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Abstract

Assume that A is a finite-dimensional algebra over some field, and assume that A is weakly symmetric and
indecomposable, with radical cube zero and radical square nonzero. We show that such an algebra of wild
representation type does not have a nonprojective module M whose ext-algebra is finite dimensional. This
gives a complete classification of weakly symmetric indecomposable algebras which have a nonprojective
module whose ext-algebra is finite dimensional. This shows in particular that existence of ext-finite
nonprojective modules is not equivalent with the failure of the finite generation condition (Fg), which
ensures that modules have support varieties.
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1. Introduction

Assume that A is a finite-dimensional algebra over a field K. We say that an A-module
M is ext-finite if there is some n ≥ 0 such that ExtkA(M,M) = 0 for k > n.

If A = KG, the group algebra of a finite group, then any ext-finite module is
projective (this may be found in [4, Ch. 5]). On the other hand, there is a four-
dimensional selfinjective algebra which has nonprojective ext-finite modules, first
described in [15]. This algebra is known as a q-exterior algebra; see Section 4. If
a selfinjective algebra A has a nonprojective ext-finite module, there is no support
variety theory for A-modules via Hochschild cohomology. This follows from [10,
Corollary 2.3]; it shows that the finite generation conditions [10, (Fg1) and (Fg2)]
(and [16, (Fg)]) must fail. That is, existence of ext-finite nonprojective modules
gives information about the action of the Hochschild cohomology on ext-algebras of
modules.

There is also the ‘generalised Auslander–Reiten condition’, GARC, which has been
introduced in [2] in the context of homological conjectures, and which has attracted a
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lot of interest; see for example [6–9, 13]. The condition GARC for a ring R is stated
as follows.

If M is an R-module and there is some n ≥ 0 such that ExtkR(M,M ⊕ R) = 0 for k > n,
then M has projective dimension at most n.

The four-dimensional local algebra mentioned above does not satisfy GARC, there
are even counterexamples with n = 1; see Section 4. It is not known whether there is a
ring R which has a counterexample with n = 0.

If R = A and A is a selfinjective finite-dimensional algebra, then GARC states that
any ext-finite module is projective.

The four-dimensional algebras which have nonprojective ext-finite modules belong
to the class of weakly symmetric algebras with radical cube zero. These algebras have
been studied in [5, 12]. In particular, it is understood when such an algebra does not
satisfy the (Fg) condition, as follows.

Assume that A is weakly symmetric with J3 = 0 and J2 , 0, where J is the
radical of A. Assume also that A is indecomposable. Let E be the matrix with
entries dim Ext1(S i, S j), where S 1, S 2, . . . , S r are the simple A-modules. Then E is
a symmetric matrix, so it has real eigenvalues. The largest eigenvalue λ, say, occurs
with multiplicity one, and has a positive eigenvector; this is the Perron–Frobenius
theorem. It is proved in [12] that A does not satisfy (Fg) if and only if either λ > 2, or
else A is Morita equivalent to either a four-dimensional local algebra as above or to a
‘double Nakayama algebra’ (see Section 4), where in both cases there is a deformation
parameter which is not a root of unity.

These double Nakayama algebras also have ext-finite nonprojective modules; this
is probably known: we will give a proof in Section 4.

Our main result shows that a weakly symmetric algebra with radical cube zero and
λ > 2 does not have ext-finite nonprojective modules. With this, we get the following
result.

Theorem 1.1. Assume that A is a weakly symmetric indecomposable algebra over an
algebraically closed field, with J3 = 0 , J2. Then A has an ext-finite nonprojective
module if and only if λ = 2 and A is Morita equivalent to either a four-dimensional q-
exterior algebra or a double Nakayama algebra, where in both cases the deformation
parameter is not a root of unity.

It follows that existence of ext-finite nonprojective modules is not equivalent with
failure of (Fg).

The theorem remains true for an arbitrary field if one takes for A an algebra defined
by quiver and relations.

