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A Computation with the Connes—Thom
Isomorphism

S. Sundar

Abstract. Let A € M, (R) be an invertible matrix. Consider the semi-direct product R” x Z where
the action of Z on R” is induced by the left multiplication by A. Let («, 7) be a strongly continuous
action of R” x Z on a C*-algebra B where « is a strongly continuous action of R” and 7 is an
automorphism. The map 7 induces a map 7 on B x4, R”. We show that, at the K-theory level, 7
commutes with the Connes-Thom map if det(A) > 0 and anticommutes if det(A) < 0. As an
application, we recompute the K-groups of the Cuntz-Li algebra associated with an integer dilation
matrix.

1 Introduction

In [4], Cuntz and Li initiated the study of C*-algebras associated with rings. In [6],
Cuntz had earlier studied the C*-algebra associated with the ax + b group over N.
These C*-algebras are unital, purely infinite, and simple. Thus they are classified by
their K-groups. In a series of papers, [3,5,11], the K-groups of these algebras associated
with number fields and function fields were computed. The main tool used in the K-
group computation was the duality result proved in [5] and its variations.

Other approaches and possible generalisations were considered in [1,10,13]. The
C* -algebras studied in [10] and in [13] were called Cuntz-Li algebras. Following [10],
in [13], the Cuntz-Li algebra associated with a pair (N x H, M) satisfying certain
conditions was studied. Here, M is a normal subgroup of N and N » H is a semidirect
product . The main example considered in [13] is the Cuntz-Li algebra, denoted by
Ur, associated with the pair (Q" x T',Z"), where T is a subgroup of GL,(Q) acting
by matrix multiplication on Q". In [13], it was proved that Ur is Morita-equivalent
to C(X) x (R" x T) for some compact Hausdorff space X. This is the analog of the
Cuntz-Li duality theorem for the algebra Ur.

A matrix A € M;(Z) is called an integer dilation matrix if all its eigenvalues are
of absolute value greater than 1. In [8], a purely infinite simple C*-algebra associated
with an integer dilation matrix was studied and its K-groups were computed. Their
computation depends on realising the C*-algebra as a Cuntz-Pimsner algebra and by
a careful examination of the six term sequence coming from its Toeplitz extension. In
[12], a presentation of this algebra was obtained in terms of generators and relations.
For the group I := {(A")" : r € Z} = Z, denote the Cuntz-Li algebra Ur by U 4. The
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presentation given in [12] tells us that the C*-algebra studied in [8] is the Cuntz-Li
algebra U ,:.

The purpose of this paper is to understand the K-groups of Uy: in view of the
Cuntz-Li duality theorem. The Cuntz-Li duality theorem in this case says that U 4 is
Morita-equivalent to a crossed product algebra (C(X) x R?) x Z for some compact
Hausdorft space. We compute the K-groups using the Pimsner—Voiculescu sequence.
I believe that this computation will be of independent interest for the following two
reasons:

(a) The K-groups of U4« depends on both d and sign(det(A)) (cf. [8]). The depen-
dence on d is due to the Connes-Thom isomorphism between K, (C(X)) and
K.(C(X) x R%). Also the Connes-Thom map commutes with the action of Z
if sign(det(A)) > 0 and anticommutes if sign(det(A)) < 0. This explains the
dependence on sign(det(A)).

(b) It is mentioned in the introduction of [5] that the duality theorem enables one to
use homotopy type arguments, which makes it possible to compute the K-groups.
We see the same kind of phenomenon here as well (¢f. Lemma 3.2).

Let A € GL,(R). Consider the semidirect product R” x Z where Z acts on R"
by matrix multiplication by A. Let B be a C*-algebra on which R” x Z acts. The
crossed product B x (R" x Z) is isomorphic to (B x R") x Z. In Sections 2 and 3,
we write down the Pimsner-Voiculescu sequence for (B x R") x Z after identifying
the crossed product B xR" with B up to KK-equivalence. We show that the Connes—
Thom isomorphism commutes with the action of Z if det(A) > 0 and anticommutes
if det(A) < 0. In Sections 4 and 5, the K-groups of Uy: are (re)computed.

