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A Computation with the Connes–Thom
Isomorphism

S. Sundar

Abstract. Let A ∈ Mn(R) be an invertiblematrix. Consider the semi-direct product Rn
⋊ Z where

the action of Z on Rn is induced by the le� multiplication by A. Let (α, τ) be a strongly continuous
action of Rn

⋊ Z on a C∗-algebra B where α is a strongly continuous action of Rn and τ is an
automorphism. _e map τ induces a map τ̃ on B ⋊α Rn . We show that, at the K-theory level, τ
commutes with the Connes–_om map if det(A) > 0 and anticommutes if det(A) < 0. As an
application, we recompute the K-groups of the Cuntz–Li algebra associated with an integer dilation
matrix.

1 Introduction

In [4], Cuntz and Li initiated the study of C∗-algebras associated with rings. In [6],
Cuntz had earlier studied the C∗-algebra associated with the ax + b group over N.
_ese C∗-algebras are unital, purely inûnite, and simple. _us they are classiûed by
theirK-groups. In a series ofpapers, [3,5,11], theK-groups of these algebras associated
with number ûelds and function ûelds were computed. _emain tool used in the K-
group computation was the duality result proved in [5] and its variations.

Other approaches and possible generalisations were considered in [1, 10, 13]. _e
C∗-algebras studied in [10] and in [13] were called Cuntz–Li algebras. Following [10],
in [13], the Cuntz–Li algebra associated with a pair (N ⋊ H,M) satisfying certain
conditionswas studied. Here,M is a normal subgroup of N and N ⋊H is a semidirect
product . _e main example considered in [13] is the Cuntz–Li algebra, denoted by
UΓ , associated with the pair (Qn ⋊ Γ,Zn), where Γ is a subgroup of GLn(Q) acting
by matrix multiplication on Qn . In [13], it was proved that UΓ is Morita-equivalent
to C(X) ⋊ (Rn ⋊ Γ) for some compact Hausdorò space X. _is is the analog of the
Cuntz–Li duality theorem for the algebra UΓ .
A matrix A ∈ Md(Z) is called an integer dilation matrix if all its eigenvalues are

of absolute value greater than 1. In [8], a purely inûnite simple C∗-algebra associated
with an integer dilation matrix was studied and its K-groups were computed. _eir
computation depends on realising the C∗-algebra as a Cuntz–Pimsner algebra and by
a careful examination of the six term sequence coming from its Toeplitz extension. In
[12], a presentation of this algebra was obtained in terms of generators and relations.
For the group Γ ∶= {(At)r ∶ r ∈ Z} ≅ Z, denote the Cuntz–Li algebra UΓ by UAt . _e
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presentation given in [12] tells us that the C∗-algebra studied in [8] is the Cuntz–Li
algebra UAt .

_e purpose of this paper is to understand the K-groups of UAt in view of the
Cuntz–Li duality theorem. _e Cuntz–Li duality theorem in this case says thatUAt is
Morita-equivalent to a crossed product algebra (C(X) ⋊Rd) ⋊ Z for some compact
Hausdorò space. We compute the K-groups using the Pimsner–Voiculescu sequence.
I believe that this computation will be of independent interest for the following two
reasons:
(a) _e K-groups of UAt depends on both d and sign(det(A)) (cf. [8]). _e depen-

dence on d is due to the Connes–_om isomorphism between K∗(C(X)) and
K∗(C(X) ⋊ Rd). Also the Connes–_om map commutes with the action of Z
if sign(det(A)) > 0 and anticommutes if sign(det(A)) < 0. _is explains the
dependence on sign(det(A)).

(b) It is mentioned in the introduction of [5] that the duality theorem enables one to
use homotopy type arguments,whichmakes it possible to compute theK-groups.
We see the same kind of phenomenon here as well (cf. Lemma 3.2).

Let A ∈ GLn(R). Consider the semidirect product Rn ⋊ Z where Z acts on Rn

by matrix multiplication by A. Let B be a C∗-algebra on which Rn ⋊ Z acts. _e
crossed product B ⋊ (Rn ⋊ Z) is isomorphic to (B ⋊ Rn) ⋊ Z. In Sections 2 and 3,
we write down the Pimsner–Voiculescu sequence for (B ⋊ Rn) ⋊ Z a�er identifying
the crossed product B⋊Rn with B up to KK-equivalence. We show that the Connes–
_om isomorphism commutes with the action of Z if det(A) > 0 and anticommutes
if det(A) < 0. In Sections 4 and 5, the K-groups of UAt are (re)computed.