Section 2 contains the relevant background. In Section 3 we prove the main new
part of the theorem, and in Section 4 we construct ext-finite nonprojective modules for
the algebras for which λ = 2. We work with finite-dimensional left A-modules and,
if M, N are such A-modules, then we write Hom(M, N) instead of HomA(M, N) and
similarly Extk(M, N) means ExtkA(M, N). Relevant background may be found in [1]
or [3].
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2. Preliminaries

2.1 We assume throughout that A is a finite-dimensional weakly symmetric algebra
over an algebraically closed field K, and we assume that A is indecomposable. This
is no restriction since we will focus on indecomposable modules. Suppose that M is a
finite-dimensional A-module. Then rad(M) is the submodule of M such that M/rad(M)
is the largest semisimple factor module of M, sometimes called the ‘top’ of M. The
module rad(M) is equal to JM, where J is the radical of A. The socle of M, denoted
by soc(M), is the largest semisimple submodule of M.

2.2 A finite-dimensional A-module M has a projective cover, that is, there is a
surjective map πM : P→ M, where P is projective and P/rad(P) � M/rad(M). The
kernel of πM is unique up to isomorphism, and is denoted by Ω(M). Repeatedly taking
projective covers gives a minimal projective resolution of M,

· · · → Pm
dm
→ Pm−1 → · · ·

d1
→ P0

d0
→ M → 0,

where d0 = πM and dm is a projective cover of Ωm(M) for m ≥ 1. If A is selfinjective
and M is indecomposable and nonprojective, then also Ω(M) is indecomposable and
nonprojective. In fact, Ω induces an equivalence of the stable module category of A.

2.3 We assume that A is weakly symmetric. This means that A is selfinjective, and
any indecomposable projective module has a simple socle, with soc(P) � P/rad(P).
Hence, for any simple module, its projective cover is also its injective hull. This
implies also that for any nonprojective indecomposable A-module M we have that
M/rad(M) is isomorphic to soc Ω(M).

Let S 1, S 2, . . . , S r be the simple A-modules, and let Pi be the projective cover of
S i for 1 ≤ i ≤ r. We assume throughout that J3 = 0 but J2 , 0. If so, then every
indecomposable projective module Pi must have radical length three; this is well
known (and it is easy to see, recalling that we assume A to be indecomposable). So,
we have Pi/rad(Pi) � S i � soc(Pi) and rad(Pi)/soc(Pi) is semisimple and nonzero. So,
we can write

rad(Pi)/soc(Pi) �
r⊕

j=1

di jS j,

where di j ≥ 0 and not all di j are zero. It is also true that for all i, j we have di j = d ji.
We will give the proof in 2.6 below.

This is sufficient information to compute dimensions of Ω-translates of M. The
crucial property is the following, which is well known. For convenience we give the
proof.

Lemma 2.1. Assume that M is a module with no simple or projective summands. Then
soc(M) = rad(M).

Proof. Since M has no projective (hence injective) summand, it has radical length ≤2.
Therefore, rad(M) is annihilated by J and hence is contained in soc(M). The socle of
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M is semisimple and hence soc(M) = rad(M) ⊕ C for some submodule C of soc(M).
We must show that C = 0.

Let π : M → M/rad(M) be the canonical surjection; then π(C) is isomorphic to C:
we write C′ = π(C).

The module M/rad(M) is semisimple, so we can write M/rad(M) = C′ ⊕G for some
semisimple module G. Let G̃ be the submodule of M containing rad(M) such that
G̃/rad(M) = G.

