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Abstract
We study a restricted form of list colouring, for which every pair of lists that correspond to adjacent vertices
may not share more than one colour. The optimal list size such that a proper list colouring is always
possible given this restriction, we call separation choosability. We show for bipartite graphs that separation
choosability increases with (the logarithm of) the minimum degree. This strengthens results of Molloy
and Thron and, partially, of Alon. One attempt to drop the bipartiteness assumption precipitates a natural
class of Ramsey-type questions, of independent interest. For example, does every triangle-free graph of
minimum degree d contain a bipartite induced subgraph of minimum degree �( log d) as d → ∞?
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1. Introduction
The concept of list colouring, where an adversary prescribes which colours may be used per vertex,
was introduced independently by Erdős, Rubin and Taylor [14] and Vizing [33]. The starting point
for our paper is a restriction to list colouring proposed by Kratochvíl, Tuza and Voigt [24], which
one might imagine makes the colouring task much easier. LetG= (V , E) be a graph. For a positive
integer k, a mapping L:V → (

Z
+
k

)
is called a k-list assignment of G, and a colouring c of V is called

an L-colouring if c(v) ∈ L(v) for any v ∈V . We say a k-list assignment L has maximum separation
if |L(u)∩ L(v)|� 1 for any edge uv of G, and G is separation k-choosable if there is a proper
L-colouring of G for any k-list assignment L with maximum separation. The separation choosabil-
ity chsep (G) of G is the least k such that G is separation k-choosable. Kratochvíl, Tuza and Voigt
also considered weaker separation, where |L(u)∩ L(v)|� q for any edge uv, but we only treat the
most restrictive non-trivial case; note that the colouring task is trivial if q= 0. The original param-
eter choosability ch (G) ofG demands no separation on the lists, and so we have ch (G)� chsep (G)
always.
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Let us first review some well-known results for choosability. It was already known to Erdős,
Rubin and Taylor [14] that there are bipartite graphs with arbitrarily large choosability. More
specifically, by a connection to the extremal behaviour of the set-theoretic ‘Property B’, they
showed, as d → ∞, that the complete d-regular bipartite graphs Kd,d satisfy

ch (Kd,d)= (1+ o(1)) log2 d. (1.1)

Somewhat later, Alon demonstrated with a probabilistic argument that just having largeminimum
degree forces the choosability of a graph to be large. The following considerably generalizes the
lower bound in (1.1).

Theorem 1.1. (Alon [3]). There is a constant C > 0 such that ch (G)� C log d for any graph G with
minimum degree d.

Using containers, Saxton and Thomason [31] recently improved this lower bound to (1+
o(1)) log2 d as d → ∞, which is asymptotically optimal by (1.1).

One might wonder to what extent the results above remain valid when we impose maximum
separation on the lists. Füredi, Kostochka and Kumbhat [15] already considered the complete
d-regular bipartite graphs. By the use of an elegant extremal set-theoretic construction (see
Lemma 2.1 below), they strengthened (1.1) by showing that, as d → ∞,

chsep (Kd,d)= (1+ o(1)) log2 d. (1.2)

In the first part of this paper, we generalize the lower bound in (1.2).

Theorem 1.2. There is a constant C > 0 such that chsep (G)� C log d for any bipartite graph G with
minimum degree d.

This partially extends Theorem 1.1. It also incidentally improves upon a result of Molloy and
Thron [29] about adaptable choosability, an implication we describe in Section 2.2. We give
the proof of Theorem 1.2 in Section 2.1. The proof combines the construction of [15] with the
probabilistic argument of [3], and it requires the assumption that G be bipartite.

Curiously, the question remains whether a form of Theorem 1.2 holds if we drop the
bipartiteness assumption.

Conjecture 1.3. There is a function x1(d) satisfying x1(d)→ ∞ as d → ∞ such that chsep (G)�
x1(d) for any graph G with minimum degree d.

If we only knew Theorem 1.1 for bipartiteG, we could still conclude the same way for generalG
due to the fact that every graph of average degree at least d contains a bipartite subgraph of mini-
mum degree at least d/2. This fact and Theorem 1.2 are not enough to derive the same conclusion
for separation choosability of general G: a (bad) list assignment that has maximum separation
does not necessarily keep it upon the addition of edges. On the other hand, Kratochvíl, Tuza and
Voigt [23] have shown that the complete graph Kd+1 on d + 1 vertices satisfies chsep (Kd+1)∼

√
d

as d → ∞. (So separation does help in this situation.) A natural tack therefore is, in any graph of
given minimum degree, to look for either a large complete subgraph or a dense bipartite induced
subgraph. More precisely, the following, if true, would imply Conjecture 1.3.