2 Preliminaries

We use this section to ûx notation and recall a few preliminaries. Let A ∈ Mn(R) be
such that det(A) ≠ 0. We think of elements ofRn as column vectors. _us, thematrix
A induces an action of Z on Rn by le� multiplication. _e generator 1 ∈ Z acts on Rn

by 1.v = Av for v ∈ Rn . Consider the semidirect product Rn ⋊Z.
All the C∗-algebras considered in this paper are assumed to be separable. Let B be

a C∗-algebra. A strongly continuous action ofRn ⋊Z on B is equivalent to providing
a pair (α, τ),where α is a strongly continuous action ofRn on B and τ is an automor-
phism of B such that ταξ = αAξτ for every ξ ∈ Rn . If (α, τ) is such a pair, we write
α ⋊ τ for the action of Rn ⋊Z. Also, the automorphism τ induces an action, denoted
τ̃, on the crossed product B ⋊α Rn given by τ̃(b) ∶= τ(b) for b ∈ B and τ̃(Uξ) ∶= UAξ
for ξ ∈ Rn , where Uξ denotes the canonical unitary in M(B ⋊α Rn). Moreover, the
crossed product B ⋊α⋊τ (Rn ⋊Z) is isomorphic to (B ⋊α Rn) ⋊τ̃ Z.

_e Pimsner–Voiculescu sequence gives the following six-term exact sequence

K0(B ⋊α Rn) 1−τ̃∗ // K0(B ⋊α Rn) // K0(B ⋊α⋊τ (Rn ⋊Z))

��
K1(B ⋊α⋊τ (Rn ⋊Z))

OO

K1(B ⋊α Rn)oo K1(B ⋊α Rn).
1−τ̃∗

oo
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But by the Connes–_om isomorphism, we can replace K i(B⋊α Rn) by K i+n(B).
Let Cn , i ∶K i(B) → K i+n(B ⋊α Rn) be the Connes–_om map. Now we can state our
main theorem.

_eorem 2.1 For i = 1, 2, we have Cn , iτ∗ = єτ̃∗Cn , i , where є is given by

є ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if det(A) > 0,
−1 if det(A) < 0.

_e following is an immediate corollary of_eorem 2.1.

Corollary 2.2 Let (α, τ) be a strongly continuous action of Rn ⋊ Z on a C∗-algebra
B. _en there exists a six term exact sequence

Kn(B)
1−єτ∗ // Kn(B) // K0(B ⋊α⋊τ (Rn ⋊Z))

��
K1(B ⋊α⋊τ (Rn ⋊Z))

OO

Kn+1(B)oo Kn+1(B),1−єτ∗
oo

where є = sign(det(A)).

3 Proof of Theorem 2.1

We use KK-theory to prove _eorem 2.1. All our algebras are ungraded. We denote
the interior Kasparov product

KK(i)(A, B) × KK( j)(B,C)Ð→ KK(i+ j)(A,C)
by ♯ and the external Kasparov product

KK(i)(A1 ,A2) × KK( j)(B1 , B2)Ð→ KK(i+ j)(A1 ⊗ A2 , B1 ⊗ B2)
by ⊗̂. We will also identify K i(B) with KK(i)(C, B). Also, if ϕ∶B1 → B2 is a C∗-
algebra homomorphism, thenwe denote theKK-element (B2 , ϕ, 0) inKK(0)(B1 , B2)
by [ϕ].

Under this identiûcation, the Connes–_om isomorphism is given by Cn(x) =
x ♯ tα where tα ∈ KK(n)(B, B ⋊α Rn) is the_om element.

Now it is immediate that _eorem 2.1 is equivalent to the following theorem.

_eorem 3.1 One has [τ] ♯ tα = є tα ♯ [τ̃], where є = sign(det(A)).