Then we have that G̃ ∩ C = 0 and M = G̃ + C: namely, if x ∈ G̃ ∩ C, then x +

rad(M) ∈ G ∩ C′ = 0 and therefore x ∈ rad(M), and then it is in the intersection of
rad(M) with C and is zero. Furthermore, we have M/rad(M) = G + C′, which implies
that M = G̃ + C. So, if C , 0, then it is a semisimple summand of M, and by the
assumption C = 0. �

2.4 Let M be a module such that soc(M) = rad(M), so that both the socle of M and
M/rad(M) are semisimple. We write dim(soc(M)) = s = (s1, s2, . . . , sr), where si is the
multiplicity of S i in soc(M), and similarly we write dim(M/radM) = t = (t1, t2, . . . , tr),
where ti is the multiplicity of S i in M/rad M. Then we define the ‘dimension vector’
for M to be

dim(M) := (t | s).

The usual dimension vector would be t + s.
The dimension vectors of the Ω-translates of M are usually completely determined

in terms of the matrix E.

Lemma 2.2. Let X be the 2r × 2r matrix which in block form is given by

X =

(
E −Ir

Ir 0

)
.

Assume that M has no simple or projective summands, and Ω(M) is not simple. Then

dimΩ(M)T = Xdim(M)T .

Proof. Consider the projective cover of M,

0→ Ω(M)→ PM → M → 0.

Then PM �
⊕n

i=1 tiPi since PM/rad(PM) must be isomorphic to M/rad(M). Since M
has no projective (hence injective) summands, the socle of Ω(M) is isomorphic to
soc(PM) that is

⊕
tiS i.

Also, since Ω(M) has no simple or projective summand, we know that soc Ω(M) =

rad Ω(M).
Factoring out the socle of Ω(M), we get a short exact sequence

0→ Ω(M)/soc Ω(M)→ PM/soc(PM)→ M → 0.

If we restrict this to the radical of PM/soc(PM), then we get a split exact sequence

0→ Ω(M)/soc Ω(M)→ rad(PM)/soc(PM)→ soc(M)→ 0.
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Hence, the dimension vector of Ω(M)/soc Ω(M) is equal to

EtT − sT ,

as required. �

This is still true if Ω(M) is simple. Since we want to iterate the calculation, we
exclude this.

2.5 If none of the modules Ωm(M) for m = 1, 2, . . . , k + 1 is simple, it follows that
the dimension vector of Ωk(M) is equal to Xkdim(M)T . The matrix Xk is of the form

Xk =

(
fk(E) − fk−1(E)

fk−1(E)− fk−2(E)

)
.

Here fk(x) is the kth Chebyshev polynomial, given by

f0(x) = 1, f1(x) = x, fk(x) = x fk−1(x) − fk−2(x) (k ≥ 2).

The polynomial fk(x) is the characteristic polynomial of the k × k incidence matrix of
the Dynkin diagram of type Ak, that is, it has entries ai,i±1 = 1 and ai j = 0 otherwise.

Also, fk(x) = Uk(x/2), where Uk(x) is a version of a Chebyshev polynomial of the
second kind. These polynomials are studied extensively in numerical mathematics;
see for example [14].

2.6 We recall that if S is a simple module, then, for any k ≥ 1 and for any module M,

Extk(M, S ) = Hom(Ωk(M), S ).

We give the argument. Take the exact sequence

0→ Ωk(M)→ Pk−1 → Ωk−1(M)→ 0

and apply Hom(−, S ). If π : Pk−1→ S is any homomorphism, then clearly this restricts
to the zero map Ωk(M)→ S . Hence, the inclusion map from Hom(Ωk−1(M), S ) to
Hom(Pk−1, S ) is an isomorphism. Therefore, Hom(Ωk(M), S ) � Ext1(Ωk−1(M), S ),
which is isomorphic to Extk(M, S ).

We claim that di j = d ji, which shows that the matrix E is symmetric: we may assume
that i , j. Then, since Pj is the projective cover of S j,

di j = dim Hom(Pj, Pi).

But Pi is also the injective hull of S i, so the dimension is also equal to the number of
times S i occurs in Pj, which is equal to d ji.

