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1. Introduction

Ever since Mendel promulgated his famous laws, probability theory and
statistics have played an important role in the study of heredity (9). Etherington
introduced some concepts of modern algebra when he showed how a non-
associative algebra can be made to correspond to a given genetic system (1, 4).
The fact that many of these algebras have common properties has led to their
study from a purely abstract point of view (2, 3, 5, 6, 11, 12). Furthermore,
the techniques of algebra give new ways of attacking problems in genetics
such as that of stability.

We shall prove a stability theorem on special train algebras and apply it
to several genetic systems.

2. A Stability Theorem for Special Train Algebras

For our purpose, the basis form of the definition will be most useful. A
special train algebra is a commutative algebra for which there exists a basis
a0, ai, ..., an with a multiplication table of the following kind:

afij — ~Lxiikak where

•*ooo = 1> (1)

for k<j, x0Jk = 0, (2)

for i,j>0 and k£msx(i,j), xiJk = 0, (3)

and furthermore all powers of the ideal {a1; a2, ..., an} are ideals. (The powers
/ ' of an ideal / are defined inductively by I' = I1"1!).

In this section we shall require conditions (1), (2) and (3) only. It follows
easily that {a1, a2, ••-, an} is nilpotent and also that the map which sends each
element into its coefficient of a0 is the only non-trivial homomorphism of the
algebra into the coefficient field. The xOjj (abbreviated Xj) will be called the train
roots of the algebra. They are the characteristic roots of the operator which is
multiplication by a0. Necessarily Ao = 1. (They include the principal train
roots defined in (1), perhaps with repetitions, but it is important to note that
they may also include i even when this is not a principal train root.)

Theorem 2.1. Every special train algebra which has no train root satisfying
IX = 1 has a unique non-zero idempotent.

/ m \2

Proof. We shall construct the xt inductively so that I £ XjOj 1 has the
V /
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m n

form £ Xi<*i+ YJ yiai- Since x000 = I, x0 must be 1 for a non-zero
i = 0 i = m+1

idempotent. Suppose x0, xlt ..., xn have been chosen. Then

i = 0 / i = 0 i = m+1

for some y's. This follows since from (2) and (3) the coefficient of a{ for i^m
in a product is independent of the coefficients ofam+1 in the factors. It remains
only to equate the coefficients of am+l. Since from (3) am + iat for i ^ 0 has
coefficient of am+1 equal to 0, the coefficient of am+1 will have the form
2Xm + 1z+f{x1, x2, ..., xm). Since 22m + 1 ^ 1, the equation in z, 2Am+1z+
/(*i> x2, ..., xm) = z has a unique solution which is taken as xm+1. This
proves the existence and uniqueness simultaneously.

Note. For a coefficient field of characteristic 2 the above condition is
always satisfied. Otherwise, the condition may be stated in the form, no

Similar theorems may be proved in cases where several of the A's are equal
to i. The case where Xt = \ and all other A's are distinct from \ occurs
frequently in genetics. By the same technique as before it is easy to show
that non-zero idempotents exist only if xOoi = 0 and in that case a one para-
meter family of idempotents exists. (In fact, xx may be chosen at will, and
the other x's are uniquely determined as before.) Similarly if r of the A's, and
no more, are equal to \, it can happen that there is an r-parameter family of
idempotents. This occurs in examples connected with multiple alleles and
with linkage (3).

Henceforth, we shall consider algebras over the reals. We may then define
n n

Y xmiam-+ Y xmamoxmi-+xm for all x. It is clear that convergence defined
m = 0 m = 0

this way is independent of the basis used. In order to state the next theorem
it will be convenient to define two concepts. The " weight" of an element
is its image in the unique homomorphism of the algebra onto the reals. The
" plenary powers " of an element A are defined as Ao = A, An+l = A*.

Theorem 2.2. The sequence of plenary powers of an element of weight 1
in a special train algebra whose train roots other than Ao = 1 all have absolute
value less than -J tends to an idempotent.

n

Proof. Suppose At = V xmiam. It is required to show that xmi-*xm
m = 0

where xm is defined as in Theorem 2.1. It is clear that xol = 1 for all i. Assum-
ing xu-*xu x2i->x2, ..., xmi-+xm, we shall show that xm+u ;->-xm+1. As in
the proof of Theorem 2.1, xm+u i+1 = 2Xm+1xm+u t+f(xu, ..., xmi) where/
is a function depending only on the multiplication table of the algebra. Since
/ i s a quadratic function f(xt;, ..., xmi)-»/(xi, ..., xm). The result now reduces
to the following theorem in analysis. Let («„) and (bn) be two sequences satisfying
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an+1 = Xan+bn for some A with | A |<1 and let bn-+b; then (an) converges to
the limit a determined by a = Aa+b.