Wenow add a bit ofnotation. If X ∈ GLn(R), then X induces an automorphism ϕX
on C0(Rn) given by (ϕX f )(v) ∶= f (Xv). Let bn ∈ Kn(C0(Rn)) be the Bott element.
We denote the image ϕX∗(bn) ∈ Kn(C0(Rn)) simply by X∗(bn).
First let us dispose of the casewhen the action ofRn is trivial. For the trivial action

the crossed product B ⋊α Rn is isomorphic to B ⊗ C0(Rn) and ttrivial = 1B⊗̂bn .

Lemma 3.2 If the action of Rn is trivial, then [τ] ♯ ttrivial = є ttrivial ♯ [τ̃], where
є = sign(det(A)).
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Proof Note that

[τ] ♯ ttrivial = [τ] ⊗̂ bn and ttrivial ♯ [τ̃] = [τ] ⊗̂ At
∗(bn).

_us we only need to prove that At
∗(bn) = єbn , where є = sign(det(A)).

If det(A) > 0, then At is homotopic to identity in GLn(R). Hence, At
∗(bn) = bn .

If det(A) < 0, then At is homotopic to ( −1 0
0 Idn−1

) in GLn(R). It follows that the
matrix ( −1 0

0 Idn−1
) sends the Bott element bn = b1⊗̂b1⊗̂ ⋅ ⋅ ⋅ ⊗̂b1 to −bn . As a conse-

quence, we have At
∗(bn) = −bn if det(A) < 0. _is completes the proof.

Now, by the homotopy argument used in [9, _eorem 2], we reduce _eorem 3.1
to Lemma 3.2.
For s ∈ [0, 1], let αs be the action ofRn on B deûned by αs

ξ(b) ∶= αsξ(b). Note that
α1 = α, and α0 gives the trivial action. Observe that ταs

ξ = αs
Aξτ. For s ∈ [0, 1], denote

the automorphism τ by τs and the automorphism induced by τ on B ⋊α s Rn by τ̃s .
Let IB ∶= C[0, 1]⊗ B. Consider the action α of Rn and the automorphism τ on IB

deûned by
α ξ( f )(s) ∶= αs

ξ( f (s)), τ( f )(s) ∶= τ( f (s)).
Observe that for ξ ∈ Rn , τ α ξ = αAξ τ. _e automorphism τ induces an automor-

phism on IB ⋊α Rn and we denote it by τ̃.
For s ∈ [0, 1], let єs ∶ IB → B be the evaluation map. _en єs ∶ (IB, α) → (B, αs) is

equivariant. We denote the induced map from IB ⋊α Rn to B ⋊α s Rn by є̂s . Also for
s ∈ [0, 1], є̂s ○ τ̃ = τ̃s ○ є̂s .

Lemma 3.3 For s ∈ [0, 1], the element [̂єs] ∈ KK(0)(IB ⋊α Rn , B ⋊α s Rn) is a KK-
equivalence.

Proof Observe that tα ♯ [є̂s] = [єs] ♯ tα s . Since [єs] ∈ KK(0)(IB, B) and the_om
elements are KK-equivalences, it follows that [є̂s] is a KK-equivalence. _is com-
pletes the proof.

Proposition 3.4 _e following are equivalent. Recall that є = sign(det(A)).
(i) For every s ∈ [0, 1], [τs] ♯ tα s = є tα s ♯ [τ̃s].
(ii) _ere exists s ∈ [0, 1] such that [τs] ♯ tα s = є tα s ♯ [τ̃s].
(iii) _e Kasparov product [τ] ♯ [tα] = є tα ♯ [̃τ].

Proof Let s ∈ [0, 1] be given. Observe the following.

[τ] ♯ tα =є tα ♯ [̃τ]
⇔[τ] ♯ tα ♯ [є̂s] = є tα ♯ [̃τ] ♯ [є̂s] (Since [є̂s] is a KK-equivalence.)
⇔[τ] ♯ [єs] ♯ tα s = є tα ♯ [є̂s ○ τ̃]
⇔[єs ○ τ] ♯ tα s = є tα ♯ [τ̃s ○ є̂s]
⇔[τs ○ єs] ♯ tα s = є tα ♯ [є̂s] ♯ [τ̃s]
⇔[єs] ♯ [τs] ♯ tα s = є [єs] ♯ tα s ♯ [τ̃s]
⇔[τs] ♯ [tα s ] = є tα s ♯ [τ̃s] (Since [єs] is a KK-equivalence.)
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_e proof is now complete.

