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Abstract

A more general definition of MTP2 (multivariate total positivity of order 2) probability
measure is given, without assuming the existence of a density. Under this definition
the class of MTP2 measures is proved to be closed under weak convergence. Charac-
terizations of the MTP2 property are proved under this more general definition. Then
a precise definition of conditionally increasing measure is provided, and closure under
weak convergence of the class of conditionally increasing measures is proved. As an
application we investigate MTP2 properties of stationary distributions of Markov chains,
which are of interest in actuarial science.
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1. Introduction

Starting with the work of Kimeldorf and Sampson (1987), (1989), several concepts and
orderings of positive dependence have been studied axiomatically. One of the axioms that is
usually considered is closure under weak convergence. Many positive dependence concepts
and orders are known to satisfy this axiom. For instance, this is the case for positive quadrant
dependence, association, supermodular dependence, RCSI (right corner set increasing), LCSI
(left corner set increasing), RTIS (right tail increasing in sequence), and LTDS (left tail
increasing in sequence); see Colangelo et al. (2005), Kimeldorf and Sampson (1989), and
the references therein.

The purpose of this paper is to study the behavior of some strong positive dependence
concepts, such as MTP2 (multivariate total positivity of order 2), CIS (conditionally increasing in
sequence), and CI (conditionally increasing). These concepts are not directly checkable unless
the measure is concentrated on a finite number of atoms, because otherwise it would be necessary
to verify an infinite number of inequalities. Therefore, closure under weak convergence is an
important property, as it might help in the verification of MTP2 or CI by allowing one to find
an approximating sequence of discrete measures with finitely many atoms.
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Positive dependence and weak convergence 49

In order to study the weak convergence property in some generality, we cannot use the
usual definition of MTP2, which requires the existence of a density with respect to some
product measure. For instance, the measure associated to the upper Fréchet bound, which is
the most positive dependent multivariate distribution (in any possible sense), does not have a
density with respect to a product measure if the marginals are continuous. However, it is easy
to find a sequence of measures that have MTP2 densities and converge weakly to the upper
Fréchet bound; for instance, a sequence of MTP2 normal distributions with fixed marginals and
correlation coefficients converging to 1.

Thus motivated, in this paper we provide a more general definition of MTP2 and show that it
coincides with the usual one when a density exists with respect to a product measure. We then
show that, even in this more general setting, MTP2 is equivalent to affiliation (see Milgrom and
Weber (1982)). For a general treatment of MTP2 and related concepts, the reader is referred to
Karlin and Rinott (1980), Milgrom and Weber (1982), Joe (1997), and Colangelo et al. (2005).

When dealing with CIS and CI, a new definition, which does not make use of conditional
distributions, will be used. This definition is more formally sound than the usual one, and is
proved to be equivalent to a definition that is, in turn, more suitable for dealing with weak
convergence.

For properties of CIS and CI, see, e.g. Tukey (1958), Lehmann (1966), Barlow and Proschan
(1975),Alam and Wallenius (1976), Joe (1997), and Müller and Scarsini (2001). In the literature
one can also find results stated under the assumption of MTP2 when in fact only CI is required
in the proofs. As an example we mention the proof of the Simes conjecture in Sarkar (1998).

The paper is organized as follows. In Section 2 we state axioms of positive dependence
notions for multivariate distributions. In Sections 3 and 4 we show that MTP2 and CI fulfill
all these axioms if they are properly defined. In particular, we show that they are closed with
respect to weak convergence. In Section 5 these results are applied to a problem that is relevant
in actuarial science, and the stationary distribution of a Markov chain is proved to be MTP2
under appropriate conditions.

2. Axioms of positive dependence notions

Kimeldorf and Sampson (1989) introduced a list of desirable properties for a bivariate
notion of positive dependence to have. The following generalization of these axioms to higher
dimensions has been described by Pellerey and Semeraro (2003) and Colangelo et al. (2005).

