more difficult to interpret. In the
logarithmic region, both the opposing effects of compressibility (lifting for decreasing
streamwise Mach numbers) and APGs (shifting down for increasing APG strength)
balance each other, yielding the almost same distributions in the logarithmic layer
for all APG cases in figure 21(a) (cf. also figure 12 or 17a). In the wake region
where both effects constructively overlap (lifting up for increasing APG strength
and decreasing streamwise Mach number), u+-values are increased with increasing
βK , see y+ = Reτ = δ+99 in figure 21(b). However, due to the decreasing influence of
compressibility in the streamwise direction, this shift is not expected to be constant
for increasing Reynolds numbers. An assessment of the supersonic FPG case shows
inverted trends.

4.2.2. The van Driest transformation
Figures 22 and 23 illustrate the untransformed and van Driest transformed

mean-flow distributions u+ and u+VD (4.2), respectively, both for the subsonic
iAPGβK=0.19 and iAPGβK=0.58 cases and the compressible cAPGβK=0.15 and cAPGβK=0.55

cases. Based on the total shear-stress distributions τ t discussed in the previous section,
the compressible cases should coincide with the incompressible ones if the van Driest
transformation is successful.

For the inner layer, figure 23(a), the supersonic velocity profiles u+VD are almost
perfectly shifted into their subsonic counterparts, compare figures 22(a) and 23(a). In
the wake region for y+ ' 100 (figure 23b), the subsonic iAPGβK=0.19 and supersonic
cAPGβK=0.15 cases are almost identical, whereas the supersonic cAPGβK=0.55 case lies
noticeably below the subsonic iAPGβK=0.58 case. In the ZPG case, however, the van
Driest transformed distributions lie above the incompressible references if compared
at the same Reτ , see Wenzel et al. (2018b). Consequently, the wake distribution of the
van Driest transformed velocity profiles is increasingly underestimated with increasing
APG strength. For the weak cAPGβK=0.15 case, the underestimating effect by the APG
balances the overestimating effect by compressibility, whereas it is overcompensated
for the stronger cAPGβK=0.55 case. Thus, with increasing Reτ and thus decreased
Mach number in APG flows, also the success of van Driest’s transformation varies.
In some contrast to the ZPG study however, the van Driest transformation can be
denoted to be still approximately valid for the wake region of the present PG cases,
since compressibility effects are significantly reduced, although not being completely
excluded.
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FIGURE 20. (Colour online) Comparison of subsonic mean-flow velocity profiles u+ at
Reτ = 490, 610 and 730. Black dotted lines denote the viscous sublayer u+ = y+, dashed
black lines the logarithmic region u+ = 1/k ln y+ +C with k= 0.41 and C= 5.2. All red:
——— iZPG, —— - · iAPGβK=0.19, — - — iAPGβK=0.58, —— - · iAPGβK=1.05.
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FIGURE 21. (Colour online) Comparison of supersonic mean-flow velocity profiles u+ at
Reτ = 490, 610 and 730 for ZPG/APG and Reτ = 360 for FPG cases. Further information
are given in figure 20. All blue: ——— cZPG, ——– – cAPGβK=0.15, — — - cAPGβK=0.42,
– – – – – cAPGβK=0.55, - - - - - - cAPGβK=0.69. Cyan: −− - - – cFPGβ=−0.35.
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FIGURE 22. (Colour online) Comparison of sub- and supersonic mean-flow velocity
profiles u+ at Reτ =490, 610 and 730. Black dotted lines denote the viscous sublayer u+=
y+, dashed black lines the logarithmic region u+ = 1/k ln y+ + C with k= 0.41 and C=
5.2. Only corresponding cases of comparable βK-values are given. All red: ——— iZPG,
—— - · iAPGβK=0.19, — - — iAPGβK=0.58. All blue: ——— cZPG, ——– – cAPGβK=0.15,
- - - - - - cAPGβK=0.55.
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FIGURE 23. (Colour online) Same as figure 22, but for van Driest transformed
profiles u+VD.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.670


DNS of self-similar compressible TBLs with pressure gradients 273

101

y+
102 103

y+

3.0

(a) (b)

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

u�+

Re† = 490

Re† = 610

Re† = 730

ı↑

ı↑

ı↑

Re† = 490

Re† = 610

ı↑

ı↑

ı↑

Re† = 730

2.5

2.0

1.5

1.0

0.5

0

FIGURE 24. (Colour online) Comparison of subsonic streamwise Reynolds fluctuations
u′+ =

√
u′2/uτ at Reτ = 490, 610 and 730. Solid lines represent the ZPG case, non-solid

lines APG cases. Arrows denote the direction of increasing APG strength βK . Red: ———
iZPG, —— - · iAPGβK=0.19, — - — iAPGβK=0.58, – · – · – iAPGβK=1.05.
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FIGURE 25. (Colour online) Comparison of supersonic streamwise Reynolds fluctuations
u′+ =

√
u′2/uτ at Reτ = 490, 610 and 730 for ZPG/APG and Reτ = 360 for FPG cases.