_eorem 3.1 now follows from Proposition 3.4 and Lemma 3.2.

4 The Cuntz–Li Algebra Associated with an Integer Dilation Matrix

As an application of Corollary 2.2, we recompute the K-theory of the C∗-algebra as-
sociated with an integer dilation matrix studied in [8]. Let us recall the C∗-algebra
considered in [8].
For the rest of the paper, we let A ∈ Md(Z) denote an integer dilation matrix i.e.,

all the eigenvalues of A are of absolute value greater than 1. _ematrix A acts onRd by
matrix multiplication and leaves Zd invariant. Denote the resulting endomorphism
onTd ∶= Rd/Zd by σA. _emap σA is surjective and has ûnite ûbres. Denote themap
C(Td) ∋ f → f ○ σA ∈ C(Td) by αA. Consider the transfer operator L∶C(Td) →
C(Td) deûned by

L( f )(x) ∶= 1
∣σ−1
A (x)∣ ∑

σA(y)=x
f (y).

_en L satisûes the condition L(αA( f )g) = f L(g) for f , g ∈ C(Td). In [8], the Exel
Crossed product C(Td)⋊αA ,L N was viewed as a Cuntz–Pimsner algebraO(ML) of a
suitableHilbert C(Td) bimodule ML .
By a careful examination of the six term sequence (and the maps involved) as-

sociated with the exact sequence 0 → Ker(Q) → T(ML) → O(ML) → 0, the K-
groups of C(Td) ⋊αA N were computed in [8]. Here Q denotes the quotient map
T(ML)→ O(ML).
For our purposes, the following description of O(ML) in terms of generators and

relations ismore relevant. Let us recall the following proposition from [12,Proposition
3.3].

Proposition 4.1 ([12]) _e Exel crossed product C(Td) ⋊αA ,L N is the universal
C∗-algebra generated by an isometry v and unitaries {um ∶ m ∈ Zd} satisfying the
following relations:

umun = um+n , vum = uAtmv , ∑
m∈Σ

umvv∗u−1
m = 1.

Here Σ denotes a set of distinct coset representatives of the group Zd/AtZd .

_e ûrst two relations are called (E1) and the last relation is called (E3) in [12]. In
[12], the following relation

v∗umv ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if m ∉ AtZd ,
u(At)−1m if m ∈ AtZd ,

called (E2) is also considered. But it is super�uous as (E1) and (E3) imply (E2).
For if m ∉ AtZd , the projections vv∗ and umvv∗u−1

m are orthogonal by (E3). Hence
v∗umv = 0 if m ∉ AtZd . If m ∈ AtZd , then using vum = uAtmv, one obtains v∗umv =
u(At)−1m . _us, (E1) and (E3) imply (E2).
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_e following setup was initially considered in [10]. Consider a semi-direct prod-
uct N ⋊ H and let M be a normal subgroup of N . Let P ∶= {a ∈ H ∶ aMa−1 ⊂ M}.
_en P is a semigroup containing the identity e. For a ∈ P, let Ma = aMa−1. Assume
that the following hold:
(C1) _e group H = PP−1 = P−1P.
(C2) For every a ∈ P, the subgroup aMa−1 is of ûnite index in M.
(C3) _e intersection⋂a∈P aMa−1 = {e}, where e denotes the identity element ofG.

Deûnition 4.2 _e Cuntz–Li algebra associated with the pair (N ⋊ H,M) is the
the universal C∗-algebra generated by a set of isometries {sa ∶ a ∈ P} and a set of
unitaries {u(m) ∶ m ∈ M} satisfying the relations

sasb = sab , u(m)u(n) = u(mn),
sau(m) = u(ama−1)sa , ∑

k∈M/Ma

u(k)eau(k)−1 = 1,

where ea denotes the ûnal projection of sa . We denote theCuntz–Li algebra associated
with the pair (N ⋊H,M) by A[N ⋊H,M].