Conjecture 1.4. There are functions x2(d) and x3(d) satisfying x2(d)→ ∞ and x3(d)→ ∞ as
d → ∞ such that any graph with minimum degree at least d contains a complete subgraph on x2(d)
vertices or a bipartite induced subgraph with minimum degree at least x3(d).
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In the second part of this paper, we consider some basic aspects of this conjecture. Irrespective
of separation choosability, this basic Ramsey-type problem is intriguing.

In fact, there is a range of (quantitative) variations on Conjecture 1.4 which are also natural
and interesting. Here follow two such variations.

Conjecture 1.5. There is a constant C > 0 such that any triangle-free graph with minimum degree
at least d contains a bipartite induced subgraph of minimum degree at least C log d.

If true, this would be sharp up to the choice of C (Theorem 3.7).

Conjecture 1.6. There exist d0 and g0 such that any graph of girth at least g0 with minimum degree
at least d0 contains a bipartite induced subgraph of minimum degree at least 3.

If 3 is replaced by 2 in Conjecture 1.6, then the conclusion is equivalent to containing an
even hole. This weaker statement is true with g0 = 4 and d0 = 3 by a result of Radovanović and
Vušković [30, Theorem 1.6]. Note that even holes can be detected efficiently [11, 12], but detection
of bipartite induced subgraphs of minimum degree at least 3 is an NP-complete problem [18].

In Section 3, we offer partial progress, towards Conjecture 1.5 especially. To that end we have
found it especially useful that, to find a dense bipartite induced subgraph in a graph of given
minimum degree, it suffices to find a good proper colouring.

Theorem 1.7. Any graph with chromatic number at most k and minimum degree d has a bipartite
induced subgraph of minimum degree at least d/2k.

We show this as a corollary to a more general result below, Theorem 3.1. In Section 3.1, we
illustrate how, together with classic results about colourings and stable sets in triangle-free graphs,
Theorem 1.7 yields special cases of Conjecture 1.5: in particular, if the triangle-free graph is nearly
regular (Theorem 3.3) or if it has sufficiently large minimum degree with respect to the number of
vertices (Theorem 3.4). By a related but different method, we prove a weaker yet still sharp form of
Conjecture 1.5 where edges are permitted for one of the two parts of the sought bipartite subgraph
(Theorem 3.5).

2. Separation choosability of bipartite graphs
In this section we are primarily concerned with proving Theorem 1.2, but we also discuss some of
the implications for another list colouring notion called adaptable choosability, which we discuss
in more detail further on.

Although it is not needed for the proof, it may reveal a broader context to notice how
Theorems 1.1 and 1.2 relate choosability and separation choosability to graph density. Recall the
degeneracy of a graph is the maximum over all subgraphs of the minimum degree; a graph is
d-degenerate if its degeneracy is at most d. A simple greedy argument yields ch (G)� d + 1 for
any d-degenerate graph G. Theorem 1.1 implies that choosability grows with degeneracy: there
exists C > 0 such that

C log d� ch (G)� d + 1 (2.1)

for any graph G with degeneracy d. Similarly, Theorem 1.2 allows us conclude for chsep (G) as
in (2.1) except only for bipartite G of degeneracy d.

We note that by an adaptation of a construction of Kostochka and Zhu [22], for every integer
d there is a d-degenerate graph that is not separation d-choosable. Moreover, Alon, Kostochka,
Reiniger, West and Zhu [6] have recently shown, with the help of an extremely elegant graph
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construction, that for every g and k there is a bipartite graph G of girth at least g that is not
separation k-choosable, every proper subgraph of which has average degree at most 2(k− 1).

2.1 Proof of Theorem 1.2
For the proof of Theorem 1.2, we require the construction [15, Corollary 1] used in the proof
of (1.2). Two hypergraphsH1 andH2 on the same vertex set are nearly disjoint if every edge ofH1
meets every edge ofH2 in at most one vertex. The stability number α(H) of a hypergraphH is the
size of a largest subset of vertices of H that does not contain any edge of H.

Lemma 2.1. (Füredi, Kostochka and Kumbhat [15]). Fix r� 2. There exist two nearly disjoint
r-uniform hypergraphs H1 and H2 each on vertex set [4r4] and having 16r42r edges such that
α(H1), α(H2)< 2r4.

We essentially substitute this construction into the proof of Theorem 1.1.