Write an = a + Mn, &„ = b+yn. We have wn+1 = kun+yn, where | A | < 1
and yn-*0, and have to prove that Mn->0. Since

if we define zn = Xn~1yx + Xn~2y2 + ... + yn, it will suffice to show that zn-»0.
In this form the result is contained in Knopp ((10), p. 76, 9(b)).

The theorem may be extended to cases where several of the A's are equal
to i. If Aj only = \, then the theorem is still valid if x001 = 0; otherwise the
sequence xt,- is an arithmetic progression which certainly does not converge.

3. Mutation Algebras

If the simplest case is considered with mutation rates r and s, the gametic
algebra has basis D and R and the multiplication table:

D2 = ( 1 - r)D + rR, R2 = sD + (l-s)R,

DR = ${(l-r)D + rR} + i{sD + (l-s)R} = *(1 -r + s)D + #l -s + r)R.

It can be verified by direct computation that if a and b are chosen as a
basis where a = D and b = D—R, the table takes on the simplified form:

a2 = a-rb, ab = \{l-r-s)b, b2 = 0.

Thus the algebra is a special train algebra. (Note that the basis is in-
dependent of r and s.) Theorems 2.1 and 2.2 can therefore be applied. By
theorem 2.1 there is a unique non-zero idempotent unless r+s = 0. By
theorem 2.2 the plenary powers of an element of weight 1 approach this
idempotent for 0<r + s<2.

Although the algebra is defined for all real r and s, the corresponding
genetic system has meaning only for O^r^l, O^s^l. Since it is known that
in the case r = s = 0 (no mutations) stability is achieved in the second genera-
tion, this proves that the gene distribution approaches a stable distribution
unless possibly when r — s = 1. This case is clearly unstable since D2 = R
andi?2 = D. More generally, the plenary powers of ocD+fiR, where a+/? = 1,
oscillate between aD+pR and fiD+<xR, only the distribution \D+%R being
one of unstable equilibrium.

The zygotic algebra has the table

D2 = (l-r)
2D + 2(l-r)rH + r2R, R2 = s2 D + 2(1 -s)sH + (1 -s)2R,

DH = i(l-r)(l-

RH = $s(l

DR = (l-r)sD + (l-r-s+2rs)H+(l-s)rR,

H2 = i(l- 2

If a, b, and c are chosen as a basis where a = D, b = D—H, and
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c = D—2H+R we obtain:

a2 = a - 2rb+r2c, ab = i(l-r- s)(b - re),

b2 = i(l-/— sfc, ac = bc = c2 = 0.

Thus this is also a special train algebra.

4. Sex Linkage

We shall use the subscripts 1 and 2 for the haploid (usually male) and
diploid sex respectively. The basis elements, representing genotypes, will
thus be called Du Ru D2, H2, R2. Since members of the same sex do not
produce offspring it is convenient to define the product of any two basis
elements with the same subscript as zero. The rest of the table is:

DtD2 =

The algebra is certainly not a special train algebra. In fact, the existence
of a basis consisting entirely of nilpotent elements makes it clear that no
non-trivial homomorphism into the reals exists (i.e. the algebra is not baric
in the terminology of (1)).

A simplification can be effected by using as a basis Du a = D1-\-D2,
b = Dt-Ru c = D2-R2, d = D2-2H2+R2. The table then becomes

D\ = 0, aD1 = \a, bDt = 0, cDx = ib+ic+$d, dDt = 0,

a2 = a,ab = \c+\d, ac = ib+$c+ld, ad = 0, b2 = 0, be = ±d,

bd = 0, c2 = 0, cd = 0, d2 = 0.

It follows immediately from the table that the subspace {a, b, c, d) is an
ideal containing the product of any two elements in the original ring. This
ideal is the set of all elements for which the sums of the coefficients of the
original basis elements of subscripts one and two are equal. (The genetic
significance of the ideal is that it contains all the elements which represent
populations.) Furthermore, the ideal is a special train algebra. This can be
more easily seen if b+c is used as a basis element instead of c. It is interesting
to note that the powers of the ideal {b, c, d}, ({b, c, d}2 = d, {b, c, d}3 = O)
are ideals even in the original ring.