In the following, we write X = (X1, . . . , Xd) ∼ µ if the d-variate random vector X has
distribution µ. For any k-tuple I = (i1, . . . , ik) ⊂ {1, . . . , d} we denote by µI the distribution
of XI = (Xi1 , . . . , Xik ). Let �d be the set of all d-variate distributions, and let ‘

w−→’ denote
weak convergence of measures. Throughout the paper the terms ‘increasing’ and ‘decreasing’
are used in the weak sense.

It is evident that a notion of positive dependence is uniquely determined by a subset P +
d ⊂

�d . One of the weakest reasonable concepts of positive dependence is positive quadrant de-
pendence, introduced by Lehmann (1966). The distribution µ of a bivariate random vector X is
said to be positive quadrant dependent if P(X1 ≤ x1, X2 ≤ x2) ≥ P(X1 ≤ x1) P(X2 ≤ x2)

for any x1, x2 ∈ R. We denote by P +
2,PQD the set of all bivariate distributions that are positive

quadrant dependent. By F +
d ⊂ �d we denote the subclass of all upper Fréchet bounds, i.e. the

set of distributions of random vectors satisfying

P(X1 ≤ x1, . . . , Xd ≤ xd) = min
i=1,...,d

P(Xi ≤ xi) for all x1, . . . , xd, (1)

and by Jd the set of all distributions with independent marginals.
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50 A. COLANGELO ET AL.

What follows is a list of desirable properties that any multivariate positive dependence
notion corresponding to the set P +

d ⊂ �d should have. It is borrowed from Colangelo
et al. (2005).

B1. If µ ∈ P +
d then µ(i,j) ∈ P +

2,PQD for all i, j ∈ {1, . . . , d} with i < j .

B2. F +
d ⊆ P +

d .

B3. Jd ⊆ P +
d .

B4. If (X1, . . . , Xd) ∼ µ ∈ P +
d then (φ1(X1), . . . , φd(Xd)) ∼ ν ∈ P +

d for all increasing
functions φ1, . . . , φd : R → R.

B5. If (X1, . . . , Xd) ∼ µ ∈ P +
d then (Xi1 , . . . , Xid ) ∼ ν ∈ P +

d for all permutations
(i1, . . . , id) of (1, . . . , d).

B6. If {µn, n ≥ 1} ⊆ P +
d is such that µn

w−→ µ, then µ ∈ P +
d .

B7. If (X1, . . . , Xd) ∼ µ ∈ P +
d then XI ∼ ν ∈ P +

card(I ) for all I ⊆ {1, . . . , d}.
Many known concepts of dependence, like PUOD (positive upper orthant dependence),

PLOD (positive lower orthant dependence), positive supermodular dependence, and positive
association, have the properties B1–B7 (see Colangelo et al. (2005) for details and references).
In the next sections we will show that this also holds for MTP2 and CI if they are properly
defined.

3. MTP2 measures

The usual definition of MTP2 probability measure on a product space assumes the existence
of a density with respect to a product measure; see, e.g. Karlin and Rinott (1980), Milgrom and
Weber (1982), and Müller and Stoyan (2002). However, when studying positive dependence
it is fundamental to consider situations in which a probability measure is not dominated by
a product measure. This holds especially for the important special case of the upper Fréchet
bound. We will therefore give a general definition of MTP2 measure that does not require the
existence of a density, and will prove some characterization results in this greater generality.
For the bivariate case, some of the ideas used below can be traced back to Block et al. (1982).

Let us first recall the concept of MTP2 as considered in the seminal paper of Karlin and
Rinott (1980). A partially ordered set (L, ≤) is called a lattice if for every x, y ∈ L we have
x ∨ y, x ∧ y ∈ L, where x ∨ y is the unique smallest element of the set {z : x ≤ z, y ≤ z} and
x ∧ y is the unique largest element of the set {z : z ≤ x, z ≤ y}. For subsets A, B ⊂ L we
write

A ∨ B = {z : z = x ∨ y, x ∈ A, y ∈ B},
A ∧ B = {z : z = x ∧ y, x ∈ A, y ∈ B}.