Let A ∈ Md(Z) be a dilation matrix. _en A acts on Qd by le� multiplication.
Consider the semidirect productQd ⋊Z and the normal subgroup Zd ofQd . For this
pair (Qd ⋊ Z,Zd), P = {Ar ∶ r ≥ 0} ≅ N. Moreover, conditions (C1)–(C3) are satis-
ûed. (See [13, Example 2.6, p. 3].) Let us denote the Cuntz–Li algebra A[Qd ⋊Z,Zd]
simply by UA. By using the presentation (cf. Prop. 4.1) of the Exel’s Crossed product
C(Td)⋊αA ,LN given in terms of isometries and unitaries, it follows thatC(Td)⋊αA ,LN
is isomorphic to UAt .
First we recall the Cuntz–Li duality result proved in [13]. Let NA ∶= ⋃∞r=0 A−rZd .

_enNA is a subgroup ofRd . LetZ act onRd by le�multiplication byAt and consider
the semidirect productRd ⋊Z. _e semidirect productRd ⋊Z acts on the C∗-algebra
C∗(NA). _e action α of Rd and the automorphism τ, corresponding to the action
of Z, are given by

αξ(δv) ∶= e−2πi⟨ξ,v⟩δv for ξ ∈ Rd , τ(δv) ∶= δA−1v

where {δv ∶ v ∈ NA} denotes the canonical unitaries in C∗(NA) and ⟨ ⋅ , ⋅ ⟩ denotes
the usual inner product on Rd . Note that ταξ = αAt ξτ for ξ ∈ Rd .

_e following propositionwas proved in [13] (cf. [13,_eorem 8.2 and Proposition
8.6]).

Proposition 4.3 _e C∗-algebra UAt is Morita-equivalent to

C∗(NA) ⋊α⋊τ (Rd ⋊At Z).

Now using the Morita-equivalence in Proposition 4.3 and using the version of
Pimsner–Voiculescu exact sequence established inCorollary 2.2, the K-groups ofUAt

can be computed.
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5 K-groups of the Cuntz–Li algebra UAt

Recall that NA ∶= ⋃∞r=0A−rZd . Set N(r)A ∶= A−rZd . _en {N(r)A }∞r=0 forms an in-
creasing sequence of subgroups, each isomorphic to Zd and NA = ⋃∞r=0 N(r)A . _us,
C∗(NA) is the inductive limit of C∗(N(r)A ) ≅ C(Td). Hence K∗(C∗(NA)) can be
computed as the inductive limit of the K-groups of C∗(N(r)A ) ≅ C(Td).

Let us ûrst recall the K-theory of C(Td) ≅ C∗(Zd). It is well known and can be
proved by the Kunneth formula that as a Z2 graded ring, K∗(C∗(Zd)) is isomorphic
to the exterior algebra Λ∗(Zd). _e map Zd ∋ e i → δe i ∈ K1(C∗(Zd)) extends to a
graded ring isomorphism from Λ∗(Zd) to K∗(C∗(Zd)).

Remark 5.1 _e isomorphism K∗(C(Td)) ≅ Λ∗Zd was also used in [8].

Let us now ûx some notations. For 0 ≤ n ≤ d, let An be the map on Λn(Zd)
induced by A. _us A0 = 1, A1 = A and Ad = det(A). For a subset I of {1, 2, . . . , d},
of cardinality n (arranged in increasing order ), I = {i1 < i2 < ⋅ ⋅ ⋅ < in}, let eI ∶=
e i1 ∧ e i2 ∧ ⋅ ⋅ ⋅ ∧ e in . _en {eI ∶ ∣I∣ = n} is a basis for Λn(Zd). For subsets J ,K of
{1, 2, . . . , d} of size n, let AJ ,K be the submatrix of Aobtained by considering the rows
coming from J and columns coming from K. With respect to the basis {eI ∶ ∣I∣ = n},
the (J ,K)th entry of thematrix corresponding to An is det(AJ ,K).

Note that for n ≥ 1, An is again an integer dilation matrix. For if we upper tri-
angualise A, then with respect to the basis {eI ∶ ∣I∣ = n}, arranged in lexicographic
order, An is upper triangular and the eigenvalues of An are product of eigenvalues of
A. _us the eigenvalues of An are of absolute value greater than 1. _is fact was used
in [8] (cf. [8, Proposition 4.6]).