2 Preliminaries

We use this section to fix notation and recall a few preliminaries. Let A € M,,(R) be
such that det(A) # 0. We think of elements of R" as column vectors. Thus, the matrix
A induces an action of Z on R” by left multiplication. The generator 1 € Z acts on R"
by 1.v = Av for v € R”. Consider the semidirect product R" x Z.

All the C*-algebras considered in this paper are assumed to be separable. Let B be
a C*-algebra. A strongly continuous action of R” x Z on B is equivalent to providing
a pair («, 7), where « is a strongly continuous action of R” on B and 7 is an automor-
phism of B such that ta; = a,¢7 for every & € R”. If (a, 7) is such a pair, we write
a » 7 for the action of R” x Z. Also, the automorphism 7 induces an action, denoted
7, on the crossed product B x4, R" given by 7(b) := 7(b) for b € Band T(Uy) := Uy
for & € R", where U denotes the canonical unitary in M(B x, R"). Moreover, the
crossed product B x4y, (R" x Z) is isomorphic to (B x4 R") x+Z.

The Pimsner-Voiculescu sequence gives the following six-term exact sequence

Ko(Bxa R") — 7+ Ko(B o R") —> Ko(B xans (R” x Z))

T l

Ki(B xgur (R" xZ)) =<—— Ki(B x4 R") Ki(B xy R™).

*
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But by the Connes-Thom isomorphism, we can replace K; (B %, R") by K;,,,(B).
Let C,,.;: K;(B) = Kj1n(B x4 R") be the Connes-Thom map. Now we can state our
main theorem.

Theorem 2.1 Fori=1,2, wehave C,,;T. = €T.C,,;, where € is given by

_J1 ifdet(A) >0,
“|-1 ifdet(A) <o.

The following is an immediate corollary of Theorem 2.1.

Corollary 2.2  Let («, T) be a strongly continuous action of R" x Z on a C*-algebra
B. Then there exists a six term exact sequence

1-€74

Ky(B) —————> Ku(B) —— Ko(B xaxr (R" % Z))

T |

KI(B Haxt (Rn X Z)) ~ Kn+1(B) (? Kn+1(B))

where € = sign(det(A)).

3 Proof of Theorem 2.1

We use KK-theory to prove Theorem 2.1. All our algebras are ungraded. We denote
the interior Kasparov product

KK (A, B) x KKY (B, C) — KKU*)(A,C)
by # and the external Kasparov product
KK (A, Ay) x KKV (B, By) — KK (A; ® A,, B, ® B)

by ®. We will also identify K;(B) with KK (C, B). Also, if ¢: B, — B, is a C*-
algebra homomorphism, then we denote the KK -element ( By, ¢,0) in KK() (B,, B,)
by [¢].

Under this identification, the Connes-Thom isomorphism is given by C,(x) =
X f to where t, € KK(”)(B, B x, R") is the Thom element.
Now it is immediate that Theorem 2.1 is equivalent to the following theorem.

Theorem 3.1 Onehas 1] f to =€ty f [T], wheree = sign(det(A)).

We now add a bit of notation. If X € GL,,(R), then X induces an automorphism ¢ x
on Co(R") given by (¢xf)(v) := f(Xv). Let b, € K,,(Co(R")) be the Bott element.
We denote the image ¢x.(b,) € K,,(Co(R")) simply by X, (b,).

First let us dispose of the case when the action of R" is trivial. For the trivial action
the crossed product B x, R" is isomorphic to B ® Co(R") and tyivial = 13®b,,.

Lemma 3.2 If the action of R" is trivial, then [t] | tiivial = € trivial § [T, where
€ = sign(det(A)).
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Proof Note that
[T] u ttrivial = [T] @ bn and ttrivial u [ﬂ = [T] ®Ai(bn)
Thus we only need to prove that A%, (b,,) = eb,,, where € = sign(det(A)).
If det(A) > 0, then A’ is homotopic to identity in GL,(R). Hence, A%, (b,) = b,,.
If det(A) < 0, then A" is homotopic to ( ' 1,0, ) in GL,(R). It follows that the

matrix ( o Id:,l) sends the Bott element b, = b;®b;8---®b; to —b,. As a conse-
quence, we have A, (b,) = —b,, if det(A) < 0. This completes the proof. [ |

Now, by the homotopy argument used in [9, Theorem 2], we reduce Theorem 3.1
to Lemma 3.2.