Definition 1. Let L be a lattice. A nonnegative function g : L → R is MTP2 if

g(x)g(y) ≤ g(x ∨ y)g(x ∧ y)

for all x, y ∈ L.

A probability measure µ on (Rd , Bor(Rd)) is usually called MTP2 if it has an MTP2 density
with respect to a dominating product measure. Notice that the assumption of the dominating
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measure being a product measure is crucial, as for every probability measure one can find
a dominating measure such that the corresponding density is MTP2, since the density of a
probability measure with respect to itself is identically 1 and, therefore, MTP2. On the other
hand, it is easy to see that if there is an MTP2 density with respect to some dominating product
measure, then there is also an MTP2 density with respect to any other dominating product
measure. Therefore, the dominating product measure can without loss of generality be chosen
as, for instance, the product of the marginals.

The upper Fréchet bound, however, does not have a density with respect to any product
measure if the marginals are continuous. As any reasonable concept of dependence should
include the upper Fréchet bound, there is an interest in finding a density-free definition of
MTP2 that satisfies properties B2 and B6. The following definition serves this purpose.

Definition 2. A probability measure µ on (Rd , Bor(Rd)) is MTP2 if

µ(A)µ(B) ≤ µ(A ∨ B)µ(A ∧ B) (2)

for all A, B ∈ Bor(Rd).

Whenever µ admits a density f with respect to some product measure, Theorem 3.10.14
of Müller and Stoyan (2002) implies that the probability measure µ is MTP2 according to
Definition 2 if and only if its density f is MTP2 according to Definition 1. We should point out
that Definition 2 is not directly checkable unless the measure µ is concentrated on a finite number
of atoms, because otherwise it would be necessary to verify an inequality over a continuum of
sets A and B. Theorem 1, below, shows that the MTP2 property of µ can be established by
finding a sequence of MTP2 measures converging weakly to µ.

Milgrom and Weber (1982) introduced the strongly related concept of affiliation, which also
does not rely on the existence of densities. To define it we must recall the notion of an upper
set. A set U ⊂ R

d is called upper if x ∈ U and y ≥ x imply that y ∈ U . We call Ud the class
of upper sets in Bor(Rd).

Definition 3. A probability measure µ on (Rd , Bor(Rd)) is affiliated if

µ(A ∩ B | L) ≥ µ(A | L)µ(B | L)

for all sets A, B ∈ Ud and for all sublattices L ∈ Bor(Rd) such that µ(L) > 0, where, for any
such set L, the conditional measure µ(· | L) is defined as

µ(A | L) := µ(A ∩ L)

µ(L)
, A ∈ Bor(Rd).

In order to state the following theorem we need some preliminary definitions. Given two
sets C, D ⊂ R

d , we say that C < D if, for all c ∈ C and d ∈ D, we have c < d (i.e. ci < di for
i = 1, . . . , d). The sets C and D are comparable if either C < D or D < C. For i = 1, . . . , d,
let Ai and Bi be intervals in R. The intervals A = ×d

i=1 Ai and B = ×d
i=1 Bi in R

d are
called strongly disjoint if Ai and Bi are disjoint for all i ∈ {1, . . . , d}. We call Id the class of
(possibly unbounded) intervals in R

d of type

A =
d×

i=1

(ai, ci].

Notice that Id is a product lattice.
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The following theorem provides the required characterizations of the MTP2 property.

Theorem 1. Let µ be a probability measure on (Rd , Bor(Rd)). The following characteriza-
tions of µ are equivalent:

(a) µ is MTP2;

(b) µ satisfies (2) for all strongly disjoint noncomparable (possibly unbounded) intervals
A, B ∈ Id ;

(c) µ satisfies (2) for all strongly disjoint noncomparable closed intervals A and B;

(d) µ is affiliated;

(e) there exists a sequence of probability measures µn such that µn
w−→ µ and, for each

n ∈ N, the measure µn has an MTP2 density with respect to a product measure.