The ideas in § 2 may be used to show that the elements of the form
a+yb+yc+(y2+y)d represent all the non-zero idempotents and that the
plenary powers of an element of weight one approach an idempotent. The
elements A which are non-zero and satisfy (A2)2 = A2 are precisely those of
the form a+yb+yc+xd where x and y are arbitrary.

The genetic significance of these results can be made clear by expressing
them in terms of the original basis. By letting y = — /? and a = 1 — /? we find
that the idempotents are exactly all those elements <xD1+PR1 + u2D2-\-
2aPH2+02R2 with a+0 = 1.
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It clearly follows that the elements which satisfy (A2)2 = A2 are precisely
those of the form

where y = x-(y2+y).

A more intuitive feeling for this result can be grasped if it is noted that
y(D2 — 2H2 + R2) is the most general element which can be added to a genotype
distribution which will not change the distribution of gametes produced. For
a more classical approach see (9).

5. Sex Linkage with Mutations

Using the same style as before, the table is :

D1D2 = 2 2

RXR2 =

+ r(l+r-s)R2],

Again the table is simplified by using Du a, b, c, d as a basis.

D\ = 0, aDv = \a-\rb-\rc-\r(\-r)d, bDl = 0,

cZ>! = i(l-r-s)b+i(l-r-s)c+i(l-2rXl-r-s)d, dDx = 0,

a2 = a-rb-rc-r(\-r)d,ab = \(\-r-s)c + \{\-2r)(\-r-s)d,

ac = \(\.-r-s)b+l{l-r-s)c+\{\-2r)(\-r-s)d, ad = 0

b2 = 0,bc = W-r-sfd, bd = 0, c2 = 0, cd = 0, d2 = 0.

Again {a, b, c, d) is an ideal containing the product of any two elements
in the ring. Furthermore, the ideal is a special train algebra, containing a
unique non-zero idempotent unless r+s = 0. As in the case of no sex linkage,
the genotype distributions approach a stable distribution unless r = s = 1.

6. Polyploidy

We shall first consider the gametic n-ploidy algebra. The types will be
denoted by £>„, Dn_u ..., Do where Dx stands for the type which has / dominant
genes and n—i recessive genes. The multiplication table is:

\j . = o \ i J\ n-i

where ( I stands for the usual binomial coefficient. (It is convenient to use
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the symbol ( I even when r<0 or r>n in which case we define I 1 = 0.
W \rj

It is then easily seen that the identity ( I + ( I = ( 1 is valid in
\rj \r-lj \ r J

general.)

Lemma 6.1.

= 0 for n<s^2n,

where P, is defined as (2"\ * £ (*)(2n~*) D^or 0^t^

(P, = DaDb for any a, b satisfying a+b = t.)

Proof. By definition

Using the fact that

CXKX::;
the latter expression becomes

0)

From the identity I . ) ~ I . ) = ( ) it may be obtained by induction

on s that V (—1)'( if I = I I. Replacing n by « + l and s by
, = o \tj\ i J \i-s)

, ^ +u- u s"^"°/ ,vfs-(n-i)\fn + i-i\ (2n-s\ __.
s-(n-i) this becomes 2, (-1) = . W e

' = o \ t J\ i J \n-sj
now let t = r—(n — i) and sum over r. The relationship becomes:

V i iy-ln-n(s-(n-i)\[2n-r\_(2n-s

Jt-1* \ ) { ) - \
Since I I = 0 for r <n—i in view of our convention, the summation

\r-(n-i)J
may be considered as going from 0 to s. Expression (1) now simplifies to
2"V' i (-.)-(".Y2"-
nj i = o \n-ij\n-s
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_. {2n\fn\ /2n\/2n-s\ , . .
Since = this becomes

\nj\sj \sj\n-sj

(Note the convenience of using the symbol I I for all integers n and r. Thus
W

the proof is valid even when s>n in which case the last line reduces to 0.)
s / \

Lemma 6.2. If cs is defined as V ( - 1 ) ' )Dn _, for 0 ̂  j ̂  n, then
«= o \»7

= 0 for i+j>n.

Proof. By comparison with the binomial theorem it is easily seen that

where P, is defined as in Lemma 6.1. The result now follows from Lemma 6.1.
As an immediate consequence of Lemma 6.2 we obtain the following:

Theorem 6.1. The gametic n-ploidy algebra is a special train algebra with

train roots I I I I for 0 ^ / g « . Since l0 = 1, kt = % and all other A's

are less than \, the remarks in § 2 may be applied to this case.
When n = 2 this reduces to the well-known case of the tetraploidy gametic

algebra with table

Co = c0, coCl = icu c0c2 = c\ = \c2, exc2 = c\ = 0 (1).