For s € [0,1], let a* be the action of R" on B defined by a;(b) := a;¢(b). Note that
a' = a, and a® gives the trivial action. Observe that Ty = o, 7. Fors € [0,1], denote
the automorphism 7 by 7° and the automorphism induced by 7 on B x,: R" by 7°.

Let IB := C[0,1] ® B. Consider the action & of R” and the automorphism 7 on IB
defined by

ae(f)(s) = ag(f(s)),  z(f)(s) = 7(f(s))-

Observe that for £ e R”, 7 a ¢ = &, 7. The automorphism 7 induces an automor-
phism on IB », R" and we denote it by 7.

For s € [0,1], let €: IB — B be the evaluation map. Then ¢,: (IB, ) — (B, %) is
equivariant. We denote the induced map from IB x, R" to B x4 R” by €;. Also for

€[0,1],& 0T=T oE,.

Lemma 3.3 Fors € [0,1], the element [€,] € KK(©)(IB x4 R", B x4 R") is a KK-
equivalence.

Proof Observe that t, § [&;] = [€] § tas. Since [¢;] € KK(©)(IB, B) and the Thom
elements are KK-equivalences, it follows that [&;] is a KK-equivalence. This com-
pletes the proof. ]

Proposition 3.4  The following are equivalent. Recall that € = sign(det(A)).

(i) Foreveryse[0,1], [T°] | tas =€ tos § [T°].
(ii) There exists s € [0,1] such that [1°] § tos =€ tas § [T°].
(iii) The Kasparov product [1] § [ta] =€ty f[T].

Proof Lets € [0,1] be given. Observe the following.

[z] § to =€ ta §[7]
<[] f ta §[E]=€ta f [T] § [€] (Since [&] is a KK-equivalence.)

] [] ta‘—etau[esoﬂ

ﬁ

e oT] ff tas =€ty u[rsoa]

[z
[
[0 o€ § tas =€ty §[E] (7]
[
[

0

65] [7°] ftas =€ [e] i tas H[;S]

7°) § [tas] = € tas § [7°] (Since [e;] is a KK-equivalence.)

0
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The proof is now complete. ]

Theorem 3.1 now follows from Proposition 3.4 and Lemma 3.2.

4 The Cuntz-Li Algebra Associated with an Integer Dilation Matrix

As an application of Corollary 2.2, we recompute the K-theory of the C*-algebra as-
sociated with an integer dilation matrix studied in [8]. Let us recall the C*-algebra
considered in [8].

For the rest of the paper, we let A € M;(Z) denote an integer dilation matrix i.e.,
all the eigenvalues of A are of absolute value greater than 1. The matrix A acts on R by
matrix multiplication and leaves Z? invariant. Denote the resulting endomorphism
on T? := RY/Z? by 04. The map 04 is surjective and has finite fibres. Denote the map
C(T%) 5 f - foos € C(T?) by ay. Consider the transfer operator L: C(T%) —
C(T?) defined by

1

UNW =y &S0
Then L satisfies the condition L(a4(f)g) = fL(g) for f,g € C(T%). In [8], the Exel
Crossed product C(T?) x,, ; N was viewed as a Cuntz-Pimsner algebra O(M; ) of a
suitable Hilbert C(T¢) bimodule M;.

By a careful examination of the six term sequence (and the maps involved) as-
sociated with the exact sequence 0 — Ker(Q) — T(Mr) — O(M) — 0, the K-
groups of C(T9) x,, N were computed in [8]. Here Q denotes the quotient map
T(My) - O(My).

For our purposes, the following description of O(M[ ) in terms of generators and
relations is more relevant. Let us recall the following proposition from [12, Proposition
3.3].