Blue: ——— cZPG, ——– – cAPGβK=0.15, — — - cAPGβK=0.42, – – – – – cAPGβK=0.55, - - - - - -
cAPGβK=0.69. Cyan: −− - - – cFPGβ=−0.35.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.670


274 C. Wenzel, T. Gibis, M. Kloker and U. Rist

101

y+
102 103

y+

3.0

(a) (b)

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

u�+

Re† = 490

Re† = 610

Re† = 730

Re† = 490

Re† = 610

Re† = 730

2.5

2.0

1.5

1.0

0.5

0

FIGURE 26. (Colour online) Comparison of sub- and supersonic streamwise Reynolds
fluctuations u′+ =

√
u′2/uτ at Reτ = 490, 610 and 730. Only corresponding cases of

comparable βK-values are given. All red: —— - · iAPGβK=0.19, — - — iAPGβK=0.58. All blue:
——– – cAPGβK=0.15, - - - - - - cAPGβK=0.55.
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FIGURE 27. (Colour online) Same as figure 26, but for density-scaled streamwise
Reynolds fluctuations, u′+M =

√
ρ/ρw

√
u′2/uτ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.670


DNS of self-similar compressible TBLs with pressure gradients 275

4.2.3. Reynolds fluctuations u′2
In the same representation as for the mean velocity profiles, the streamwise

Reynolds-averaged velocity fluctuations u′+=
√

u′2/uτ are given in figures 24 and 25
separately for the sub- and supersonic cases, respectively.

At first and in extension of figure 16, the inner layer of the Reynolds fluctuations
is revisited in figures 24(a) and 25(a). In comparison to the compressible ZPG cases
(Wenzel et al. 2018b), the Reynolds fluctuation profiles do not match for different
PG cases near the wall for y+ / 10. The distributions are increased for APGs and
decreased for FPGs causing higher and lower values for (∂u′+/∂y+)|w, respectively,
see figure 16(c). The position of the near-wall fluctuation maximum is increased for
APGs and decreased for FPGs as already has been seen in figure 16(a,b). However,
in combination with the effect of varying Mach number in streamwise direction, the
interpretation of the peak’s absolute value is again complex for the supersonic cases.
Consistently given for both the sub- and supersonic cases in figures 24(b) and 25(b),
the well-known second maximum appears in the outer region of the boundary layer,
see Skote et al. (1998) and Kitsios et al. (2017), for instance.

4.2.4. Morkovin scaling

Both in its unscaled u′+ =
√

u′2/uτ and Morkovin-scaled representation u′+M =√
ρ/ρw

√
u′2/uτ , the Reynolds fluctuations are depicted in figures 26 and 27,

respectively. As for the mean-flow distributions, only the subsonic iAPGβK=0.19
and iAPGβK=0.58 cases and the compressible cAPGβK=0.15 and cAPGβK=0.55 cases
are depicted, for which the PG influence is comparable.

If compared in the unscaled representation in figure 26, both the inner and the outer
peaks of the supersonic cases are reduced compared to the subsonic results. In the
Morkovin-scaled representation in figure 27, both the inner and the outer peaks of
the supersonic cases are slightly lifted above the subsonic results. It is noted, however,
that this behaviour has been also observed in the ZPG study to a similar extent, see
Wenzel et al. (2018b), and is therefore much more attributed to compressibility than
to PG effects. Morkovin’s scaling thus also can be confirmed for the present PG cases
to a comparable extent as for the ZPG cases, which further implies the Mach-number
invariance of the non-dimensionalized streamwise ρu′′2/τw stress

ρu′′2

τw

∣∣∣∣∣
PG

≈ ρ

ρw

u′2

u2
τ

∣∣∣∣∣
PG

= f (PG) 6= f (M). (4.9)