Let n ∈ {0, 1, 2, . . . , d}. Consider Λn(Zd) as a subgroup of Λn(Qd). _en An is
invertible on Λn(Qd). Set Γn ∶= ⋃∞r=0 A−r

n (Λn(Zd)).

Proposition 5.2 _e K-groups of the C∗-algebra C∗(NA) are given by

K0(C∗(NA)) ≅ ⊕
n even
0≤n≤d

Γn and K1(C∗(NA)) ≅ ⊕
n odd
0≤n≤d

Γn .

Proof Since C∗(NA) is the inductive limit of C∗(N(r)A ) ≅ C(Td), it follows that
K∗(C∗(NA)) is the inductive limit of K∗(C∗(N(r)A )) ≅ K∗(C(Td)). Identify
K∗(C∗(N(r)A )) with Λ∗(Zd) via the map δA−r(e i) → e i . With this identiûcation, the
inclusion map C∗(N(r)A )→ C∗(N−(r+1)

A ) induces themap⊕0≤n≤dAn at the K-theory
level. (Reason: If we write e j as a linear combination of {A−1e i} thematrix involved
is just A. )

_us we are le� to show that the inductive limit of

(⊕
n

ΛnZd ,⊕
n
An)

∞

r=0

is ⊕n Γn . Again, it is enough to show that the inductive limit of (ΛnZd ,An)∞r=0 is
isomorphic to Γn . Let Hr = ΛnZd . If v ∈ Γn , write v as v = A−r

n w with w ∈ Λn(Zd).

https://doi.org/10.4153/CMB-2015-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-048-6


A Computation with the Connes–_om Isomorphism 853

_emap Γn ∋ v → w ∈ Hr is an isomorphism between Γn and limr→∞(Λn(Zd),An).
_is completes the proof.

Now let us calculate the automorphism τ on C∗(NA). Recall that τ on the gener-
ating unitaries is given by τ(δv) = δA−1v . _us, it is immediate that τ induces themap
⊕n A−1

n on⊕n Γn when one identiûes K∗(C∗(NA)) with⊕n Γn ( together with their
Z2 grading).
For r ≥ 0, let jr ∶C∗(Zd) → C∗(NA) be the inclusion given by jr(δv) = δA−rv .

Proposition 5.2 implies that themaps jr induce injectivemaps at the K-theory level.
Let τ̃∶C∗(Zd)→ C∗(Zd) be the homomorphism given on the generators by τ̃(δv) =
δAv . Observe that for r ≥ 0, jr+1 τ̃ = jr , and τ jr = jr+1.

_eorem 5.3 _e K-groups of the Cuntz–Li algebraUAt ût into an exact sequence as
follows:

Kd(C∗(Zd))
1−є τ̃∗ // Kd(C∗(Zd)) // K0(UAt)

��
K1(UAt)

OO

Kd+1(C∗(Zd))oo Kd+1(C∗(Zd)),1−є τ̃∗
oo

where є ∶= sign(det(A)).

Proof Our main tool is Corollary 2.2 and theMorita equivalence between UAt and
C∗(NA) ⋊ (Rn ⋊Z). By Corollary 2.2, we have the six term sequence

Kd(C∗(NA))
1−єτ∗ // Kd(C∗(NA)) // K0(UAt)

σ
��

K1(UAt)
δ

OO

Kd+1(C∗(NA))oo Kd+1(C∗(NA)).1−єτ∗
oo

By Proposition 5.2, we know that K∗(C∗(NA)) = ⊕0≤n≤d Γn as Z2 graded abelian
groups. Also 1 − єτ∗ = ⊕0≤n≤d(1 − єA−1

n ). But An is an integer dilation matrix for
1 ≤ n ≤ d. Hence neither 1 nor −1 is an eigenvalue of An for 1 ≤ n ≤ d. _us,
Ker(1− єτ∗) is Z if є = 1 and 0 if є = −1. In any case, Ker(1− єτ∗) ⊂ j0∗(K∗(C∗(Zd)).
_us the image of both σ and δ is contained in j0∗(K∗(C∗(Zd)). Also, j0∗ is injective
and hence we can replace K∗(C∗(NA)) appearing at the corners of the two rows of
the six term sequence by j0∗K∗(C∗(Zd)) ≅ K∗(C∗(Zd)). _e automorphism τmaps
j0(C∗(Zd)) into j1(C∗(Zd)). _us, K∗(C∗(NA)) appearing in themiddle of the two
rows can be replaced by j1∗K∗((C∗(Zd)) ≅ K∗(C∗(Zd)).

