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Abstract

This note completes the proof of the structure theorem for pp-matroid groups which was stated in our
earlier paper J. Krempa and A. Stocka [‘On sets of pp-generators of finite groups’, Bull. Aust. Math. Soc.
91 (2015), 241–249].
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In [3, Theorem 4.5] we gave a description of pp-matroid groups. However, the
proof was given only in the Frattini-free case. Thus, in [3], we proved in fact only the
result below.

Theorem 1. Let H be a Frattini-free group. Then H is a pp-matroid group if and only
if one of the following holds:

(1) H is an elementary abelian p-group for some prime p;
(2) H = P o Q is a scalar extension for primes p , q, where q|(p − 1) and Q is cyclic

of order q;
(3) H is a direct product of groups given in (1) and (2) with coprime orders.

Now we can prove a structure theorem for all pp-matroid groups and the full version
of [3, Theorem 4.5].

Theorem 2. Let G be a group. Then G is a pp-matroid group if and only if one of the
following holds:

(1) G is a p-group for some prime p;
(2) G is an indecomposable pp-matroid {p, q}-group;
(3) G is a direct product of groups given in (1) and (2) with coprime orders.

Proof. Let G be a pp-matroid group. We know, by Theorem 1, that G is solvable.
Hence, by [2, Theorem VI.2.3], there exist Sylow pi-subgroups Pi, for i = 1, . . . , n,
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such that G = P1 · · · Pn, and every product PiP j is a subgroup of G. We shall use the
bar notation for subgroups of the quotient Ḡ = G/Φ(G). Then Ḡ = P̄1 · P̄2 · · · P̄n and,
by [2, Theorem III.3.8], P̄i is nontrivial for i = 1, . . . , n. If P̄i is a normal subgroup of
Ḡ for some i = 1, . . . , n, then G = NG(Pi), by a Frattini argument. Hence, Pi CG.

If, for example, P̄1 is not normal in Ḡ, then, with the help of Theorem 1, we
can assume that P̄2 and P̄1P̄2 = P̄2 o P̄1 are normal in Ḡ. Since P̄1P̄2 C Ḡ, we
have P1P2Φ(G) CG. From P̄2 C Ḡ, we also know that P2 CG, so P̄1P̄2 = P̄2 o P̄1.
Moreover, again by a Frattini argument, G = NG(P1)P2. From this, by straightforward
calculation, we obtain P1P2 C G. Thus, G = H1 × H2 × · · · × Hm, for some m ≤ n,
where Hi are either p-groups or indecomposable {p, q}-groups. Thus, H j satisfy either
condition (1) or (2) of the theorem. The proof can be finished as in [3]. �

From the above theorem and [1] it follows that G is a matroid group if and only if
G is an indecomposable pp-matroid group. Corollary 5.2 from [1] is a description of
such groups, in particular of indecomposable {p, q}-groups, which are pp-matroid.

Proposition 3. Let G be a Frattini-free pp-matroid group. Then:

(1) every proper subgroup of G and any homomorphic image of G are also pp-
matroid, Frattini-free groups;

(2) if H < G is a subgroup and a ∈ G \ H is a pp-element, then H is of prime index
in 〈H, a〉;

(3) let g1, . . . , gn be any sequence of pp-elements in G. Then 〈g1〉 , 〈g1, g2〉 , · · · ,
〈g1, g2, . . . , gn〉 = G if and only if {g1, g2, . . . , gn} is a pp-base of G.

Proof. (1) According to Theorem 1, let G = G1 × · · · ×Gn be a direct product with
factors of coprime orders, where every Gi is either a p-group or a scalar extension
satisfying the conditions in (2) of Theorem 1. If H ⊆ G is a subgroup, then, as is well
known, H = (H ∩G1) × · · · × (H ∩Gn). From this observation, claim (1) follows.

(2) It is visible from our assumption that if X ⊆ G is a subset of pp-elements, then
X ⊆
⋃n

i=1(X ∩ Gi). Thus, we can assume that G is an indecomposable pp-matroid
group.

Assume first that G = P o Q is a pp-matroid {p, q}-group. Then every element of
G is of order either p or q. Moreover, every element of order p generates a normal
subgroup in G.

Let H ⊆ G be a subgroup and a ∈ G \ H. If either H or 〈a〉 is a p-group, then it is
normal and the claim about H ≤ 〈H, a〉 is clear. If x ∈ H and a ∈ G are of order q, then
a = xiy for some y ∈ P and i ≥ 1. In this case we have 〈H, a〉 = 〈H, y〉 and we are back
in the previous case.

If we assume that G is a p-group for a prime p, then G is elementary abelian and
thus the claim (2) is evident.

(3) This claim is an easy consequence of (2). �

It is easy to observe that the formal conditions for being a pp-matroid group are
weaker than these from [4].
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Using Theorem 2, we show now that pp-matroid groups are matroids in the sense of
[4] when as bases one takes pp-bases. It is enough to prove the following proposition.

Proposition 4. If G is a pp-matroid group and B1, B2 are two pp-bases of G, then, for
every x ∈ B1 \ B2, there exists y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} is also a pp-base
of G.

Proof. Let G be a pp-matroid group and G = G1 × · · · ×Gn be a decomposition as in
Theorem 2. If B is a pp-base of G, then B = B1 ∪ · · · ∪ Bn, where Bi is a pp-base of
Gi for i = 1, . . . , n. Hence, we can assume that G is an indecomposable pp-matroid
group. Using properties of pp-bases, we can also assume that G is Frattini-free and
apply Proposition 3. �

As an immediate consequence of matroid theory, we obtain the following corollary.

Corollary 5. Let G be a pp-matroid group and X = {x1, . . . , xk}, Y = {y1, . . . , yk+1} be
pp-independent subsets in G. Then there exists y ∈ Y such that the set X ∪ {y} is also
pp-independent.
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