3. The main result

Assume that A is weakly symmetric and indecomposable with J3 = 0 , J2 and let
λ be the largest eigenvalue of the matrix E. In this section we will show that if A has
an ext-finite nonprojective module, then λ = 2. This is Proposition 3.6, and it proves
the main part of Theorem 1.1.
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If there is an ext-finite nonprojective module, then we can take such a module M
which is indecomposable. We will analyse the dimension vectors of the modules
Ωk(M) for large k.

We may assume that Ωk(M) is not simple for k ≥ 0: namely at most finitely many
of the Ωk(M) can be simple, since otherwise it would follow that M is periodic, but
then M would not be ext-finite. So, there is some m such that for k ≥ m none of the
modules Ωk(M) is simple. We replace M by Ωm(M). With M, also Ωm(M) is ext-
finite and not projective; recall that Ω induces an equivalence of the stable category.
The vanishing of extensions implies that dimension vectors satisfy an orthogonality
condition, as follows.

Lemma 3.1. Assume that Extk(M, M) = 0 for k > n. Let (t | s) be the dimension vector
of M and (t(k+1) | s(k+1)) be the dimension vector of Ωk+1(M). Then, for all k > n,

(s | −t) · (t(k+1) | s(k+1)) = 0.

Proof. By the assumption, and by 2.1, soc(M) = JM, so we have a short exact
sequence

0→ M2 = soc(M)→ M → M1 = M/JM → 0, (∗)

where M1 and M2 are semisimple. Write M1 =
⊕

i tiS i and M2 =
⊕

i siS i. Then
dim(M) = (t | s).

We apply the functor Hom(M,−) to (∗), which gives the long exact sequence of
homology. Part of this is

· · · → Extk(M,M)→ Extk(M,M1)→ Extk+1(M,M2)→ Extk+1(M,M)→ .

Consider Extk(M, M1); this is isomorphic to
⊕

i tiExtk(M, S i), and Extk(M, S i) is
isomorphic to Hom(Ωk(M), S i) (see Section 2.6). This has dimension∑

i

tit
(k)
i .

Similarly, Extk+1(M,M2) has dimension∑
i

sit
(k+1)
i .

By exactness, we get for k > n that Extk(M, M1) � Extk+1(M, M2). Equating
dimensions, ∑

i

tit
(k)
i =

∑
i

sit
(k+1)
i .

By 2.3, we know that t(k) = s(k+1). Using this, and rewriting the last identity, we get the
claim. �
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We analyse (s | −t) · (t(k+1) | s(k+1)), which is equal to

(s | −t)Xk+1(t | s)T (1k)

for k > n. We substitute Xk+1 and expand; then (1k) becomes

s fk+1(E)tT − t fk(E)tT − s fk(E)sT + t fk−1(E)sT . (2k)

The matrix fk−1(E) is symmetric, so we can interchange t and s in the last term. Then,
using the recurrence relation for the Chebyshev polynomials,

fk+1(x) = x fk(x) − fk−1(x),

the expression (2k) becomes

sE fk(E)tT − t fk(E)tT − s fk(E)sT . (3k)

Since E is real symmetric, there is an orthogonal matrix R such that RT ER = D, a
diagonal matrix. We substitute E = RDRT , and we set α := sR and β := tR. With this,
noting also that R fk(E)RT = fk(RERT ), expression (3k) becomes

αD fk(D)βT − β fk(D)βT − α fk(D)αT . (4k)

The matrices involved are diagonal; let λ1, . . . , λr be the eigenvalues of D. Then (4k)
is equal to

r∑
i=1

(αiβiλi − β
2
i − α

2
i ) fk(λi).

