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Abstract

The author presents a proof that a partially ordered strongly regular ring S which has the additional
property that the square of each member of S is greater than or equal to zero cannot have nontrivial
positive derivations.
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1. Introduction

In recent years efforts have been made to study positive derivations on certain
classes of partially ordered rings, see Colville [1], and also on partially ordered
linear algebras, see Dai [2]. This note is concerned exclusively with the investiga-
tion of positive derivations on partially ordered strongly regular rings. It will be
shown that a p.o. ring ( 5 , + , - , < ) which is strongly regular and has the
additional property that x2 > 0 for each x e S cannot have nontrivial positive
derivations. Also, an example is included to complement the given theorem.

Recall that a ring (S, + , •) is strongly regular if for each x e S there exists a
y £ S such that x2y = x. Terminology and background material on p.o. rings
needed for this article may be found in Fuchs [3].
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DEFINITION. The statement that 8 is a positive derivation on a p.o. ring
(S, +, •, «S) means that 8 is a map from S into S such that (1) 8(x +y) = 8(x)
+ 8(y) for each x , y £ S, (2) 8(xy) = x8(y) + 8(x)y for each x,y ES, a n d (3)
8(x) > 0 for each x G 5, with x > 0.

2. Main results

Before proving the main theorem, we need the following lemma.

LEMMA. Suppose (S, +,-,<) is a partially ordered strongly regular ring such that
x2 > 0 for each x G S. If 8 is a positive derivation defined on S and x G S, with
x>0, then 8(x) = 0.

PROOF. Let x £ S with x > 0. Since the ring is strongly regular, there exists a
y £ S such that x2y — x. Using the fact that xyx = x, it follows that 8(x) =
8(xyx) = 8(xy)x + (xy)8(x). Thus, x8(x) = x8(xy)x + x8(x) and this implies
that x8(xy)x = 0. Hence [x8(xy)]2 = 0 and consequently x8(xy) = 0, since
(S, +,-,*£) contains no nonzero nilpotent elements. In a similar manner, 8(xy)x
— 0 and thus 6(x) = xy8(x). Recalling that it can be shown that y will commute
with x in a strongly regular ring, we have that 8(xy) — 8(yx) = y8(x) + 8(y)x
and this implies, with x8(xy) = 0, that 0 = xy8(x) + x8(y)x. Hence xy8(x) =
-JC8(j)x. Therefore 8(x) = -x8(y)x. From 0 <£ xy2, we have 0 < 8(xy2) =
8(xy)y + (xy)8(y). Multiplying on the left by x, gives 0 «£ x8(xy)y + x8(y) =
0 + x8(y) — x8(y). Next, multiplying on the right by x, we obtain 0 < x8{y)x
- -8(x). Hence 8(x) < 0. Thus 8(x) = 0, since it is also true that 8(x) > 0.

THEOREM. Suppose (S, +,•,<) is a partially ordered strongly regular ring such
that x2 > 0 for each xBS.IfS is a positive derivation defined on S, then 8(x) = 0
for each x £ S.

PROOF. Suppose x , e S such that 8(xl) =£ 0. Consider x2. From the preceding
lemma, 8(x2) = 0, since x2 > 0. Appealing again to strong regularity, there exists
a j , £ S such that x\yx = xx. Thus, 5(x,) = 8(x2)yx + xfSiy^ = x28(yi). Mul-
tiplying the preceding equation by >>, on the left and using the fact that yxx

2 = xx

is also true, we obtain yx8(xx) = xx8(y]). Consequently, S(x,) = x^x^C^j)] =
x,^,8(x,) = ^iXi8(x,). Hence x,8(x,) ^ 0 since ^(x,) J= 0. Thus [x,S(x,))2 ¥= 0,
since the ring contains no nonzero nilpotent elements. Next, 0 = 8(x2) = x15(x1)
+ ^(x^X! imphes that x,fi(X]) = -6(x,)x,. Multiplying the preceding equation
on the left by x, and on the right by 8(xx), gives 0 < x2[8(xx)]

2 = -[x^Cx,)]2.
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Hence, by the hypothesis on the ring, [x,5(X|)]2 = 0 and this contradicts the
earlier observation that [x,S(x,)]2 ^ 0. Therefore 8(x{) = 0. Consequently 8(x)
= 0 for each x £ S.

3. An example

We conclude this note with an example of a partially ordered strongly regular
ring (S, + , • , < ) such that (1) the positive cone P =£ {0}, (2) contains at least one
element x £ S such that x2 ^ 0, and (3) has associated with it a positive
derivation 8 such that 8(x) z 0.

Consider the following construction. Let (S, +, •) denote the ring of all formal
truncated Laurent series 2°Ln a,x', where a, is a real number and n is an arbitrary
integer, with ordinary addition and multiplication of series as the two operations
defined on S. Let the positive cone P, for the partial ordering on S, consist of all
series of the form 2°i0 atx' with a, ^ 0 for 0 < / < oo. Note that the sum and
product of two members of P is again a member of P and P ^ {0}. This ring is a
field and thus (S, + , - , < ) is a partially ordered strongly regular ring. Now define
a mapping 8 from S into S by 8[2^n atx'] - l^=n /a,x'"'. It is easily seen that 8
is a positive derivation and is obviously nontrivial. Last, we observe that the series
g(x) - 1 - x has the property that [g(x)]2 £ 0.
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