Now the commutation relation τ j0 = j1 and j1 τ̃ = j0 implies that we can replace
1 − єτ∗ appearing in the exact sequence by τ̃∗ − є1. We can multiply any morphism
appearing in the exact sequence by−єwithout changing the exactness of the sequence.
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_us we obtain the following six term sequence

Kd(C∗(Zd))
1−є τ̃∗ // Kd(C∗(Zd)) // K0(UAt)

��
K1(UAt)

OO

Kd+1(C∗(Zd))oo Kd+1(C∗(Zd)).1−є τ̃∗
oo

_is completes the proof.

_e above six term sequence can be used to obtain a formula for the K-theory of
UAt . We illustrate for the case when det(A) > 0 and d is even. We leave the other
cases to the reader. _us, assume det(A) > 0 and d is even. In this case, the exact
sequence of_eorem 5.3 reads as

⊕
n even
0≤n≤d

Λn(Zd) 1−⊕nAn // ⊕
n even
0≤n≤d

Λn(Zd) // K0(UAt)

��
K1(UAt)

OO

⊕
n odd
0≤n≤d

Λn(Zd)oo ⊕
n odd
0≤n≤d

Λn(Zd).
1−⊕nAn

oo

Now for n ≥ 1, An is a dilation matrix and thus ker(1 − An) = 0 if n ≥ 1. Hence we
conclude from the above six term sequence that

K0(UAt) ≡ ⊕
n even
0≤n≤d

coker(1 − An).

Now A0 = 1 and hence⊕n even ker(1−An) = Z. Again the six term sequence gives
the following short exact sequence.

0Ð→ ⊕
n odd
0≤n≤d

coker(1 − An)Ð→ K1(UAt)Ð→ ZÐ→ 0.

Since Z is free, it follows that

K1(UAt) ≡ ⊕
n odd
0≤n≤d

coker(1 − An)⊕Z.

Remark 5.4 If d is odd, one obtains the same formula, but the roles of K0 and K1
are interchanged. If det(A) < 0, we obtain a formula for K∗(UAt) in terms of the
cokernels of 1 + An . Here the direct summand Z will not appear as Ker(1 + An) = 0
for 0 ≤ n ≤ d.

_e rest of this section is devoted to reconciling our computation of the K-groups
of UAt with the result obtained in [8]. More precisely with [8, _eorem 4.9]. Let us
recall the notations as in [8].
For a subset K = {k1 < k2 < ⋅ ⋅ ⋅ < kn} of {1, 2, . . . , d}, denote the complement

arranged in increasing order by K
′

and let K
′ = {kn+1 < kn+2 < ⋅ ⋅ ⋅ < kd}. Denote

the permutation i → k i by τK . For a permutation σ , sign(σ) is 1 if σ is even and −1 if
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sign(σ) is odd. Also recall that if K and J are subsets of size n, then AK , J is thematrix
obtained from A by considering the rows from K and columns from J.
For 0 ≤ n ≤ d, let B̃n be the (dn) × (dn) matrix deûned as follows. (We index the

columns and rows by subsets of {1, 2, . . . , d} of size n). _e (K , L)-th entry of B̃n is
sign(τKτL)det(AK′ ,L′ ).

_ematrices Bn asdeûned in [8,Prop. 4.6] are then given by Bn = sign(det(A))B̃n .
Denote thematrix whose (K , L)-th entry is det(AK′ ,L′ ) by Cn . By convention, B̃d =
1 = Cd . Note that B̃n and Cn are conjugate over Z. For the matrix diag(sign(τK))
conjugates B̃n to Cn .