Proof of Theorem 1.2. Let G= (V , E) be a bipartite graph of minimum degree at least d, where
without loss of generality d� d0 for some sufficiently large fixed d0. Let V =V1 ∪V2 be the
bipartition and suppose that |V1|� |V2|. We assume for a contradiction that ch (G)� k, where
k= 
C log d� − 1 for some fixed C > 0 chosen strictly smaller than (1/2− ε)/ log 2 with ε > 0.
LetH1 andH2 be the hypergraphs certified by Lemma 2.1 applied with r = k. WriteW = [4k4] for
their common vertex set, and F1 and F2 for their respective edge sets.

As already mentioned, the strategy is the same as in [3], where we incorporate the use of F1 and
F2. There are two stages of randomness. In the first stage we choose a small random vertex subset
A of V1 and assign lists from F1 to the vertices of A randomly. After showing that with positive
probability there is a subset A⊆V1 for which there are many good vertices in V2 (to be defined
below), we fix such a subset A and an assignment of lists. In the second stage we assign lists uni-
formly to the good vertices, and only from F2 to ensure separation of the list assignment. Goodness
helps to guarantee in the second stage that with positive probability the remaining vertices cannot
be coloured from their (random) lists.

Let p= 1/
√
d. Note that p< 1/8 for d sufficiently large. Let A be a random subset of V1 with

each vertex of V1 chosen to be in A independently at random with probability p. Since E(|A|)=
p|V1|, byMarkov’s inequality we have P(|A| > 2p|V1|)� 1/2.We define a random list assignment
LA of G[A] as follows. For each v ∈A independently, let LA(v) be a uniformly random element of
F1. We call a vertex v ∈V2 good if for any f ∈ F1 there is at least one neighbour v′ of v such that
v′ ∈A and LA(v′)= f .

The probability that a vertex v ∈V2 is not good is the probability that for some f ∈ F1 there is
no neighbour v′ of v such that v′ ∈A and LA(v′)= f . For each fixed f ∈ F1, since there are at least
d neighbours of v, the probability that there is no neighbour v′ of v such that v′ ∈A and LA(v′)= f
must by the choice of C be at most

(1−p/|F1|)d � exp (−dp/|F1|)� exp (−√
d/(16k42k))� exp (−dε)

for d sufficiently large. Therefore the probability that there is some set f ∈ F1 that certifies that
v is not good must be at most 16k42k exp (−dε)< 1/4 for d sufficiently large. It then follows by
Markov’s inequality that the number of vertices that are not good is at most |V2|/2 with probability
strictly greater than 1/2. So there exists a set A⊆V1 and a list assignment LA (with lists from the
set F1) such that |A|� 2p|V1| and the number of good vertices is at least |V2|/2. Fix such a set A
and list assignment LA for the remainder of the proof. Let A∗ ⊆V2 be the set of good vertices.

There are at most k|A| possibilities for an arbitrary (proper) LA-colouring of G[A]. We fix one
such colouring cA and show that with high probability there is a k-list assignment of maximum
separation extending LA, such that cA cannot be extended to a proper list colouring of G[A∪A∗].
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We define a random list assignment LA∗ ofG[A∗] by letting, for each v ∈A∗ independently, LA∗(v)
be a uniformly random element of F2. It is important to notice that, sinceG is bipartite andH1 and
H2 are nearly disjoint, the resulting k-list assignment is guaranteed to have maximum separation.

Consider a vertex v ∈A∗. We define Cv to be the set of colours c such that there is some neigh-
bour v′ of v such that v′ ∈A and cA(v′)= c. Recall thatW = [4k4] denotes the common vertex set
of H1 and H2. We first observe that, since v is good, Cv meets every member of F1. Thus W \ Cv
is a stable set of H1, from which we conclude that |W \ Cv| < 2k4. Moreover, there must be some
fv ∈ F2 such that fv ⊆ Cv; otherwise, Cv is a stable set of H2 and so |Cv| < 2k4, which in combina-
tion with the previous inequality is a contradiction to |W| = 4k4. By the definition of Cv, if the
random assignment results in LA∗(v)= fv, then v cannot be properly coloured from its list. Since
the choice of LA∗(v) is independent, the probability that all vertices of A∗ can be coloured from
their lists is at most

(1−1/|F2|)|V2|/2 � exp (−|V2|/(2|F2|)).
Note that, due to the choices of k, C and p and the fact that |V2|� |V1|� d,

k|A| exp (−|V2|/(2|F2|))� k2p|V1| exp (−|V2|/(2|F2|))� k2p|V2| exp (−|V2|/d1/2−ε)< 1

for d sufficiently large. It then follows that with positive probability there is a k-list assignment L of
G[A∪A∗] with maximum separation such that there is no proper L-colouring of G[A∪A∗].