By applying the technique of duplication (5) we can now consider the
zygotic algebra. We shall identify ctCj with fixed i+j. This corresponds to
identifying all DaDb with fixed a+b which in turn corresponds genetically to
disregarding the nature of the contributions of each gamete to the zygote.
It will be convenient to use the symbol dt to stand for any product cacb with
a+b = i. d0, du ...d2n is then a basis of the algebra.

Theorem 6.2. The zygotic n-ploidy algebra is a special train algebra with
basis elements dh 0^i^2n and multiplication table:

r ( : ) ( H > < ••«»•
djij = 0 otherwise.

Proof. The table follows immediately from the process of duplication
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and implies the special train property. The remarks in § 2 remain valid in
the zygotic case.

When n = 2 the table becomes d% = d0, dodt = \du d\ = \d2, d0d2 = \d2,
d\d2 = TT^3> d\ = Ttd^ with all other products zero.

Lemma 6.3.

t t fz (
i = 0 r = 0 | s = r \r

Proof. By using the definition cr = T (—1)'( )Dn_( we obtain for

the right-hand side
n n r

r = O s = r « = O

The coefficient of xsDn_; is

Now

since the expression within the summation sign is simply an expansion of
(—1)'(1 —l)s~'. Thus the coefficient is <5,-s. Hence the coefficient of !>„_,•
is Xj. This completes the proof.

This lemma gives an explicit formula for change of basis. In the special
case where x( = 1 and all other x's are 0 the lemma becomes

i

r = 0 \T
D...- i ( - » ) • • W

In other words the relationship expressing the D's in terms of the c's is the
same as the relationship expressing the c's in terms of the D's. For example
in the simplest case where c0 = D2, ct = D2 — D± and c2 = D2 — 2Dl + Do

we have D2 = c0, D^ = co — cu and Do = CQ—IC^ + C^
n

The special case where xt^0 for all i and V xt = 1 corresponds to a
i= 0

/ «

distribution of gametic types. I V xiDn-i corresponds to the distribution
V oV

in which xt is the fraction of types which have exactly / recessive genes.) If
a package of i genes is chosen at random from one individual of the population,
the probability of all genes being recessive is
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If the probability is denoted by yh then it follows from Lemma 6.3 that

i 0 \lj
i t (

i = 0 i = 0 \lj
Theorem 6.3. A necessary and sufficient condition for a non-zero element

to be idempotent is that y{ = y\ for all i satisfying 0^/^n. Otherwise no
plenary power of the element is idempotent.

Proof. We first prove the sufficiency of the first statement.

,?. <-"' (:) '*J - , i . k <-"'" CX") '•"*
and

' ~n W "
K'+J) V+.

the coefficient of ck in the product becomes

The use of the fact that

completes the proof. (The latter is verified by comparing the coefficient of
xk in (1+ x)2" and in (1 +x)"(l +x)n.) The necessity follows from the fact that
the value of yt determines the idempotent uniquely.

The last part follows from a careful examination of the proof of Theorem 2.2.
The basic idea is that if, in a recursion relation of the form An+, = XAn+ B for
A^O, Ay^A2, then Anj=An+l for all n.

If the idempotent J] ( — 1)'I 1 y\ct is expressed in terms of Z)'s, the
j = o \ij

coefficient of Dn-j becomes I I y{(l — yi)"~J. Thus the corresponding
• \J/

genotype distribution is a binomial distribution as seems intuitively reasonable.
Analogous results apply to the zygotic algebra. Let us use the symbol Dt

to stand for any product DaDb with a + b = i. No confusion should arise
if the zygotic and gametic algebras are not discussed simultaneously. D2n,
D2n_u ..., Do is a basis of the algebra where Z); stands for the type which has
/ dominant genes and In — i recessive genes. It is easily seen that the D's
and the d's bear the same relation to each other as the D's and the c's of the
gametic algebra provided that n is replaced by 2n. Thus we have

E.M.S.—D
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50 H. GONSHOR

as well as the analogue of Lemma 6.3. Furthermore we have:

Theorem 6.4. A necessary and sufficient condition for a non-zero element
to be an idempotent is that yt = y\ for all i satisfying 0^i^2n. If yx = y\
for all i satisfying 0 ^ / ^ n then the element satisfies {A1)2 = A2. Otherwise
no plenary power of the element is idempotent.