If we denote the distinct eigenvalues of D by µ1, . . . , µm, then this becomes
m∑

j=1

(∑
λi=µ j

αiβiλi − β
2
i − α

2
i

)
fk(µ j). (5k)

Then Lemma 3.1 shows that (5k) is zero for all k > n. The coefficients c j :=
(
∑
λi=µ j

αiβiλi − β
2
i − α

2
i ) do not depend on k. We take any m of these equations for

k > n and write them in matrix form. That is, consider a matrix

C :=


fN(µ1) fN(µ2) · · · fN(µm)

fN+i1 (µ1) fN+i1 (µ2) · · · fN+i1 (µm)
· · ·

fN+im−1 (µ1) fN+im−1 (µ2) · · · fN+im−1 (µm)


with N > n and 0 < i1 < i2 < · · · < im−1. Then, for any such C,

C


c1
c2
...

cm

 = 0.

Since N can be arbitrarily large, one may expect that for some choice of parameters,
the matrix C is nonsingular, and hence show that the ci must be zero.

Lemma 3.2. There are N > n and 0 < i1 < i2 < · · · < im such that C is nonsingular.
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Proof. We use induction on m. Assume first that m = 1. We have f0(µ1) = 1 , 0.
Whenever fu−1(µ1) , 0 and fu(µ1) = 0, then fu+1(µ1) = − fu−1(µ1) , 0. So, at worst,
every second one of the values can be zero.

Now we fix some N > n such that fN(µ1) , 0. Consider the matrix with rows

RN+ j := ( fN+ j(µ1), fN+ j(µ2), . . . , fN+ j(µm))

for j = 0, 1, 2, . . . , k and k large, k > m + 2. We replace RN+k by RN+k + RN+k−2 −

µ1RN+k−1 and obtain as the new last row

[0, (µ2 − µ1) fN+k−1(µ2), . . . , (µm − µ1) fN+k−1(µm)].

Similarly we replace RN+k−1 and so on. This process ends when row RN+2 has become

[0, (µ2 − µ1) fN+1(µ2), . . . , (µm − µ1) fN+1(µm)].

By construction, fN(µ1) , 0, and we take the row of fN(µi) as the first row of our
required submatrix.

We apply the inductive hypothesis to the matrix with rows consisting of
RN+2, . . . , RN+k omitting the first column. Note that from each column we can take
a nonzero scalar factor µi − µ1. The remaining matrix has the same shape again with
m − 1 columns. So, by the inductive hypothesis, it has m − 1 rows which form a
nonsingular submatrix. �

Example 1. The roots of fr(x) are precisely the eigenvalues of the r × r matrix E with
ei,i±1 = 1 and ei j = 0 otherwise (see Section 2.5). By the Cayley–Hamilton theorem,
we know that fr(E) = 0. In [11], it is proved that the sequence of matrices ( fm(E))
is periodic. In fact, one can see from the proof there that there are r successive rows
which are linearly independent, but there are rows of zeros.

For example, if r = 2, then the eigenvalues are ±1 and the rows are

1 −1
0 0
−1 1
−1−1
0 0
1 1
1 −1
0 0
· · ·

Corollary 3.3. If (1k) is zero for all k > n, then, for all j with 1 ≤ j ≤ m,∑
λi=µ j

(αiβiλi − β
2
i − α

2
i ) = 0.

This follows from the previous lemma.
Let λ1 = λ, the largest eigenvalue of E. We assume that A is indecomposable and

therefore E is an irreducible matrix. Therefore, λ has multiplicity one as an eigenvalue
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of E, and there is a real eigenvector v with vi > 0 for all i. We may take it as a
unit vector, and then vT is the first column of R, where RT ER = D. Recall that α = sR
and β = tR. These have first components

α1 =
∑

i

sivi, β1 =
∑

i

tivi.

Since s and t are nonzero in Zr
≥0, it follows that α1 and β1 are positive. Because λ has

multiplicity one, the sum in Corollary 3.4 for λ has only one term, and we deduce the
following result.

Corollary 3.4. The numbers α1/β1 and β1/α1 are roots of the equation

X2 − λX + 1 = 0.

The aim is to show that α1 = β1; this needs some more information. We may do the
same calculation with Ωm(M) instead of M for any m ≥ 0; denote the corresponding
numbers by β(m)

1 and α(m)
1 . For any such m, the two quotients must therefore be roots

of the above quadratic equation, that is,

β(m)
1

α(m)
1

+
α(m)

1

β(m)
1

= λ. (∗∗)

We can say more.