2.2 Adaptable choosability
Given a graph G= (V , E) and a labelling �:E→ [k] of the edges, a (not-necessarily-proper) vertex
colouring c:V → [k] is adapted to � if, for every edge e= uv ∈ E, not all of c(u), c(v) and �(e) are the
same value. We say that G is adaptable k-choosable if, for any k-list assignment L and any labelling
� of the edges of G, there is an L-colouring of G that is adapted to �. The adaptable choosability
cha (G) of G is the least k such that G is adaptable k-choosable. Every proper colouring is adapted
to any labelling �, so ch (G)� cha (G) always. This parameter was proposed by Kostochka and
Zhu [22]. Molloy and Thron [29] proved that the adaptable choosability grows with choosability.
Recall (2.1). More precisely, they proved the following.

Theorem 2.2. (Molloy and Thron [29]). There is a constant C > 0 such that cha (G)� C log1/5 d
for any graph G with minimum degree d.

We observe separation choosability is at most adaptable choosability.

Proposition 2.3. For any graph G, cha (G)� chsep (G).

Proof. FixG= (V , E) and let k= cha (G). Let L be a k-list assignment of maximum separation. Let
� be a labelling defined for each e= uv ∈ E by taking �(e) as the unique element of L(u)∩ L(v) if it
is non-empty, and arbitrary otherwise. By the choice of k, there is guaranteed to be an L-colouring
c that is adapted to �. Due to the maximum separation property of L and the definition of �, the
colouring cmust be proper.

By this observation and monotonicity of cha with respect to subgraph inclusion, Theorem 1.2
implies the following improvement upon Theorem 2.2.

Corollary 2.4. There is a constant C > 0 such that cha (G)� C log d for any graph Gwithminimum
degree d.
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This is sharp up to the choice of constant C by (1.1). By (2.1), it follows for some C > 0
that cha (G)� C log ch (G) for any graph G. However, it has not been ruled out that cha (G) is
�(

√
ch (G)) in general.

3. Dense bipartite induced subgraphs
In this section, we focusmostly on Conjecture 1.5. That is because we find the triangle-free case the
most elegant setting for this class of problems. Furthermore, the techniques carry over routinely
to larger forbidden cliques; we briefly discuss this at the end of the section.

As every graph of average degree d contains a (bipartite) subgraph of minimum degree at
least d/2, and since we do not worry ourselves about constant factors, we work with average or
minimum degree interchangeably.

A first intuition one might have upon meeting this class of problems is that a good proper
colouring in a graph should be helpful to find a dense bipartite induced subgraph. If there are
few colour classes in such a colouring, then by the pigeonhole principle one expects some pair of
the colour classes to have a relatively large number of edges between them. Although this idea in
itself does not quite lead directly to the desired induced subgraph (and thus to Theorem 1.7), this
intuition can be formalized and also strengthened, as we now show.

Given a graph G= (V , E), let us say that a probability distribution S over the stable sets of
G satisfies property Q∗

r if P(v ∈ S)� r for every vertex v ∈V and S a random stable set taken
according to S . Recall that the fractional chromatic number of Gmay be defined as the smallest k
such that there is a probability distribution over the stable sets of G that satisfies property Q∗

1/k.

Theorem 3.1. Any graph with fractional chromatic number k and average degree d has a bipartite
induced subgraph of average degree at least d/k.

By considering the distribution that takes a colour class of a proper colouring uniformly at
random, it is easily seen that the fractional is bounded by the usual chromatic number, and so
this immediately implies Theorem 1.7. As we will see in Section 3.3, this lower bound cannot in
general be improved by more than a constant factor.

Proof of Theorem 3.1. Let G= (V , E) be a graph and let S be a probability distribution over the
stable sets ofGwith property Q∗

1/k. Without loss of generality, we may assume that P(v ∈ S)= 1/k
for every vertex v ∈V and S a random stable set taken according to S . Let S1 and S2 be two
stable sets taken independently at random according to S . Note that E(|S1|)= E(|S2|)= n/k by
the assumption on S . Moreover, for any edge e= uv ∈ E, the probability that e is in the induced
subgraph G[S1 ∪ S2] is

P(u ∈ S1) P(v ∈ S2)+ P(u ∈ S2) P(v ∈ S1)= 2
k2

.

By linearity of expectation, we have that

E

(
|E(G[S1 ∪ S2])| − (|S1| + |S2|) d2k

)
= 2|E|

k2
− nd

k2
= 0.

