Bull. Aust. Math. Soc. **93** (2016), 350–352 doi:10.1017/S0004972715001148

ADDENDUM TO

'ON SETS OF PP-GENERATORS OF FINITE GROUPS'

JAN KREMPA and AGNIESZKA STOCKA[⊠]

(Received 18 June 2015; accepted 24 June 2015; first published online 5 October 2015)

Abstract

This note completes the proof of the structure theorem for pp-matroid groups which was stated in our earlier paper J. Krempa and A. Stocka ['On sets of pp-generators of finite groups', *Bull. Aust. Math. Soc.* **91** (2015), 241–249].

2010 Mathematics subject classification: primary 20F05.

Keywords and phrases: finite group, generating set, independent set, solvable group.

In [3, Theorem 4.5] we gave a description of pp-matroid groups. However, the proof was given only in the Frattini-free case. Thus, in [3], we proved in fact only the result below.

THEOREM 1. Let H be a Frattini-free group. Then H is a pp-matroid group if and only if one of the following holds:

- (1) *H* is an elementary abelian *p*-group for some prime *p*;
- (2) $H = P \rtimes Q$ is a scalar extension for primes $p \neq q$, where q|(p-1) and Q is cyclic of order q;
- (3) *H* is a direct product of groups given in (1) and (2) with coprime orders.

Now we can prove a structure theorem for all pp-matroid groups and the full version of [3, Theorem 4.5].

THEOREM 2. Let G be a group. Then G is a pp-matroid group if and only if one of the following holds:

- (1) *G* is a *p*-group for some prime *p*;
- (2) *G* is an indecomposable pp-matroid {*p*, *q*}-group;
- (3) *G* is a direct product of groups given in (1) and (2) with coprime orders.

PROOF. Let *G* be a pp-matroid group. We know, by Theorem 1, that *G* is solvable. Hence, by [2, Theorem VI.2.3], there exist Sylow p_i -subgroups P_i , for i = 1, ..., n,

^{© 2015} Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

such that $G = P_1 \cdots P_n$, and every product $P_i P_j$ is a subgroup of G. We shall use the bar notation for subgroups of the quotient $\overline{G} = G/\Phi(G)$. Then $\overline{G} = \overline{P_1} \cdot \overline{P_2} \cdots \overline{P_n}$ and, by [2, Theorem III.3.8], $\overline{P_i}$ is nontrivial for i = 1, ..., n. If $\overline{P_i}$ is a normal subgroup of \overline{G} for some i = 1, ..., n, then $G = N_G(P_i)$, by a Frattini argument. Hence, $P_i \triangleleft G$.

If, for example, \bar{P}_1 is not normal in \bar{G} , then, with the help of Theorem 1, we can assume that \bar{P}_2 and $\bar{P}_1\bar{P}_2 = \bar{P}_2 \rtimes \bar{P}_1$ are normal in \bar{G} . Since $\bar{P}_1\bar{P}_2 \triangleleft \bar{G}$, we have $P_1P_2\Phi(G) \triangleleft G$. From $\bar{P}_2 \triangleleft \bar{G}$, we also know that $P_2 \triangleleft G$, so $\bar{P}_1\bar{P}_2 = \bar{P}_2 \rtimes \bar{P}_1$. Moreover, again by a Frattini argument, $G = N_G(P_1)P_2$. From this, by straightforward calculation, we obtain $P_1P_2 \triangleleft G$. Thus, $G = H_1 \times H_2 \times \cdots \times H_m$, for some $m \leq n$, where H_i are either *p*-groups or indecomposable $\{p, q\}$ -groups. Thus, H_j satisfy either condition (1) or (2) of the theorem. The proof can be finished as in [3].

From the above theorem and [1] it follows that *G* is a matroid group if and only if *G* is an indecomposable pp-matroid group. Corollary 5.2 from [1] is a description of such groups, in particular of indecomposable $\{p, q\}$ -groups, which are pp-matroid.