Lemma 3.5. We have β(m+1)
1 = λβ(m)

1 − α
(m)
1 .

Proof. To prove this, it suffices to take m = 0. We have t(1) = EtT − s and therefore

t(1)
i = (EtT )i − si.

Now (EtT )i =
∑r

k=1 eiktk =
∑r

k=1 ekitk (recall that E is symmetric). Then

β(1)
1 + α(0)

1 =

r∑
i=1

(EtT )ivi.

We substitute and change the order of summation and get that this is equal to
r∑

k=1

( r∑
i=1

ekivi

)
tk.

The coefficient of tk is the kth entry of EvT = λv, which is λvk. So,

β(1)
1 + α(0)

1 = λ
∑

k

vktk = λβ(0)
1 ,

as stated. �

Proposition 3.6. If M is ext-finite, then α1 = β1. In particular, λ = 2.
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Proof. (1) First we claim that α(m)
1 /β(m)

1 = α(m+1)
1 /β(m+1)

1 .
By Lemma 3.5, and since α(m+1)

1 = β(m)
1 (recall that s(m+1) = t(m)),

β(m+1)
1

α(m+1)
1

= λ −
α(m)

1

β(m)
1

.

Using also (∗∗), we deduce that

β(m+1)
1

α(m+1)
1

+
α(m+1)

1

β(m+1)
1

= λ = λ +
α(m+1)

1

β(m+1)
1

−
α(m)

1

β(m)
1

and hence the claim follows.
The set of positive numbers {α(m)

1 ,m ≥ 0} is bounded below, and it is a discrete
subset of R; therefore, it has a minimum. That is, we may choose M in its Ω-orbit so
that the number α(1)

1 ≤ α
(m)
1 for all m ≥ 0.

Then β(1)
1 = α(2)

1 ≥ α
(1)
1 = β(0)

1 and α(1)
1 ≤ α

(0)
1 . It follows that

α(0)
1

β(0)
1

=
α(0)

1

α(1)
1

≥ 1,

α(1)
1

β(1)
1

=
α(1)

1

α(2)
1

≤ 1

and hence the fractions must be equal to 1.
So, the quadratic equation of Corollary 3.4 has one root equal to 1. The product of

the roots is 1, so both roots are equal to 1 and then λ = 2. �

We have proved that for λ , 2, the algebra has no ext-finite modules.

Remark. Assume that λ = 2. For the algebras without (Fg) (which are of type Ã or
local), the vector v is a multiple of (1, 1, . . . , 1) and, if α(m)

1 = β(m)
1 for all m, then the

socle and the top of any Ω-translate of M have the same dimension. So, M has even
dimension, and it follows that M cannot be an Ω-translate of a simple module. Namely,
the Ω-translates of simple modules have odd dimensions for these algebras.

4. Algebras where λ = 2

Assume that A is an algebra as in Theorem 1.1, such that the largest eigenvalue λ of
E is equal to 2. We will now show that if A does not satisfy (Fg), then A has ext-finite
nonprojective modules. This will prove the other direction of Theorem 1.1.

By [12], when λ = 2 and condition (Fg) fails, the algebra is Morita equivalent
to either the q-exterior algebra or to an algebra of type Ã, which we call a double
Nakayama algebra. In both cases, there is a deformation parameter which is not
a root of unity (and nonzero). In both cases we will construct explicitly ext-finite
nonprojective modules.

4.1. The q-exterior algebra. Let Λ = Λ(q) = K〈x, y〉/(x2, y2, xy + qyx) and 0 , q ∈
K. We assume that q is not a root of unity. It was discovered by R. Schulz, some years
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ago, that this algebra has ext-finite nonprojective modules; see [15, Section 4]. The
modules below are essentially the same as studied in [15], but for completeness we
give the details.