The probabilistic method guarantees stable sets S1 and S2 of G such that

|E(G[S1 ∪ S2])|� (|S1| + |S2|) d2k .
Discarding the vertices of S1 ∩ S2 (if any) yields a bipartite induced subgraph of average degree at
least d/k.
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3.1 Subcases of Conjecture 1.5
In this subsection, we discuss some special cases of Conjecture 1.5. These observations are mainly
consequences of Theorem 3.1 above.

First let us note that, by an induction on the number of vertices, we may assume in
Conjecture 1.5 that any proper subgraph of the triangle-free graph has minimum degree less than
d. (Note that the base case is implied by Turán’s theorem.) So the graph may be assumed to be
d-degenerate. By Theorem 3.1, Conjecture 1.5 is thus implied by a recent conjecture of Harris.

Conjecture 3.2. (Harris [17]). There is some C > 0 such that the fractional chromatic number of
any d-degenerate triangle-free graph is at most Cd/ log d.

Next we observe that, due to classic results on the chromatic number of triangle-free graphs
and on off-diagonal Ramsey numbers, we may also assume in Conjecture 1.5 that the maximum
degree of the graph is large with respect to d and that the minimum degree d is not too large with
respect to the number of vertices.

Theorem 3.3. There is a constant C > 0 such that any triangle-free graph with average degree d and
maximum degree � contains a bipartite induced subgraph of average degree at least (d/C�) log�.

Proof. Let G be a triangle-free graph with average degree d and maximum degree �. A result of
Johansson [20], recently improved significantly by Molloy [28], says that there is a constant C > 0
such that any triangle-free graph with maximum degree �, and thus G, has chromatic number at
most C�/ log�. The result now follows from Theorem 3.1.

Theorem 3.4. There is a constant C1 such that any triangle-free graph on n vertices with aver-
age degree d� Cn2/3

√
log n contains a bipartite induced subgraph of average degree at least

(CC1/2) log n for all n large enough.

Proof. Let G be a triangle-free graph on n vertices with average degree d� Cn2/3
√
log n. By a

classic result of Ajtai, Komlós and Szemerédi [1], the off-diagonal Ramsey numbers R(3, �) satisfy
R(3, �)=O(�2/ log �) as � → ∞. Thus, for some C1 > 0, every induced subgraph ofGwith at least
n2/3 vertices contains a stable set of size at least C1n1/3

√
log n. We now remove such stable sets

(of size at least C1n1/3
√
log n) until fewer than n2/3 vertices remain in G. Note that the subgraph

H of G induced by the union of these stable sets has chromatic number at most

n
C1n1/3

√
log n

� n2/3

C1
√
log n

.

For large enough n, the number of edges in H is at least

nd
2

− n · n2/3 � C
4
n5/3

√
log n,

and so H has average degree at least (C/2)n2/3
√
log n. By Theorem 3.1, G has a bipartite induced

subgraph of average degree at least (CC1/2) log n.

In summary, Theorem 3.1 and the discussion above imply that in Conjecture 1.5 it suffices
to consider, for any ε > 0, a triangle-free graph G on n vertices of average degree d, where
d < εn2/3

√
log n, such that G is d-degenerate and contains a vertex of degree more than d/ε.

Moreover, it suffices to show in these circumstances that the fractional chromatic number of G is
at most Cd/ log d for some C > 0.
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3.2 Dense semi-bipartite subgraphs
Instead of a dense bipartite induced subgraph, we might be happy with a dense bipartite subgraph
where we only demand (at least) one of the parts induces a stable set. Given a graphG= (V , E), let
us call an induced subgraph G′ = (V ′, E′) of G semi-bipartite if it admits a partition V ′ =V1 ∪V2
such that V1 is a stable set of G, and define the average degree of G′ with respect to the semi-
bipartition as the average degree of the bipartite subgraph G[V1,V2] between V1 and V2 (and so
we ignore any edges in V2).

In this subsection, we prove the following.

Theorem 3.5. Any triangle-free graph of minimum degree d� 1 contains a semi-bipartite induced
subgraph of average degree at least 1

2 log d.

As we will show in Section 3.3, this is sharp up to a constant factor.
Near the end of the book by Alon and Spencer [5, pp. 321–322], there is a proof of a result of

Ajtai, Komlós and Szemerédi [2] that any n-vertex triangle-free graph of maximum degree � has
a stable set of size at least n log�/(8�). That proof heavily inspired the proof of the following
result. This result directly implies Theorem 3.5.