Proof. (b) ⇒ (a): Let A be the smallest algebra containing Id and let A, B ∈ A. Then

A =
nA⋃
k=1

d×
i=1

(a
(k)
i , c

(k)
i ], B =

nB⋃
k=1

d×
i=1

(b
(k)
i , d

(k)
i ]

for some nA, nB ∈ N. For i ∈ {1, . . . , d}, let

Ci = {a(kA)
i , c

(kA)
i , b

(kB)
i , d

(kB)
i : 1 ≤ kA ≤ nA, 1 ≤ kB ≤ nB}

=: {α(j)
i : α

(1)
i ≤ α

(2)
i ≤ · · · ≤ α

(mi)
i }.

Clearly mi ≤ 2nA + 2nB . If we let R
j
i := (α

(j)
i , α

(j+1)
i ] then we can write

A =
⊔
j∈Ã

d×
i=1

R
ji

i =:
⊔
j∈Ã

Rj , B =
⊔
j∈B̃

d×
i=1

R
ji

i =:
⊔
j∈B̃

Rj ,

where Ã = {j : Rj ⊂ A}, B̃ = {j : Rj ⊂ B}, and ‘
⊔

’ indicates disjoint union.
On the space �′ = ×d

i=1{1, 2, . . . , mi − 1}, define the discrete probability measure Q as
having the density

fQ(j1, j2, . . . , jn) = 1

β
µ(Rj ),

where
β =

∑
j∈�′

µ(Rj ).

It is not difficult to see that fQ is an MTP2 function; in fact,

fQ(i ∧ j)fQ(i ∨ j) = 1

β2 µ(Ri∧j )µ(Ri∨j )

= 1

β2 µ(Ri ∧ Rj )µ(Ri ∨ Rj )

≥ 1

β2 µ(Ri)µ(Rj )

= fQ(i)fQ(j).
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By Karlin and Rinott (1980, Corollary 2.1), it follows that

Q(Ã)Q(B̃) ≤ Q(Ã ∨ B̃)Q(Ã ∧ B̃).

Therefore,

µ(A)µ(B) = β2Q(Ã)Q(B̃) ≤ β2Q(Ã ∨ B̃)Q(Ã ∧ B̃) = µ(A ∨ B)µ(A ∧ B).

Let
G1 = {A ∈ Bor(Rd) : µ(A)µ(B) ≤ µ(A ∨ B)µ(A ∧ B), B ∈ A}.

Since A ⊂ G1 and G1 is a monotone class, by the monotone class lemma (Shiryaev (1996,
Theorem 1, p. 141)) we have G1 = Bor(Rd).

Now define

G2 = {B ∈ Bor(Rd) : µ(A)µ(B) ≤ µ(A ∨ B)µ(A ∧ B), A ∈ G1}.
The same argument proves that G2 = Bor(Rd).

(a) ⇒ (c): This implication is trivial.
(c) ⇒ (b): Any interval in Id can be obtained as the limit of an increasing sequence of closed

intervals. Intervals in the different sequences are disjoint and noncomparable.
We have thus proved the equivalence of (a), (b), and (c). This equivalence will be used in

the proof of Theorem 2, below.
(a) ⇒ (d): This implication has been shown in Müller and Stoyan (2002, Theorem 3.10.14).
(d) ⇒ (b): Let A and B be strongly disjoint noncomparable intervals with positive

µ-measure. Given a set C, denote by C′ the smallest upper superset of C.
The set L defined as

L = A ∪ B ∪ (A ∨ B) ∪ (A ∧ B)

is a lattice. Observe that
A′ ∩ L = A ∪ (A ∨ B),

B ′ ∩ L = B ∪ (A ∨ B),

A′ ∩ B ′ ∩ L = A ∨ B.