For 0 , λ ∈ K, we define a Λ-module M = C(λ) as follows. It is two dimensional
and x, y act by

x 7→
(
0 1
0 0

)
, y 7→

(
0 λ
0 0

)
.

This module is clearly indecomposable and not projective, and it is easy to check that
C(λ) � C(µ) only if λ = µ. We construct C(λ) as the submodule of Λ generated by
ζ = −λqx + y ∈ Λ, and take a basis ζ, xζ.

Lemma 4.1. We have Ωm(C(λ)) � C(q−mλ) for m ≥ 0.

Proof. We find that Ω(M) = {z ∈ Λ : zζ = 0} = Λζ1, where ζ1 = y − λx; and then
yζ1 = λq−1xζ1. That is, Ω(M) � C(λq−1), and the statement follows. �

For convenience we give a proof showing that the module C(λ) is ext-finite.

Lemma 4.2. If µ ∈ K and µ , λ or qλ, then Ext1((C(µ),C(λ)) = 0.

Proof. A projective cover of C(µ) is of the form

0→ C(µq−1)→ Λ→ C(µ)→ 0.

Applying Hom(−,C(λ)) gives a four-term exact sequence

0→ Hom(C(µ),C(λ))→Hom(Λ,C(λ))→ Hom(C(µq−1),C(λ))
→ Ext1(C(µ),C(λ))→ 0.

With the assumptions, the first and third terms are one dimensional. Also,
Hom(Λ,C(λ) is two dimensional and hence the ext-space is zero. �

Corollary 4.3. Let M = C(λ); then Extk(M, M) = 0 for k ≥ 2. Hence, M is ext-finite
and not projective.

Proof. We have that Extk(M,M) � Ext1(Ωk−1(M),M) = Ext1(C(q−k+1λ),C(λ)) = 0. �

4.2. Double Nakayama algebras. We consider algebras of the form A = A(t) =

KQ/I, where KQ is the path algebra of a quiver of the form

•
a //

b��

•
b

oo
a

��
•

a
??

•
b

__
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We label the vertices by Zr, and the arrows are ai : i 7→ i + 1 and bi : i + 1 7→ i. The
ideal I is generated by ai+1ai, bibi+1 and

biai + ai−1bi−1 (i , 0), b0a0 + tar−1br−1,

where 0 , t ∈ K. We call this algebra, and any Morita equivalent version, a double
Nakayama algebra. We want to show that if t is not a root of unity, then A has
nonprojective ext-finite modules.

The idea is to show that A has a suitably embedded subalgebra isomorphic to a
quantum exterior algebra, and then show that the ext-finite modules for this subalgebra,
constructed before, induce to ext-finite A-modules.

Note that for an arrow ai : i→ i + 1 we have in the algebra that ai = ei+1aiei, where
ei is the idempotent corresponding to vertex i.

Lemma 4.4. The algebra A has a subalgebra Λ isomorphic to Λ(q), where qr − t−1 = 0,
and A is projective as a left and right Λ-module.

Proof. Let x := qra0 + qr−1a1 + qr−2a2 + · · · + qar−1 and y := b0 + b1 + b2 + · · · + br−1.
One checks that xy + qyx = 0 but xy , 0; and clearly x2 = 0 and y2 = 0. Take Λ to be
the subalgebra with generators x, y.

Consider A as a left Λ-module; one checks that A =
⊕r−1

i=0 Λei and that A =⊕r−1
i=0 eiΛ. �

Remark. (1) By the previous lemma, the functor A ⊗Λ (−) is exact and takes projective
modules to projective modules. In the following we write A ⊗ (−) for A ⊗Λ (−). Also,
for any Λ-module N, the module A ⊗ N has dimension r · dim N.

(2) We have xei = qai = ei+1x and yei = bi−1 = ei−1y. Hence,

ei(yx) = (yx)ei = qbiai.