Lemma 3.6. Let G be a triangle-free graph of minimum degree d� 1, and S a random stable set of
G chosen uniformly. Then

E

(∑
v∈S

d(v)
)
� 1

4
∑
v∈G

log d(v).

Proof. For each vertex v, let Xv = d(v) · |{v} ∩ S| + |N(v)∩ S|. We claim that E(Xv)� 1
2 log d(v).

To see that this claim holds, consider any stable set T of G−N[v] (where N[v] denotes the
closed neighbourhood of v in G). It is enough to prove that for each choice of T as above,

E(Xv | S∩ (V(G)−N[v])= T)� 1
2
log d(v).

Given a stable set T as above, let k be the number of neighbours of v with no neighbour in T.
Conditioning on S∩ (V(G)−N[v])= T, there are precisely 2k + 1 equally likely possibilities for
S (T together with v, or T together with one of the 2k subsets of the set of neighbours of v that
have no neighbour in T). It follows that

E(Xv | S∩ (V(G)−N[v])= T)= 1
2k + 1

(d(v)+ k2k−1).

It can be verified that this last quantity is at least 1
2 log d(v) for any d(v)� 1 and k� 0; more details

are given in the Appendix. This proves the claim.
Note that

∑
v∈G Xv = 2

∑
v∈S d(v). So by linearity of expectation and the claim above,

E

(∑
v∈S

d(v)
)

= 1
2

∑
v∈G

E(Xv)�
1
4

∑
v∈G

log d(v).

Proof of Theorem 3.5. Let G be an n-vertex triangle-free graph of minimum degree d� 1. Let S
be a stable set of G chosen uniformly at random. By Lemma 3.6, the expected number of edges
between S and its complement is at least 1

4n log d, and thus the expected average degree of the
corresponding semi-bipartite subgraph is at least 1

2 log d. This proves the existence of the desired
semi-bipartite induced subgraph.
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Conjecture 1.5 holds if we can find a distribution S over the stable sets of the triangle-free graph
G that satisfies property Q∗

log d/Cd. From the proof of Lemma 3.6, it is possible to find a probability
distribution S over the stable sets of G such that E(|N(v)∩ S|)� 1

8 log d or P(v ∈ S)� log d/4d
for every vertex v and S a random stable set taken according to S . Unfortunately this property
does not seem to be powerful enough to prove Conjecture 1.5.

3.3 Upper bounds
In this subsection, we prove that Conjecture 1.5, if true, would be sharp up to a constant factor.

Theorem 3.7. There are constants C, C′, C′′ > 0 such that for every large enough n there is a
triangle-free graph on n vertices with all degrees between C′n1/3 and C′′n1/3 that contains no
semi-bipartite induced subgraph of average degree at least C log n.

This is a relatively routine probabilistic construction using the binomial random graph, but
we include the details for completeness. Theorem 3.7 also certifies sharpness of the bounds in
Theorems 1.7, 3.1, 3.3 and 3.5.

Before continuing, let us make the convenient observation that, if we do not mind constant
factors, it suffices to consider only semi-bipartite subgraphs with both parts of equal size.

Proposition 3.8. Suppose A, B⊆G are disjoint with |A|� |B| and satisfy that the average degree of
G[A, B] is d. Then there exists A′ ⊆A with |A′| = |B| such that the average degree of G[A′, B] is at
least d/2.

Proof. Take A′ to be the vertices in A with the |B| largest degrees. The number of edges in G[A′, B]
is at least

|B|
|A| |E(G[A, B])|�

|B|
|A| · d

2
(|A| + |B|).

Thus the average degree of G[A′, B] is at least d(|A| + |B|)/2|A|� d/2.

In the following result we determine up to a constant factor the largest average degree over all
semi-bipartite induced subgraphs in the binomial random graph. For Theorem 3.7, we only need
the upper bound.

Proposition 3.9. In the binomial random graph on [n] with edge probability p, where np→ ∞ as
n→ ∞ and p< 0.99, the largest average degree of a semi-bipartite induced subgraph is �( log np)
with high probability.