Since µ is affiliated, we have

µ(A′ ∩ B ′ ∩ L)µ(L) ≥ µ(A′ ∩ L)µ(B ′ ∩ L),

which is equivalent to

µ(A ∨ B)µ(L) ≥ µ(A ∪ (A ∨ B))µ(B ∪ (A ∨ B)), (3)

which in turn is equivalent to

µ(A ∧ B)µ(A ∨ B) ≥ µ(A)µ(B). (4)

To see this, notice that the sets A, B, A∨B, and A∧B are disjoint, and, using the abbreviations

a = µ(A), b = µ(B), c = µ(A ∨ B), d = µ(A ∧ B),

that (3) can be rewritten as c(a + b + c + d) ≥ (a + c)(b + d), which is equivalent to cd ≥ ab.
This, however, is just (4).
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Hence, we have proved the equivalence of (a)–(d).
(e) ⇒ (c): This implication follows from Theorem 2, below.
(c) ⇒ (e): For a fixed n ∈ N, consider the lattice

Ln =
{(

k1

2n
, . . . ,

kd

2n

)
, (k1, . . . , kd) ∈ Z

d

}
,

which in fact is a product lattice. Partition R
d into intervals of type

d×
i=1

[
ki

2n
,
ki + 1

2n

)
, (k1, . . . , kd) ∈ Z

d .

The left-hand endpoint of each of these intervals is in the lattice Ln. Consider a sequence of
probability measures µn that discretize µ by concentrating the µ-mass of each of the above
intervals on its left-hand endpoint. It is clear that every µn has an MTP2 density (with respect
to the counting measure on the lattice Ln, which obviously is a product measure), and that

µn
w−→ µ.

This completes the proof.

Theorem 2. If {µn}n∈N is a sequence of MTP2 probability measures, and if µn
w−→ µ, then µ

is MTP2.

Proof. By the equivalence between parts (a) and (c) of Theorem 1, we know that µ is MTP2
if and only if (2) holds for all closed, strongly disjoint noncomparable intervals A and B.

There exist two decreasing sequences of strongly disjoint noncomparable open intervals,
{Am} and {Bm}, such that Am ↘ A and Bm ↘ B. Hence, (Am ∧ Bm) ↘ (A ∧ B) and
(Am ∨ Bm) ↘ (A ∨ B). It is always possible to choose such sequences in such a way that the
µ-mass of the boundaries of all the involved sets is 0.

Since, for every n ∈ N, µn is MTP2, for every m ∈ N we have

µn(Am)µn(Bm) ≤ µn(Am ∨ Bm)µn(Am ∧ Bm).

Since, for every m, the sets Am, Bm, (Am ∨ Bm), and (Am ∧ Bm) are µ-continuity sets, by the
portmanteau theorem (see Billingsley (1999, Theorem 2.1, p. 16)) we have, for every m,

µ(Am)µ(Bm) ≤ µ(Am ∨ Bm)µ(Am ∧ Bm).

By letting m → ∞ we obtain the result.

The idea of the proof of Theorem 2 has been used before to show the closure under weak
convergence of related stochastic orderings (see Lemma 4.6 of Kimeldorf and Sampson (1987)
and Theorem 5.8 of Müller (1997)).

Part (e) of Theorem 1 and Theorem 2 together imply that the set P +
d,MTP2

of all probability
measures fulfilling the MTP2 definition (2) is just the weak closure of the set of probability
measures having an MTP2 density. As a consequence we have the following result.

Theorem 3. The set P +
d,MTP2

has the properties B1–B7.

Proof. For property B6, the proof follows from Theorem 2. For B2, see Theorem 3.10.15
of Müller and Stoyan (2002). The remaining properties are easy to verify.
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4. Conditionally increasing measures

In this section we provide a precise definition of, and characterize, conditionally increas-
ing measures. As a by-product we obtain closure under weak convergence of the class of
conditionally increasing measures.