Proposition 4.1 ([12]) The Exel crossed product C(T?) x,, 1 N is the universal
C*-algebra generated by an isometry v and unitaries {u,, : m € Z%} satisfying the
following relations:

* -1
Upln = Umin, VUm = UptyV, D, UpVV U, =1
mex

Here ¥ denotes a set of distinct coset representatives of the group 7.2 | A'Z*.
The first two relations are called (E1) and the last relation is called (E3) in [12]. In
[12], the following relation
. 0 ifm¢ A'Z4,
Vi =
" Uear)y-im if me A'Z4,
called (E2) is also considered. But it is superfluous as (E1) and (E3) imply (E2).
For if m ¢ A'Z4, the projections vv* and u,,vv*u;! are orthogonal by (E3). Hence

Viu,v=0ifm ¢ A'Z%. If m € A'Z4, then using Vi, = Uat,V, one obtains v u,,v =
U(aty-1m- Thus, (E1) and (E3) imply (E2).
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The following setup was initially considered in [10]. Consider a semi-direct prod-
uct N x H and let M be a normal subgroup of N. Let P := {a € H: aMa™' c M}.
Then P is a semigroup containing the identity e. For a € P, let M, = aMa™". Assume
that the following hold:

(C1) Thegroup H=PP™!=PpP7'P.
(C2) For every a € P, the subgroup aMa™" is of finite index in M.
(C3) The intersection N,ep aMa™" = {e}, where e denotes the identity element of G.

Definition 4.2  The Cuntz-Li algebra associated with the pair (N x H, M) is the
the universal C*-algebra generated by a set of isometries {s, : a € P} and a set of
unitaries {u(m) : m € M} satisfying the relations

SaSh = Sab> u(m)u(n) = u(mn),
squ(m) = u(ama™)s,, Y u(k)equ(k)™ =1,
keM/M,

where e, denotes the final projection of s,. We denote the Cuntz-Li algebra associated
with the pair (N x H, M) by 2A[N x H, M].

Let A € My(Z) be a dilation matrix. Then A acts on Q% by left multiplication.
Consider the semidirect product Q¢ x Z and the normal subgroup Z? of Q“. For this
pair (Q¢ x Z,Z%), P = {A" : r > 0} = N. Moreover, conditions (C1)—(C3) are satis-
fied. (See [13, Example 2.6, p. 3].) Let us denote the Cuntz-Li algebra Ql[@d X7, Zd]
simply by U,. By using the presentation (cf. Prop. 4.1) of the Exel’s Crossed product
C(T%)x,, 1 Ngiven in terms of isometries and unitaries, it follows that C(T¢),, | N
is isomorphic to U 4.

First we recall the Cuntz-Li duality result proved in [13]. Let N4 := %2, A" Z4.
Then N4 is a subgroup of R?. Let Z act on R by left multiplication by A’ and consider
the semidirect product R? x Z. The semidirect product R x Z acts on the C*-algebra
C*(Ny4). The action a of RY and the automorphism 7, corresponding to the action
of Z, are given by

ag(8y) = e 2V s for £ e RY, 7(8y) = 841,

where {8, : v € Ny} denotes the canonical unitaries in C*(N4) and (-, -) denotes
the usual inner product on R¥. Note that Tog = apgT for § e R4,

The following proposition was proved in [13] (¢f. [13, Theorem 8.2 and Proposition
8.6]).

Proposition 4.3  The C*-algebra U 4« is Morita-equivalent to
C*(N4) 2wz (R x4 7).
Now using the Morita-equivalence in Proposition 4.3 and using the version of

Pimsner—Voiculescu exact sequence established in Corollary 2.2, the K-groups of U 4
can be computed.
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5 K-groups of the Cuntz-Li algebra Uy

Recall that Ny := U2 A7"Z4. Set Ngr) = A7Z4. Then {Ny) }22, forms an in-
creasing sequence of subgroups, each isomorphic to Z4 and N = U2, Nf(‘r). Thus,
C*(Ny) is the inductive limit of C* (Nf{)) > C(T%). Hence K, (C*(Ny4)) can be
computed as the inductive limit of the K-groups of C* (N/(;) ) = C(T).