Proof. Fix ε > 0. With high probability, the stability number is at most (2+ ε) logb np, where
b= 1/(1− p) (cf. [16]). By Proposition 3.8, we can just consider disjoint vertex subsets A, B with
|A| = |B| = k, where k� (2+ ε) logb np. For a given k, the expected number of such A, B where
G[A, B] has average degree at least C log np is as n→ ∞ at most(

n
2k

)(
2k
k

)
P( Bin (k2, p)� Ck log np)�

(
en
k

)2k
exp (−Ck log np)< exp

(
−C
2
k log np

)
,

where we used a Chernoff bound (cf. [19, Corollary 2.4]) and took a sufficiently large fixed choice
of C > 0. Crudely summing this estimate in the range C log np� k� (2+ ε) logb np, Markov’s
inequality implies the chance there is a semi-bipartite induced subgraph with average degree at
least C log np is, as n→ ∞, at most
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(2+ ε)( logb np) exp
(

−C2

2
log2 np

)
→ 0

for C chosen large enough.
For the lower bound, first note by a Chernoff bound (cf. [19, Corollary 2.3]) that the number of

edges is (1+ o(1))n2p/2, and so the minimum degree is at least (1+ o(1))np/2, with high proba-
bility. By classic results on the chromatic number of the random graph [8, 26, 27], with high prob-
ability the chromatic number is (1+ o(1))n/(2 logb np). It therefore follows from Theorem 3.1
that there is a bipartite induced subgraph with average degree at least (1+ o(1))p logb np with
high probability, as required.

Proof of Theorem 3.7. Let p=Dn−2/3 for some fixed 0<D< 2−1/4. Consider the binomial ran-
dom graph on [n] with edge probability p. The expected degree of a vertex is p(n− 1)∼Dn1/3. By
a Chernoff (cf. [19, Corollary 2.3]) and a union bound, the minimum degree is less than Dn1/3/2
or the maximum degree is more than 3Dn1/3/2 with probability at most 2n exp (−Dn1/3/12)→ 0
as n→ ∞. The expected number of triangles is at most n3p3/6=D3n/6. By Markov’s inequal-
ity, the probability that there are at least D3n/3 triangles is at most 1/2. By Proposition 3.9 there
exists C > 0 such that, for all n large enough, with positive probability there is a graph G that
has minimum degree at least Dn1/3/2, maximum degree at most 3Dn1/3/2, fewer than D3n/3
triangles, and no semi-bipartite induced subgraph of average degree at least C log np. Assuming
n is large enough, fix such a graph G and remove an arbitrary vertex from each triangle. This
leaves a triangle-free graph G∗ with at least (1−D3/3)n> 0 vertices and more than Dn4/3/4−
(D3n/3)(3Dn1/3/2)=D(1− 2D4)n4/3/4> 0 edges, so all degrees between D(1− 2D4)n1/3/4 and
3Dn1/3/2. Moreover, by monotonicityG∗ contains no semi-bipartite induced subgraph of average
degree at least C log n� C log np.

3.4 Kr-free graphs
In this section we explain how to extend the results obtained previously for triangle-free graphs to
the case of Kr-free graphs, with r� 4.

The following result has the same proof as that of Theorem 3.3, but uses instead the fact that
Kr-free graphs of maximum degree � have chromatic number at most 200r� log log�/ log�.
This was recently proved by Molloy [28], improving an earlier result of Johansson [21].

Theorem 3.10. There is some constant C > 0 such that, for every r� 4, any Kr-free graph with
average degree d and maximum degree � contains a bipartite induced subgraph of average degree
at least

d log�

Cr� log log�
.

The next result is shown in the same way as Theorem 3.4, but using a slightly more general
bound [1] for the off-diagonal Ramsey numbers: R(r, �)=O(�r−1/( log �)r−2) as � → ∞.

Theorem 3.11. For each r� 3, any Kr-free graph G on n vertices with average degree
d = �(n1−1/r( log n)1/(r−1)) contains a bipartite induced subgraph of average degree �( log n) as
n→ ∞.

Note also that a refined analysis in the proof of Lemma 3.6, using [32, Lemma 1] instead of the
simple counting argument, yields that there is an absolute constant C > 0, such that in a Kr-free
graph G, the expected sum of the degrees of the vertices in a random stable set (from the uniform
distribution) is at least the sum of

https://doi.org/10.1017/S0963548319000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000026


730 L. Esperet, R. J. Kang and S. Thomassé

C
log d(v)

r log log d(v)
,

over all the vertices v ∈G. As a consequence, we obtain the following Kr-free analogue of
Theorem 3.5.

Theorem 3.12. There is a constant C > 0 such that, for any r� 4, any Kr-free graph of minimum
degree d� 3 contains a semi-bipartite induced subgraph of average degree at least

C
log d

r log log d
.

For completeness, we merely state two upper bounds relevant to Conjectures 1.4 and 1.6. The
proofs routinely adapt the proof of Theorem 3.7.

Proposition 3.13. Fix an integer g � 4. There is a constant C > 0 such that for every large enough
n there is a graph on n vertices of girth at least g with minimum and maximum degrees both
�(n1/(g−1)) that contains no semi-bipartite induced subgraph of average degree at least C log n.