Usually, a random vector (X1, . . . , Xd) is said to be conditionally increasing in sequence
(CIS) if

P(Xk > t | X1 = x1, . . . , Xk−1 = xk−1) (5)

is an increasing function of x1, . . . , xk−1 for all k = 2, . . . , d, and is said to be conditionally
increasing (CI) if any permutation of the components is CIS.

In order to state a more general definition, not relying on conditional distributions, we
require the concept of a cylinder. Given a set A ∈ Bor(Rk), with k < d, we call Â the cylinder
A × R

d−k .

Definition 4. A probability measure µ on (Rd , Bor(Rd)) is conditionally increasing in
sequence (CIS) if, for all k ∈ {1, . . . , d − 1}, for all A, B ∈ Bor(Rk) such that A < B,
and for all sets U ∈ Ud , we have

µ(U ∩ Â)µ(B̂) ≤ µ(U ∩ B̂)µ(Â). (6)

The measure µ is conditionally increasing (CI) if µπ−1 is CIS for every permutation
function π .

As for Definition 2, we should point out a problem of checkability of Definition 4. Theorem 5,
below, shows how to establish the CIS property of a measure µ via a sequence of measures that
converges weakly to µ and is such that each member of the sequence has the CIS property.

Notice that, for the sets in (6), we have

(U ∩ Â) ∨ B̂ ⊆ U ∩ B̂,

(U ∩ Â) ∧ B̂ ⊆ Â;
therefore, an MTP2 measure is always CI.

The following definitions will be needed for the characterization result. Given a set A ∈
Bor(Rd) and an s ∈ R

k , we define the section of A as

As = {x ∈ R
d−k : (s, x) ∈ A}. (7)

Given a probability measure µ on (Rd , Bor(Rd)), we define µ(k), its marginal distribution
on the first k components, by

µ(k)(A) = µ(A × R
d−k).

Definition 5. A stochastic kernel on R
k × R

m is a function K : R
k × Bor(Rm) → [0, 1] such

that, for all A ∈ Bor(Rm), the function K(·, A) is Bor(Rk)-measurable and, for all x ∈ R
k ,

the function K(x, ·) is a probability measure on Bor(Rm). We define the measure µ(k) ∗ K on
(Rk+m, Bor(Rk+m)) by

µ(k) ∗ K(A × B) =
∫

A

K(t, B)µ(k)(dt).

A kernel K is said to be stochastically increasing if

K(s, U) ≤ K(t, U)

for all U ∈ Um and for all s, t ∈ R
k such that s ≤ t .
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Notice that if K is a stochastically increasing kernel, D1, D2 ∈ Um are such that D1 ⊆ D2,
and s, t ∈ R

k are such that s ≤ t , then

K(s, D1) ≤ K(s, D2) ≤ K(t, D2). (8)

Theorem 4. Let µ be a probability measure on (Rd , Bor(Rd)). The following characteriza-
tions of µ are equivalent:

(a) µ is CIS;

(b) for every k ∈ {1, . . . , d − 1}, there exists a stochastically increasing kernel Kk,1 on
R

k × R such that µ(k+1) = µ(k) ∗ Kk,1;

(c) for all k ∈ {1, . . . , d − 1}, for all intervals A, B ∈ Ik such that A < B, and for all sets
V ∈ U1, we have

µ(k+1)(A × V )µ(k)(B) ≤ µ(k+1)(B × V )µ(k)(A).

Proof. (a) ⇒ (c): Let U = R
k × V × R

d−k−1 in (6). Then (a) clearly implies (c).
(c) ⇒ (b): From (c) it follows that, for every k ∈ {1, . . . , d − 1}, there exists a kernel Kk,1

such that, for all A, B ∈ Bor(Rk) with A < B and for all sets V ∈ U1, we have∫
A

Kk,1(s, V )µ(k)(ds)

∫
B

µ(k)(dt) ≤
∫

B

Kk,1(t, V )µ(k)(dt)

∫
A

µ(k)(ds).