Let us first recall the K-theory of C(T?) = C*(Z?). It is well known and can be
proved by the Kunneth formula that as a Z, graded ring, K, (C*(Z%)) is isomorphic
to the exterior algebra A*(Z). The map Z9 3 ¢; —» 8., € K;(C*(Z%)) extends to a
graded ring isomorphism from A*(Z4) to K, (C*(Z%)).

Remark 5.1 'The isomorphism K, (C(T%)) = A*Z¢ was also used in [8].

Let us now fix some notations. For 0 < n < d, let A, be the map on A"(Z9)
induced by A. Thus Ag =1, A; = Aand A; = det(A). For asubset I of {1,2,...,d},
of cardinality # (arranged in increasing order ), I = {i; < iy < -+ < i, }, let e :=
ei, Aei, A Ae;. Then {e; : |I| = n} is a basis for A"(Z%). For subsets J, K of
{1,2,...,d} of size n, let A k be the submatrix of A obtained by considering the rows
coming from J and columns coming from K. With respect to the basis {e; : |I| = n},
the (J, K)*" entry of the matrix corresponding to A, is det(A; x).

Note that for n > 1, A, is again an integer dilation matrix. For if we upper tri-
angualise A, then with respect to the basis {e; : |I| = n}, arranged in lexicographic
order, A, is upper triangular and the eigenvalues of A, are product of eigenvalues of
A. Thus the eigenvalues of A, are of absolute value greater than 1. This fact was used
in [8] (cf. [8, Proposition 4.6]).

Let n € {0,1,2,...,d}. Consider A"(Z%) as a subgroup of A"(Q%). Then A, is
invertible on A" (Q%). Set T, := U2, A;7(A™(Z4)).

Proposition 5.2  The K-groups of the C*-algebra C*(N,) are given by

Ko(C*(Na))2 @ Tu and Ki(C*(Na))z €D T
n even n odd
0<n<d 0<n<d

Proof Since C*(N,) is the inductive limit of C*(Nflr)) = C(T?), it follows that
K.(C*(Ny)) is the inductive limit of K,(C*(N{”)) = K.(C(T%)). Identify
K.(C* (Ngr) )) with A*(Z*) via the map &4-r(,,) — e;. With this identification, the
inclusion map C* (NX)) - C*(N;(Hl)) induces the map ®<,<4A, at the K-theory
level. (Reason: If we write e; as a linear combination of {A™"e; } the matrix involved
isjust A.)
Thus we are left to show that the inductive limit of
(®A"Z, DA,
n n
is @, T,. Again, it is enough to show that the inductive limit of (A"Z4, A,,)%, is
isomorphic to T,,. Let H, = A"Z%. If v € T,,, write v as v = A;"w with w € A"(Z4).
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The map I, 3 v — w € H, is an isomorphism between T, and lim,_, ., (A" (Z%), A,).
This completes the proof. ]

Now let us calculate the automorphism 7 on C*(N,). Recall that 7 on the gener-
ating unitaries is given by 7(J,) = 84-1,. Thus, it is immediate that 7 induces the map
@, A,! on @, T, when one identifies K, (C*(N,4)) with @, T,, ( together with their
Z grading).

For r > 0, let j,: C*(Z%) — C*(N4) be the inclusion given by j,(8,) = Sa-ry.
Proposition 5.2 implies that the maps j, induce injective maps at the K-theory level.
Let 7: C*(Z%) - C*(Z") be the homomorphism given on the generators by 7(§, ) =
0 4y. Observe that for r > 0, j,1T = j,, and Tj, = jr41.

Theorem 5.3  The K-groups of the Cuntz-Li algebra U 5« fit into an exact sequence as
follows:

1-€Tx

K4(C*(Z%)) —> K4(C*(Z*)) ——— Ko(Ua)

i

Ki(Uat) <——— Kan(C*(Z%)) <—— Kan(C*(Z7)),

where € := sign(det(A)).