Proof. As in the proof of Theorem 6.3 we consider

Using the formula

the coefficient of dk in the product becomes
k

k-it

The rest of the proof is similar to the gametic case except for the consideration
of the property (A2)2 = A2.

Since the coefficient of dt in a product does not depend on the coefficient
of dj for j>i, the condition yt = y\ for O^i^n will at least guarantee that
the coefficient of dt for i^n will be the same for A and A2. Since dtdj = 0
for i>n it follows that A2 depends only on the coefficients of dt for i^n in A.
Hence A2 = (A2)2.

As before it may be noted that

For a more classical discussion of polyploidy see (7) and (8).

7. Polyploidy with Mutations

Instead of discussing the product directly it will be convenient to regard
the product as being obtained from the product with no mutations by a linear
mapping which we call the mutation mapping. To be more explicit
DaDb = T(DaxDb) where Dax Db is the product as denned in § 6 and
T is the linear mapping satisfying

d = \ £ (' Y"" *) a - »-)V-"(i - s)"--v] D,.
\_u + v = t\uj\ V J J

The mapping is obtained by elementary reasoning in probability. Since the
method applies equally well to the gametic and zygotic algebra we simply use n.
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(Our previous notation would require 2n for the zygotic case.) Note that
the coefficient of D, is the coefficient of x' in the expansion of

This formulation will be useful in the sequel. Let

[( l - r )x + r]'[sx + ( l - s ) ]" - f = £ a,,x'.
/ = 0

n

Writing T(D,) = £ «MA it follows from Lemma 6.3 that
u = 0 Y

u = 0 \ / J
Now consider the expansion [(1 —r)x+r(jc— l)]'[5x+(l—5)(x—1)]""'. This is

£ fl^Cx-l)""". The coefficient of x"'" is (-1)" Y ( " " " Jfl'" w h i c h i s

u = 0 u = 0 \ D /
the coefficient of cv in T(Dt). Thus by simplifying the above expression we
find that the coefficient of cv in T(D,) is the coefficient of xn~" in (x-r)'
[x-(l-s)]"~'. We call this coefficient b,.

It follows that the coefficient of cv in T(cw) is V (-1)'' [ W I bn_t. Now

consider [x— r]"~w[(x — r) — {x — (1— s)}]w. Expanding the second term by

the binomial theorem we may write this as T" )(x —r)n~'[x —(1 —s)]'.
i o\ i

Thus the coefficient of x"~" is £ ( - ! ) ' [ )b--f T h i s shows that the co-
i=o \ij

efficient of c „ in r(cw) is the coefficient of x" ~v in [x - r]"" w[(x - r) - {x - (1 - .?)}]"•
or (x—r)"~w(l — r—s)w. This finally proves the important result:

n

i.e.

T(cw) = ( l - r - s ) w c w - f " W)rcw+1+ ( " WJ r2cw+2... .

Now that we have found T exphcitly in terms of the c's we can write down
the multiplication table.

Theorem 7.1. The multiplication table of the n-ploidy gametic mutation
algebra is

for i+jgn,

0 otherwise.
E.M.S.—D 2
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52 H. GONSHOR

A similar result is obtained for the zygotic algebra.

Theorem 7.2. The multiplication table of the n-ploidy zygotic mutation
algebra is

= 0 otherwise.

The tables in § 3 may be seen to be a special case of this. When n = 2
the table in the zygotic case becomes

3-r
3d^), d\ = \{\-r-s)2(d2

d0d2 = &l-r-s)2(d2-2rd3+r2d4),d1d2 = -^(l-r-s)3(d3-rd4),

d2 = 3^(1 — r-s)4d4 with all other products zero.

Corollary 1. The n-ploidy gametic and zygotic mutation algebras are
special train algebras.

Since the train roots are I ) I )(1 —r —s)', the results in § 2 apply.
W W

A unique non-zero idempotent exists if 0<r+s^2. Furthermore, the geno-
type distributions approach a stable distribution unless r = s = 1.

The case r+s = 1 is incredibly simple. In fact, if e0, cu c2, ..., cn is chosen
as a basis where e0 = c0 — ( I rcx -f- I I r2c2 + ... + ( — l)nr"cn, we obtain for the

multiplication table that el = e0 and that all other products of basis elements
are zero! From this follows immediately

Corollary 2. If r + s = 1, stability is obtained in one generation.
It is easily seen in this case that in terms of the D's the idempotent has

n / \

the form Y I I s'r"~'Di. Furthermore, these results are valid in the zygotic
>•=« \ij

case as well.
In conclusion, the author wishes to thank the referee for many invaluable

suggestions.
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