(3) If the Λ-module N has no nonzero projective summands, then A ⊗ N has no
nonzero projective summands: more generally, a module of a selfinjective algebra has
no nonzero projective summands if and only if it is annihilated by the socle of the
algebra.

Here, the socle of A is spanned by the elements biai and, for w ∈ N,

q(biai) ⊗ w = ei(yx) ⊗ w = ei ⊗ yxw = 0

since yx is in the socle of Λ.
Now let M = C(λ), the Λ-module as in Subsection 4.1.
(4) By (1) and (3),

Ω(A ⊗ M) � A ⊗Ω(M) = A ⊗C(q−1λ).

Lemma 4.5. If r > 0, then the space HomA(A ⊗C(q−rλ), A ⊗ M) has dimension r.
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Proof. By adjointness,

HomA(A ⊗C(q−rλ), A ⊗ M) � HomΛ(C(q−rλ), A ⊗ M), (∗)

where A ⊗ M is restricted to Λ. We work with the Λ-homomorphisms. One checks
that the Λ-socle of A ⊗ M is equal to A ⊗ soc M = radΛ(A ⊗ M) and hence this has
dimension r.

The space (∗) contains all maps with image in the Λ-socle of A ⊗ M and this has
dimension r. So, we must show that for r , 0 there are no other homomorphisms, that
is, we have no monomorphism from C(q−rλ) to A ⊗ M for r , 0.

Assume that there is a monomorphism; then its image is a cyclic Λ-submodule
of A ⊗ M of dimension two. So, let ξ be a generator for a cyclic two-dimensional
submodule of A ⊗ M. We may assume that ξ is of the form

ξ =
∑
i∈Zr

ci(ei ⊗ ζ)

(if w ∈ soc(A), then w ⊗ ξ = 0. Furthermore, if w ∈ rad(A) and w ⊗ ξ is in the socle of
A ⊗ M, then it may be omitted from a cyclic generator).

We require that xξ and yξ are linearly dependent. By the identities in Remark 4.5,

xξ =
∑
j∈Zr

c j−1(e j ⊗ xζ), yξ =
∑
j∈Zr

c j+1(e j ⊗ yζ) =
∑
j∈Zr

λc j+1(e j ⊗ xζ).

Assume that yξ = µxξ for some scalar µ , 0. The set {e j ⊗ xζ : j ∈ Zr} is linearly
independent, so we must have

c j−1µ = λc j−1 ( j ∈ Zr).

So, we get if r is even, c j = (µ−1λ)r/2c j for all j and, if r is odd, c j = (µ−1λ)r−1c j for all
j.

Hence, if there is such element ξ, then µ = λ · ω for some root of unity ω.
If µ = q−rλ, then µ = λ · ω only if r = 0, and our claim is proved. �

Proposition 4.6. Let M = C(λ). Then A ⊗ M is ext-finite and not projective.

Proof. We have by the remark that A ⊗ M is not projective, and that Ωr(A ⊗ M) �
A ⊗C(q−rλ). Take the exact sequence

0→ A ⊗C(q−r−1λ)→ A ⊗ Λ→ A ⊗C(q−rλ)→ 0

and apply the functor HomA(−, A ⊗ M). Then, by using adjointness, we get the four-
term exact sequence

0→HomΛ(C(q−rλ), A ⊗ M)→ HomΛ(Λ, A ⊗ M)→ HomΛ(C(q−r−1λ), A ⊗ M)
→ Ext1Λ(C(q−r), A ⊗ M) � ExtrA(Ωr(A ⊗ M), A ⊗ M)→ 0.

If r > 0, then the first and third terms of the sequence have dimension r. Also, the
second term has dimension 2r and hence the fourth term is zero. Hence, for all r > 0,
we have Ext1A(Ωr(A ⊗ M), A ⊗ M) = 0. This is isomorphic to Extr+1

A (A ⊗ M, A ⊗ M)
and hence A ⊗ M is ext-finite. �
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