Let Un ∶Λn(Zd)→ Λd−n(Zd) be deûned byUneI ∶= eI′ . _en Un is invertible and
UnCnU−1

n = Ad−n . Since sign(det(A))Cn is conjugate (over Z) to Bn , it follows that
sign(det(A))Ad−n is conjugate (over Z) to Bn .

Now the formula for the K-groups of UAt can be restated in terms of thematrices
Bn ’s. For example, if d is even and det(A) > 0, we obtain

K0(UAt) ≅ ⊕
n even
0≤n≤d

coker(1 − Bn),

K1(UAt) ≅ ⊕
n odd
0≤n≤d

coker(1 − Bn)⊕Z.

For the exact formulas of the K-groups in terms of thematrices Bn ’s, we refer the
reader to [8,_eorem 4.9].
Cuntz and Vershik have also computed the K-groups of UAt as a special case of

their considerations in [7]. In particular, a six term exact sequence similar to, but
diòerent from, the one in _eorem 5.3 is obtained. We ûnish this paper with a few
remarks about their method for the case of UAt . Let us denote thematrix At by B in
what follows.

Let

M ∶= {(vr) ∈
∞

∏
r=0

Zd

BrZd
∶ vr+1 ≡ vr mod BrZd} .

_en M is a compact abelian groupwhen given the subspace topology inherited from
the product topology on ∏∞

r=0
Zd
BrZd . _e map Zd ∋ v → (v , v , v , . . . ) ∈ M is an

injective homomorphism and we identify Zd with a subgroup of M. Moreover, Zd is
dense in M. _e abelian group Zd acts on M by translation. _e semigroup N acts
on Zd by 1.v = Bv for v ∈ Zn . _is action extends to an action of N on M. _us, one
obtains an injective action of the semigroup Zd ⋊N on M. _enUAt is isomorphic to
the semigroup crossed product B ⋊N, whereB ∶= C(M) ⋊Zn . Denote the action of
N on B by τ.

Remark 5.5 For the proof of the assertions made in the previous paragraph, the
reader is referred to [13, Corollary 6.6] and [7,_eorem 2.6]. _e isomorphismUAt ≅
(C(M) ⋊Zd) ⋊N forms the basis for the Cuntz–Li duality theorem.
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By Pimsner–Voiculescu sequence, one obtains the six term sequence

K0(B) 1−τ∗ // K0(B) // K0(B ⋊N)

��
K1(B ⋊N)

OO

K1(B)oo K1(B).
1−τ∗
oo

K∗(B) is replaced byK∗(C∗(Zd)) in [7,_eorem 3.1]. _e idea involved is as follows.
_e r-th projection M ∋ (v i) → vr ∈ Zd/BrZd is onto and has kernel BrM ([13,

Lemma 6.1]). _us, ⋂∞r=0 BrM = {0} and M/BrM ≅ Zd/BrZd . One has natural
inclusions C(M/BrM) ⊂ C(M/Br+1M) ⊂ C(M). Since the intersection ⋂r=0 BrM =
{0}, the union of C(M/BrM) is dense in C(M). Moreover, the inclusions are Zd
invariant. _us,B ∶= C(M) ⋊Zd is the inductive limit of C(Zd/BrZd) ⋊Zd .
By imprimitivity, C(Zd/BrZd) ⋊ Zd ≅ MN(r)(C∗(BrZd)) ≅ MN(r)(C∗(Zd)),

where N(r) = ∣det(B)∣r . _us, the K-theory of B can be computed from the K-
theory of C∗(Zd). By examining the connecting maps

MN(r)(C∗(Zd))→ MN(r+1)(C∗(Zd)),

one can replace K∗(B) by K∗(C∗(Zd)). _is is proved precisely in [7,_eorem 3.1].
In our notation, themap 1− τ∗ becomes 1− є⊕n Cn (see [7, example 3.12]), where є =
sign(det(A)) _e main diòerence between our approach and the approach pursued
in [7] is the starting point. Cuntz andVershik rely on the explicit description ofUAt as
a (semigroup) crossed product, where we appeal to theMorita equivalence provided
by theCuntz–Li duality theorem. _e advantage of Cuntz andVershik’smethod is that
it is direct and applies to other examples as well. _e one advantage of our method is
that it explains conceptually why the sign of det(A) and the parity of d play a role in
the formula of the K-groups.
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