5. Conclusions
The main goal of the present study is to identify the effects of pressure gradients

as uniquely as possible on compressible flat-plate turbulent boundary layers (TBLs).
To this end, spatial DNS of compressible, self-similar PG TBLs have been conducted
and analysed both for sub- and supersonic inflow Mach numbers for the first time.
The equilibrium character of the investigated flows allows for a direct comparison of
sub- and supersonic cases. It turned out that the kinematic Rotta–Clauser parameter βK
built by the incompressible boundary-layer displacement thickness as the length scale
is the right similarity parameter, see also Gibis et al. (2019). Thus, by regarding both
incompressible and compressibility transformed compressible counterparts, the isolated
effects of continuous PGs can be evaluated, and the validity of the most common
compressibility transformations scrutinized.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.670


276 C. Wenzel, T. Gibis, M. Kloker and U. Rist

One ZPG and three APG cases have been investigated for the subsonic regime
(inflow Mach number M∞,0 = 0.5, βK = 0, 0.19, 0.58, 1.05) and one FPG, one ZPG
and four APG cases for the supersonic regime (inflow Mach number M∞,0 = 2.0,
βK = −0.18, 0, 0.15, 0.42, 0.55, 0.69). All cases are characterized by long regions
of virtually constant βK .

The evaluation of the subsonic APG cases is consistent with the known trends
gained by incompressible investigations. Whereas the cf -distributions, for instance,
are decreased with increasing APG-strength, the shape-factor values H are increased.
If plotted in wall units, local mean-flow profiles of subsonic APG cases are shifted
down in the logarithmic layer and lifted in the wake region; the turbulent activity
is significantly enhanced through the whole boundary layer, and the streamwise
velocity fluctuation profiles show a second peak in the outer layer for increasing
APGs.

The interpretation of the supersonic flow field is more complex since two effects
are counteracting. While streamtubes are tending to diverge in the subsonic near-wall
region in the presence of APGs, they tend to converge in the supersonic part above.
The resulting boundary-layer thicknesses δ99 as well as the cf -distribution, for instance,
are therefore in a comparable range for all PG cases. In accordance with Spina et al.
(1994), the switch-over value of Me ≈ 1.8 can be confirmed, below which supersonic
PG TBLs are increasingly dominated by the subsonic part of the boundary layer.
If plotted in wall units and compared to the ZPG case, local mean-flow profiles
of supersonic cases are only slightly influenced in the logarithmic layer due to the
counteracting effect of PGs and compressibility. In the wake region where both
effects superpose constructively, profiles are lifted for APGs and shifted down for
FPGs cases. The turbulent fluctuations are influenced in an almost identical manner
as for the subsonic cases.

For both sub- and supersonic cases the recovery factor is noticeably influenced by
PGs, i.e. decreased for APG and increased for FPG cases, but stays almost constant
in its spatial evolution for equilibrium cases.

A comparison of the total shear-stress distributions τ t/τw yields almost identical
profiles for sub- and supersonic cases if evaluated at same βK- and Reτ -values,
although there is no constant stress layer near the wall anymore. An APG increases
τ t/τw for y+ ' 2 due to increased turbulent activity, an FPG does the opposite.
Since Mach-number and PG influences on the local mean shear-stress distributions
µ∂u/∂y/τw are virtually negligible, also the turbulent shear-stress distributions
−ρu′v′/τw are similar to each other for similar βK-cases. The same holds for
the turbulent stresses in the wall-normal direction ρv′2/τw, which thus implies
the Mach-number invariance of PG effects in the compressible regime and thus
the approximate validity of Morkovin’s scaling for compressible PG TBLs at
least in the near equilibrium case. The Morkovin-scaled u′2 fluctuations can
reproduce the respective incompressible distributions for comparable βK values
with uncertainties being approximately in the same range as for ZPG cases. It is
pointed out, however, that the assumption of a constant total stress region near
the wall – as sometimes assumed in the scaling’s derivation – is not a necessary
condition. Morkovin’s hypothesis that ‘the essential dynamics of supersonic shear
flows will follow the incompressible patter’ thus still holds for TBLs subjected
to PGs.

Implied by both the validity of Morkovin’s scaling and the two-dimensional
turbulent y-momentum boundary-layer equation, also the mean pressure distributions
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(pw≈e − p)/τw and thus also the pressure fluctuations
√

p′2/τw are found to compare
for different Mach-number cases for same βK-values.

Concerning the van Driest transformation, the logarithmic layer of compressible
PG cases can be reliably transformed into the respective nearly incompressible
counterparts. The velocity in the wake region of the van Driest transformed profiles
is increasingly underestimated with increasing APG strength and thus depends on the
particular PG distribution. Since the wake region is also influenced by compressibility
effects varying in the streamwise direction if evaluated at same Reτ , uncertainties of
the van Driest transformation are not readily predictable for complex PG flows.
Nevertheless, the van Driest transformation still reduces compressibility effects
significantly.