Proof Our main tool is Corollary 2.2 and the Morita equivalence between U 4 and
C*(N4) x (R" x Z). By Corollary 2.2, we have the six term sequence

l1-€e1y

Ka(C*(Na)) — Ka(C*(Na)) —— Ko(Unr)

5| |-

Ki(Ugr) =— K441(C*(Na)) el Ki:1(C*(Na)).

By Proposition 5.2, we know that K. (C*(N4)) = @ocncq [n as Z, graded abelian
groups. Also 1 - €7, = @gcpea(l — €A}'). But A, is an integer dilation matrix for
1 < n < d. Hence neither 1 nor -1 is an eigenvalue of A, for1 < n < d. Thus,
Ker(1-et,)is Zife = 1and 0 if e = —1. In any case, Ker(1-€7.,.) c jo. (K. (C*(Z%)).
Thus the image of both ¢ and & is contained in jo, (K. (C*(Z%)). Also, jo. is injective
and hence we can replace K. (C*(Ny4)) appearing at the corners of the two rows of
the six term sequence by jo. K, (C*(Z%)) = K. (C*(Z%)). The automorphism 7 maps
jo(C*(Z4)) into j,(C*(Z%)). Thus, K. (C*(N4)) appearing in the middle of the two
rows can be replaced by ji. K, ((C*(Z%)) = K. (C*(Z%)).

Now the commutation relation 7j, = j; and j,T = j, implies that we can replace
1 — €7, appearing in the exact sequence by 7. — el. We can multiply any morphism
appearing in the exact sequence by —e without changing the exactness of the sequence.
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Thus we obtain the following six term sequence

Ka(C*(Z)) ——T Ky(CH(24)) —— Ko(Uy)

! i

K (Uar) =<—— Kan(C*(Z%)) <~ Kan(C*(Z%)).

This completes the proof. ]

The above six term sequence can be used to obtain a formula for the K-theory of
Uyze. We illustrate for the case when det(A) > 0 and d is even. We leave the other
cases to the reader. Thus, assume det(A) > 0 and d is even. In this case, the exact
sequence of Theorem 5.3 reads as

1-@, A,
® A"(zd) —2 @ A"(Z9) ——— > Ko(Uye)
n even neven
0<n<d 0<n<d
Ky (Ugr) @ A"(Z%) - @ A"(Z%).
n odd 1-®nAn n odd
0<n<d 0<n<d

Now for n > 1, A, is a dilation matrix and thus ker(1- A, ) = 0 if n > 1. Hence we
conclude from the above six term sequence that
Ko(Uar)= @ coker(1-A,).

n even
0<n<d

Now Ay =1and hence @, even ker(1- A, ) = Z. Again the six term sequence gives
the following short exact sequence.

0— P coker(1-A4,) — Ki(Usg) —Z — 0.

n odd
0<n<d

Since Z is free, it follows that
Ki(Ua) = P coker(1-A4,) ®Z.

o
0<n<d

Remark 5.4 If d is odd, one obtains the same formula, but the roles of K, and K;
are interchanged. If det(A) < 0, we obtain a formula for K, (Uy:) in terms of the
cokernels of 1 + A,. Here the direct summand Z will not appear as Ker(1+ A,) = 0
for0<n<d.

The rest of this section is devoted to reconciling our computation of the K-groups
of Uy« with the result obtained in [8]. More precisely with [8, Theorem 4.9]. Let us
recall the notations as in [8].

For a subset K = {k; < ky < -+ < k,} of {1,2,...,d}, denote the complement
arranged in increasing order by K andletK = {kys1 < kysa < -+ < kg}. Denote
the permutation i — k; by 7x. For a permutation o, sign(¢) is 1 if o is even and -1 if
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sign(o) is odd. Also recall that if K and ] are subsets of size #, then Ak ; is the matrix
obtained from A by considering the rows from K and columns from J.

For 0 < n < d, let B, be the (Z) X (i) matrix defined as follows. (We index the
columns and rows by subsets of {1,2,...,d} of size n). The (K, L)-th entry of B, is
sign(7xty) det(Agr ;7).