By Tonelli’s theorem, this is equivalent to∫
A×B

Kk,1(s, V )µ(k) ⊗ µ(k)(ds × dt) ≤
∫

A×B

Kk,1(t, V )µ(k) ⊗ µ(k)(ds × dt). (9)

Consider the set X := {(s, t) : s < t, s, t ∈ R
k}. Denote by C the class of sets A × B ∈

Bor(R2k) such that A, B ∈ Ik and A < B. The class C is a semi-ring of subsets of X, and
generates its Borel σ -field. Furthermore, X is a countable union of sets in C. By Billingsley
(1995, Corollary 2, p. 169), (9) holds for all Borel sets in X. Billingsley (1995, Theorem 16.10,
p. 213) implies that, for all s < t ,

Kk,1(s, V ) ≤ Kk,1(t, V ) µ(k)-almost surely.

(b) ⇒ (a): For sets U ∈ Ud and A, B ∈ Bor(Rk), such that A < B, the following holds,
where Us is the section of U , as defined in (7):

µ(U ∩ Â)µ(B̂) =
∫

A

Kk,1 ∗ Kk+1,1 ∗ · · · ∗ Kd−1,1(s, Us)µ
(k)(ds)

∫
B

µ(k)(dt)

=
∫

A×B

Kk,1 ∗ Kk+1,1 ∗ · · · ∗ Kd−1,1(s, Us)µ
(k) ⊗ µ(k)(ds × dt)

≤
∫

A×B

Kk,1 ∗ Kk+1,1 ∗ · · · ∗ Kd−1,1(t, Ut )µ
(k) ⊗ µ(k)(ds × dt)

=
∫

B

Kk,1 ∗ Kk+1,1 ∗ · · · ∗ Kd−1,1(t, Ut )µ
(k)(dt)

∫
A

µ(k)(ds)

= µ(U ∩ B̂)µ(Â).

The inequality follows from Kamae et al. (1977, Proposition 1) and from (8).
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Notice that the equivalence of parts (a) and (b) of Theorem 4 shows that our definition of
CIS, given in (6), is equivalent to the traditional one, mentioned in (5).

We are now ready to state a convergence theorem for sequences of CIS probability measures.

Theorem 5. If {µn}n∈N is a sequence of CIS probability measures, and if µn
w−→ µ, then µ

is CIS.

Proof. First we notice that in part (c) of Theorem 4 we can replace the intervals A, B ∈ Id

and sets V ∈ U1 with closed intervals. There exist three decreasing sequences of open intervals,
{Am} and {Bm} in R

k and {Vm} in R, such that, for all m, Am < Bm and Am ↘ A, Bm ↘ B,
and Vm ↘ V . Hence, Am × Vm ↘ A × V and Bm × Vm ↘ B × V .

For all m we can choose the sets Am, Bm, and Vm in such a way that the probability mass of
their boundaries is 0. Since µn is CIS for every n ∈ N, for every m ∈ N we have

µ(k+1)
n (Am × Vm)µ(k)

n (Bm) ≤ µ(k+1)
n (Bm × Vm)µ(k)

n (Am).

Since Am × Vm and Bm × Vm are µ(k+1)-continuity sets, the portmanteau theorem (see
Billingsley (1999)) implies that

µ(k+1)(Am × Vm)µ(k)(Bm) ≤ µ(k+1)(Bm × Vm)µ(k)(Am).

By letting m → ∞ we obtain the result.

Corollary 1. If {µn}n∈N is a sequence of CI probability measures, and if µn
w−→ µ, then µ

is CI.

Proof. It is enough to recall that any permutation function is continuous, and to apply
Theorem 5.