PROPOSITION 3. Let G be a Frattini-free pp-matroid group. Then:

- (1) every proper subgroup of G and any homomorphic image of G are also ppmatroid, Frattini-free groups;
- (2) *if* H < G *is a subgroup and* $a \in G \setminus H$ *is a pp-element, then* H *is of prime index in* $\langle H, a \rangle$;
- (3) let g_1, \ldots, g_n be any sequence of pp-elements in G. Then $\langle g_1 \rangle \neq \langle g_1, g_2 \rangle \neq \cdots \neq \langle g_1, g_2, \ldots, g_n \rangle = G$ if and only if $\{g_1, g_2, \ldots, g_n\}$ is a pp-base of G.

PROOF. (1) According to Theorem 1, let $G = G_1 \times \cdots \times G_n$ be a direct product with factors of coprime orders, where every G_i is either a *p*-group or a scalar extension satisfying the conditions in (2) of Theorem 1. If $H \subseteq G$ is a subgroup, then, as is well known, $H = (H \cap G_1) \times \cdots \times (H \cap G_n)$. From this observation, claim (1) follows.

(2) It is visible from our assumption that if $X \subseteq G$ is a subset of pp-elements, then $X \subseteq \bigcup_{i=1}^{n} (X \cap G_i)$. Thus, we can assume that G is an indecomposable pp-matroid group.

Assume first that $G = P \rtimes Q$ is a pp-matroid $\{p, q\}$ -group. Then every element of G is of order either p or q. Moreover, every element of order p generates a normal subgroup in G.

Let $H \subseteq G$ be a subgroup and $a \in G \setminus H$. If either H or $\langle a \rangle$ is a p-group, then it is normal and the claim about $H \leq \langle H, a \rangle$ is clear. If $x \in H$ and $a \in G$ are of order q, then $a = x^i y$ for some $y \in P$ and $i \ge 1$. In this case we have $\langle H, a \rangle = \langle H, y \rangle$ and we are back in the previous case.

If we assume that G is a p-group for a prime p, then G is elementary abelian and thus the claim (2) is evident.

(3) This claim is an easy consequence of (2).

351

It is easy to observe that the formal conditions for being a pp-matroid group are weaker than these from [4].

Using Theorem 2, we show now that pp-matroid groups are matroids in the sense of [4] when as bases one takes pp-bases. It is enough to prove the following proposition.

PROPOSITION 4. If G is a pp-matroid group and B_1, B_2 are two pp-bases of G, then, for every $x \in B_1 \setminus B_2$, there exists $y \in B_2 \setminus B_1$ such that $(B_1 \setminus \{x\}) \cup \{y\}$ is also a pp-base of G.

PROOF. Let *G* be a pp-matroid group and $G = G_1 \times \cdots \times G_n$ be a decomposition as in Theorem 2. If *B* is a pp-base of *G*, then $B = B_1 \cup \cdots \cup B_n$, where B_i is a pp-base of G_i for i = 1, ..., n. Hence, we can assume that *G* is an indecomposable pp-matroid group. Using properties of pp-bases, we can also assume that *G* is Frattini-free and apply Proposition 3.

As an immediate consequence of matroid theory, we obtain the following corollary.

COROLLARY 5. Let G be a pp-matroid group and $X = \{x_1, \ldots, x_k\}$, $Y = \{y_1, \ldots, y_{k+1}\}$ be pp-independent subsets in G. Then there exists $y \in Y$ such that the set $X \cup \{y\}$ is also pp-independent.

References

- [1] P. Apisa and B. Klopsch, 'A generalization of the Burnside basis theorem', *J. Algebra* **400** (2014), 8–16.
- [2] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1983).
- [3] J. Krempa and A. Stocka, 'On sets of pp-generators of finite groups', Bull. Aust. Math. Soc. 91 (2015), 241–249.
- [4] H. Whitney, 'On the abstract properties of linear dependence', *Trans. Amer. Math. Soc.* **34** (1932), 339–362.

JAN KREMPA, Institute of Mathematics,

University of Warsaw, Banacha 2, 02-097 Warszawa, Poland e-mail: jkrempa@mimuw.edu.pl

AGNIESZKA STOCKA, Institute of Mathematics, University of Białystok, Ciołkowskiego 1M, 15-245 Białystok, Poland e-mail: stocka@math.uwb.edu.pl