The matrices B, as defined in [8, Prop. 4.6] are then given by B,, = sign(det(A))B,,.
Denote the matrix whose (K, L)-th entry is det(Ay- ;+) by C,.. By convention, By =
1 = C,. Note that B, and C, are conjugate over Z. For the matrix diag(sign(zx))
conjugates B, to C,.

Let U,: A"(Z%) - A9""(Z%) be defined by U, s := e;. Then U, is invertible and
U,C,U,' = A;_,. Since sign(det(A))C, is conjugate (over Z) to B, it follows that
sign(det(A))A,_, is conjugate (over Z) to B,,.

Now the formula for the K-groups of U4+ can be restated in terms of the matrices
B,,’s. For example, if d is even and det(A) > 0, we obtain

Ko(Ua) = € coker(1-B,),
osn<d

Ki(Ug) 2 €D coker(1-B,) ® Z.
gg%dsdd

For the exact formulas of the K-groups in terms of the matrices B, ’s, we refer the
reader to 8, Theorem 4.9].

Cuntz and Vershik have also computed the K-groups of U4« as a special case of
their considerations in [7]. In particular, a six term exact sequence similar to, but
different from, the one in Theorem 5.3 is obtained. We finish this paper with a few
remarks about their method for the case of U4:. Let us denote the matrix A’ by B in
what follows.

Let

s ) Zd .
M::{(vr)egﬁzvmzv, mod B Zd}.

Then M is a compact abelian group when given the subspace topology inherited from
[ Zd
r=0 Brzd-

injective homomorphism and we identify Z¢ with a subgroup of M. Moreover, Z? is
dense in M. The abelian group Z“ acts on M by translation. The semigroup N acts
on Z by 1.v = Bv for v € Z". This action extends to an action of N on M. Thus, one
obtains an injective action of the semigroup Z¢ » N on M. Then U 4 is isomorphic to
the semigroup crossed product B x N, where B := C(M) x Z". Denote the action of
Non B by 7.

the product topology on [] The map Z¢ 5 v — (v,v,v,...) € M is an

Remark 5.5 For the proof of the assertions made in the previous paragraph, the
readg is referred to [13, Corollary 6.6] and [7, Theorem 2.6]. The isomorphism U 4« =
(C(M) » Z4) x N forms the basis for the Cuntz-Li duality theorem.
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By Pimsner—Voiculescu sequence, one obtains the six term sequence

Ko(B) ——> Ko(B) —= Ko(B x N)

T i

Ki(B = N) < Ky(B) <—— Ki(B),

K. (B)isreplaced by K, (C*(Z%)) in [7, Theorem 3.1]. The idea involved is as follows.

The r-th projection M 3 (v;) — v, € Z4/B"Z? is onto and has kernel B'M ([13,
Lemma 6.1]). Thus, N2, B"M = {0} and M/B"M = Z¢/B"Z“. One has natural
inclusions C(M/B"M) c C(M/B™'M) c C(M). Since the intersection (N,—o B'M =
{0}, the union of C(M/B"M) is dense in C(M). Moreover, the inclusions are Z¢
invariant. Thus, B := C(M) x Z9 is the inductive limit of C(Z?/B"Z%) x Z.%.

By imprimitivity, C(Z?/B"Z%) x Z% = My (C*(B'Z%)) = My (C*(Z)),
where N(r) = |det(B)|". Thus, the K-theory of B can be computed from the K-
theory of C*(Z%). By examining the connecting maps

MN(r)(C*(Zd)) - MN(r+1)(C*(Zd))’

one can replace K, (B) by K. (C*(Z?)). This is proved precisely in [7, Theorem 3.1].
In our notation, the map 1- 7, becomes 1 - € ®, C, (see [7, example 3.12]), where € =
sign(det(A)) The main difference between our approach and the approach pursued
in [7] is the starting point. Cuntz and Vershik rely on the explicit description of U 4: as
a (semigroup) crossed product, where we appeal to the Morita equivalence provided
by the Cuntz-Li duality theorem. The advantage of Cuntz and Vershik’s method is that
it is direct and applies to other examples as well. The one advantage of our method is
that it explains conceptually why the sign of det(A) and the parity of d play a role in
the formula of the K-groups.
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