Acknowledgements

The financial support by the Deutsche Forschungsgemeinschaft, DFG, under
reference numbers RI680/31-1, RI680/34-1 and RI680/38-1, and the provision of
computational resources on Cray XC40 by the Federal High Performance Computing
Centre Stuttgart (HLRS) under grant GCS_Lamt (LAMTUR), ID=44026, are gratefully
acknowledged, as well as fruitful discussions within the DFG Collaborative Research
Centre SFB/TRR 40, gathered by sub-project A4.

Appendix A. Grid convergence analysis

The grid convergence analysis is performed for the most restricting subsonic iZPG
case and the supersonic cAPGβK=0.69 case, see table 3(b). For the subsonic case where
low Reynolds numbers are most restricting, the domain size for the analysis is reduced
to (Lx × Ly × Lz)/δ99,0 = 170 × 34 × 4π. This corresponds to half the length and
one third the width of the domain size used in the study, see table 3(a). For the
supersonic case, the analysis is performed on the domain size used in the study with
(Lx × Ly × Lz)/δ99,0 = 500 × 34 × 12π to allow an evaluation at the most restricting
high Reynolds numbers. The grid resolution is varied using 70 %, 100 % and 130 %,
respectively, in the three directions for the subsonic cases, and 40 %, 60 %, 80 % and
100 % for the supersonic case, see table 4. The resulting grid resolution is summarized
in table 4 in terms of wall units next to the resulting skin-friction coefficients cf and
the shape-factor values H. Subsonic case results are evaluated at Reτ = 480 (averaging
time 1tue/δ99 ≈ 850), supersonic case results at Reτ = 700 (averaging time about
1tue/δ99 ≈ 580).

Given in figure 28(a), cf. figure 17, the grid resolution is assessed by a comparison
of the mean shear-stress distributions µ(∂u/∂y)/τw and turbulent shear-stress
distributions −ρu′′v′′/τw. According to figure 16(a) and figures 24(b) or 25(b),
both the peak values u′+max and the wall-normal distributions in the outer layer

of the turbulent velocity fluctuations u′+ =
√

u′2/uτ are given in figure 28(b,c),
respectively. Both values have been found to be the most sensitive ones to a poor
grid resolution. As illustrated, both the results of the subsonic iZPG_100 % and
iZPG_130 % cases, and of the supersonic cAPGβK=0.69_80 % and cAPGβK=0.69_100 %
cases, are in good agreement. All given results can therefore be regarded as
grid converged.
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FIGURE 28. (Colour online) Grid resolution analysis for the subsonic iZPG case (Reτ =
480) and supersonic cAPGβK = 0.69 case (Reτ = 700). (a) Mean shear-stress distributions
µ(∂u/∂y)/τw and turbulent shear-stress distributions −ρu′′v′′/τw, (b) wall-near peak value
u′+max and (c) wall-normal distribution in the outer layer of the streamwise velocity

fluctuation u′+ =
√

u′2/uτ .

nx ny nz 1x+ 1y+w 1z+ cf × 103 H

Reτ = 480: iZPG_70 % 875 200 196 24.2 0.85 7.9 3.834 1.532
iZPG_100 % 1250 270 280 16.8 0.70 5.5 3.792 1.553
iZPG_130 % 1625 328 360 12.9 0.63 4.3 3.793 1.555

Reτ = 700: cAPGβK=0.69_40 % 2000 120 384 22.8 0.75 9.0 2.588 2.399
cAPGβK=0.69_60 % 3000 180 576 15.1 0.62 5.8 2.507 2.416
cAPGβK=0.69_80 % 4000 240 768 11.3 0.47 4.4 2.459 2.418
cAPGβK=0.69_100 % 5000 300 960 9.00 0.40 3.5 2.452 2.419

TABLE 4. Grid resolution analysis for the subsonic iZPG case (Reτ = 480) and supersonic
cAPGβK = 0.69 case (Reτ = 700). Given parameters are the number of numerical grid
points nx, ny and nz as well as the resulting grid resolutions 1x+, 1y+w and 1z+ in the
streamwise, wall-normal and spanwise directions, respectively. Additionally given are the
skin-friction coefficient cf and the shape factor H12.

Appendix B. Vortex visualization

Figures 29 and 30 depict iso-levels of the λ2-criterion computed from the
non-dimensionalized flow field ui = ui/u∞,0 with λ2 = −0.05 ue(x)/u∞,0 for sub-
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and supersonic cases. The complete main region of the simulation domain is shown,
the bordered regions are located at Reτ = 490 (FPG at Reτ = 360) and are illustrated
in detail in figures 8 and 9.
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