In order to verify that CI has property B2, note that the support of any measure µ that
satisfies (1) is a chain (a linearly ordered subset of R

d ). Therefore, for all sets U ∈ Ud and
A, B ∈ Bor(Rk), such that A < B, if µ(U ∩ Â) > 0 then µ(B̂) = µ(U ∩ B̂). Thus, for such
measures µ, (6) holds.

As it is easy to check that the other properties, B1 and B3–B7, obtain, we thus have the
following result.

Theorem 6. The set P +
d,CI of all CI probability measures has the properties B1–B7.

5. An application to Markov chains

Assume that the sequence X1, X2, . . . is a homogenous Markov chain, with state space
R

d , characterized by its initial distribution π0(A) = P(X0 ∈ A) and its transition probability
measure Q(x, dy), given by Q(x, A) = P(Xn+1 ∈ A | Xn = x). We further assume that
there is a product measure µ on R

d such that π0 and Q(x, ·), x ∈ R
d , have densities f0 and

q(x, ·), x ∈ R
d , with respect to µ. The following result then holds.

Theorem 7. If f0 : R
d → [0, ∞) and q : R

2d → [0, ∞) are MTP2 functions, then

(a) the joint distribution of X1, X2, . . . ,Xn is MTP2 for any n;

(b) the marginal distribution πn of Xn is MTP2;

(c) if, moreover, πn converges to a stationary distribution π , then π is MTP2.
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Proof. Parts (a) and (b) follow from basic properties of MTP2 functions; see Proposi-
tions 3.2–3.4 of Karlin and Rinott (1980). Part (c) then is a direct consequence of Theorem 2.

The MTP2 properties concerning the finite-time behavior of Markov chains as described
in part (a) of Theorem 7 are well known, especially in the case of finite state space; see,
e.g. Kijima (1997). The proof of the MTP2 property of a stationary distribution, however, is
new, and requires our generalized definition of MTP2, which does not require the existence of
a density with respect to a product measure.

In fact, this application of the weak convergence property of MTP2 inspired us to consider
the topic. This question was posed to us by Michel Denuit (personal communication), who
was interested in an actuarial application to bonus–malus systems. We give a short description
of the context. In the automobile insurance business one uses experience rating to find a fair
premium for each individual policy holder. This is done using a so-called bonus–malus system.
If a policy holder has no claims in the previous year he goes down in the bonus–malus scale,
and if he has one or more accidents he goes up in it, i.e. the level Lt+1 in year t +1 is a function
of the level Lt in year t and of the number of claims Nt in year t . It is usually assumed that
the numbers, N1, N2, . . . , of claims are independent, identically distributed random variables
having a Poisson distribution with parameter θ , which a priori is unknown. The insurance
company only knows the distribution of the random variable 
 from which the parameter θ is
drawn. It is easy to see that the bivariate process (
, Lt ), t ∈ N0, is a homogenous Markov
chain. It is natural to assume that 
 and L0 are independent (typically L0 will be constant) and,
thus, MTP2. It follows from Theorem 7 that the stationary distribution of the bivariate Markov
chain is MTP2 if the transition density has this property. As 
 is constant, the assumption of
an MTP2 transition density reduces to the assumption that the function

(θ, i, j) �→ P(Lt+1 = j | Lt = i, 
 = θ) is MTP2. (10)

Notice that in the simplest case, with Lt+1 = Nt , this assumption holds because (
, Nt ) is
MTP2. It also holds if Lt is a moving average of the sequence (Nt ), i.e. if Lt+1 = αLt +
(1 − α)Nt for some α, 0 < α < 1. In this case, Proposition 3.7 of Karlin and Rinott (1980) is
applicable.

If (10) holds, and if (
, L) is a pair of random variables having the stationary distribution of
the corresponding Markov chain, then E[
 | L = �] is an increasing function of �. This follows
from the fact that the MTP2 property implies the CI property. This means that the so-called
Bayesian relativities are an increasing function of the level of the bonus–malus system. This
is a desirable property of the system (see Borgan et al. (1981) and Norberg (1976) for more
details on this topic).
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