Proposition 3.14. Fix an integer r� 3. There is a constant C > 0 such that for every large enough
n there is a Kr-free graph on n vertices with minimum and maximum degrees both �(n1−2/r) that
contains no semi-bipartite induced subgraph of average degree at least C log n.

4. Conclusion
In the course of our research, we found alternative derivations of Theorems 3.3–3.5 and of the
lower bound in Proposition 3.9. We have omitted these for brevity, but mention here that, like
Theorem 3.1, they all rely on some appropriate proper colouring. Since it is easy to construct
graphs with very high degree bipartite induced subgraphs and also high (fractional) chromatic
number, naturally we wonder if there are other, possibly more ‘direct’, methods to produce dense
bipartite induced subgraphs. In particular, this might help to improve upon the constant factors
in our bounds.

Regardless of the eventual status of Conjecture 1.5, Theorems 3.4 and 3.7 hint at the following
more refined problem.

Problem 4.1. Fix η ∈ (0, 1). As n→ ∞, determine the asymptotic infimum fη(n) of the largest
minimum degree of a bipartite induced subgraph over all triangle-free graphs of minimum degree nη.

Theorem 3.7 implies that f1/3(n) is at most logarithmic in n, while a simple modification
of Theorem 3.4 implies that f2/3+ε(n), for fixed ε > 0, is at least polynomial in n. If a guiding
‘paradigm’ that couples the triangle-free process with the Erdős–Rényi process (cf. e.g. [7]) holds
as well for our problem, then Proposition 3.9 suggests that perhaps η being around 1/2 is the tran-
sition point between logarithmic and polynomial behaviour for fη(n). Note that the η = 1 case is
related (via Theorem 1.7) to a problem of Erdős and Simonovits: cf. [9].

We find it difficult to imagine that Conjecture 1.3 is not true, but keep in mind that we have
only tried one particular approach.

Our study in fact began by considering the separation choosability analogue of a conjecture of
Alon and Krivelevich [4]. Although our paper is already brimming with conjecture, we still find
this worth highlighting. Both this and the original conjecture (for choosability) remain open, and,
if true, would considerably generalize the upper bounds in (1.2) and (1.1), respectively.
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Conjecture 4.2. There is a constant C > 0 such that chsep (G)� C log� for any bipartite graph G
with maximum degree �.
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Note added
Since the posting of our manuscript to arXiv, the second half of our paper has precipitated a
number of significant further developments.

• Up to a logarithmic factor, Problem 4.1 has been solved, independently, by Cames van
Batenburg, de Joannis de Verclos, Pirot and the second author [10] and by Kwan, Letzter,
Sudakov and Tran [25].

• In [25], they moreover proved Conjecture 1.4 (and thus confirmed Conjecture 1.3) and have
nearly settled Conjecture 1.5 (and thus confirmed Conjecture 1.6), in that they have estab-
lished �( log d/ log log d) bipartite induced minimum degree in Kr-free graphs for every
fixed r� 3.

• Work of Davies, de Joannis de Verclos, Pirot and the second author [13] has improved the
asymptotic leading constant to 2 in Theorem 3.5.
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Appendix: Technical details in the proof of Lemma 3.6
In this section, we provide further details of the proof that, for any d� 1 and 0� k� d, it holds
that

d + k2k−1

2k + 1
� 1

2
log d. (A.1)

Inequality (A.1) is trivially satisfied if d = 1, so we can assume that d� 2. The inequality
certainly holds if d/(2k + 1)� 1

2 log d, so we can also assume that 2k + 1> 2d/ log d, which is
equivalent to k> log2 (2d/ log d − 1).

Inequality (A.1) also holds provided we can show k2k−1/(2k + 1)� 1
2 log d. Note that the

function x �→ x2x−1/(2x + 1) is increasing for x� 0. It follows from our previous assumption that

k2k−1

2k + 1
= 1

2
k(1− (2k + 1)−1)>

1
2

(
1− log d

2d

)
log2

(
2d
log d

− 1
)
.

Thus for (A.1) it suffices to establish for d� 2 that(
1− log d

2d

)
log2

(
2d
log d

− 1
)
� log d.

It is routinely checked that the function

x �→
(
1− log x

2x

)
log2

(
2x
log x

− 1
)

− log x for x> 1

has a unique minimum of about 0.30 at some x0 ≈ 9.74.
We remark that as d → ∞, the right-hand side of inequality (A.1) can be improved to

(1− o(1)) log2 d.
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