EXT-FINITE MODULES FOR WEAKLY SYMMETRIC ALGEBRAS WITH RADICAL CUBE ZERO

KARIN ERDMANN

(Received 11 September 2015; accepted 21 January 2016; first published online 19 September 2016)

Communicated by D. Flannery

Abstract

Assume that A is a finite-dimensional algebra over some field, and assume that A is weakly symmetric and indecomposable, with radical cube zero and radical square nonzero. We show that such an algebra of wild representation type does not have a nonprojective module M whose ext-algebra is finite dimensional. This gives a complete classification of weakly symmetric indecomposable algebras which have a nonprojective module whose ext-algebra is finite dimensional. This shows in particular that existence of ext-finite nonprojective modules is not equivalent with the failure of the finite generation condition (Fg), which ensures that modules have support varieties.

2010 Mathematics subject classification: primary 16E40, 16G10; secondary 16E05, 15A24, 33C45.
Keywords and phrases: extensions, finite global dimension, weakly symmetric algebras, Chebyshev polynomials.

1. Introduction

Assume that A is a finite-dimensional algebra over a field K. We say that an A-module M is ext-finite if there is some $n \geq 0$ such that $\operatorname{Ext}_{A}^{k}(M, M)=0$ for $k>n$.

If $A=K G$, the group algebra of a finite group, then any ext-finite module is projective (this may be found in [4, Ch. 5]). On the other hand, there is a fourdimensional selfinjective algebra which has nonprojective ext-finite modules, first described in [15]. This algebra is known as a q-exterior algebra; see Section 4. If a selfinjective algebra A has a nonprojective ext-finite module, there is no support variety theory for A-modules via Hochschild cohomology. This follows from [10, Corollary 2.3]; it shows that the finite generation conditions [10, (Fg1) and (Fg2)] (and $[16,(\mathrm{Fg})]$) must fail. That is, existence of ext-finite nonprojective modules gives information about the action of the Hochschild cohomology on ext-algebras of modules.

There is also the 'generalised Auslander-Reiten condition', GARC, which has been introduced in [2] in the context of homological conjectures, and which has attracted a

[^0]lot of interest; see for example $[6-9,13]$. The condition GARC for a ring R is stated as follows.

If M is an R-module and there is some $n \geq 0$ such that $\operatorname{Ext}_{R}^{k}(M, M \oplus R)=0$ for $k>n$, then M has projective dimension at most n.

The four-dimensional local algebra mentioned above does not satisfy GARC, there are even counterexamples with $n=1$; see Section 4. It is not known whether there is a ring R which has a counterexample with $n=0$.

If $R=A$ and A is a selfinjective finite-dimensional algebra, then GARC states that any ext-finite module is projective.

The four-dimensional algebras which have nonprojective ext-finite modules belong to the class of weakly symmetric algebras with radical cube zero. These algebras have been studied in [5, 12]. In particular, it is understood when such an algebra does not satisfy the (Fg) condition, as follows.

Assume that A is weakly symmetric with $J^{3}=0$ and $J^{2} \neq 0$, where J is the radical of A. Assume also that A is indecomposable. Let E be the matrix with entries $\operatorname{dim} \operatorname{Ext}^{1}\left(S_{i}, S_{j}\right)$, where $S_{1}, S_{2}, \ldots, S_{r}$ are the simple A-modules. Then E is a symmetric matrix, so it has real eigenvalues. The largest eigenvalue λ, say, occurs with multiplicity one, and has a positive eigenvector; this is the Perron-Frobenius theorem. It is proved in [12] that A does not satisfy (Fg) if and only if either $\lambda>2$, or else A is Morita equivalent to either a four-dimensional local algebra as above or to a 'double Nakayama algebra' (see Section 4), where in both cases there is a deformation parameter which is not a root of unity.

These double Nakayama algebras also have ext-finite nonprojective modules; this is probably known: we will give a proof in Section 4.

Our main result shows that a weakly symmetric algebra with radical cube zero and $\lambda>2$ does not have ext-finite nonprojective modules. With this, we get the following result.

Theorem 1.1. Assume that A is a weakly symmetric indecomposable algebra over an algebraically closed field, with $J^{3}=0 \neq J^{2}$. Then A has an ext-finite nonprojective module if and only if $\lambda=2$ and A is Morita equivalent to either a four-dimensional q exterior algebra or a double Nakayama algebra, where in both cases the deformation parameter is not a root of unity.

It follows that existence of ext-finite nonprojective modules is not equivalent with failure of (Fg).

The theorem remains true for an arbitrary field if one takes for A an algebra defined by quiver and relations.

Section 2 contains the relevant background. In Section 3 we prove the main new part of the theorem, and in Section 4 we construct ext-finite nonprojective modules for the algebras for which $\lambda=2$. We work with finite-dimensional left A-modules and, if M, N are such A-modules, then we write $\operatorname{Hom}(M, N)$ instead of $\operatorname{Hom}_{A}(M, N)$ and similarly $\operatorname{Ext}^{k}(M, N)$ means $\operatorname{Ext}_{A}^{k}(M, N)$. Relevant background may be found in [1] or [3].

2. Preliminaries

2.1 We assume throughout that A is a finite-dimensional weakly symmetric algebra over an algebraically closed field K, and we assume that A is indecomposable. This is no restriction since we will focus on indecomposable modules. Suppose that M is a finite-dimensional A-module. Then $\operatorname{rad}(M)$ is the submodule of M such that $M / \operatorname{rad}(M)$ is the largest semisimple factor module of M, sometimes called the 'top' of M. The $\operatorname{module} \operatorname{rad}(M)$ is equal to $J M$, where J is the radical of A. The socle of M, denoted by $\operatorname{soc}(M)$, is the largest semisimple submodule of M.
2.2 A finite-dimensional A-module M has a projective cover, that is, there is a surjective map $\pi_{M}: P \rightarrow M$, where P is projective and $P / \operatorname{rad}(P) \cong M / \operatorname{rad}(M)$. The kernel of π_{M} is unique up to isomorphism, and is denoted by $\Omega(M)$. Repeatedly taking projective covers gives a minimal projective resolution of M,

$$
\cdots \rightarrow P_{m} \xrightarrow{d_{m}} P_{m-1} \rightarrow \cdots \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0,
$$

where $d_{0}=\pi_{M}$ and d_{m} is a projective cover of $\Omega^{m}(M)$ for $m \geq 1$. If A is selfinjective and M is indecomposable and nonprojective, then also $\Omega(M)$ is indecomposable and nonprojective. In fact, Ω induces an equivalence of the stable module category of A.
2.3 We assume that A is weakly symmetric. This means that A is selfinjective, and any indecomposable projective module has a simple socle, with $\operatorname{soc}(P) \cong P / \operatorname{rad}(P)$. Hence, for any simple module, its projective cover is also its injective hull. This implies also that for any nonprojective indecomposable A-module M we have that $M / \operatorname{rad}(M)$ is isomorphic to $\operatorname{soc} \Omega(M)$.

Let $S_{1}, S_{2}, \ldots, S_{r}$ be the simple A-modules, and let P_{i} be the projective cover of S_{i} for $1 \leq i \leq r$. We assume throughout that $J^{3}=0$ but $J^{2} \neq 0$. If so, then every indecomposable projective module P_{i} must have radical length three; this is well known (and it is easy to see, recalling that we assume A to be indecomposable). So, we have $P_{i} / \operatorname{rad}\left(P_{i}\right) \cong S_{i} \cong \operatorname{soc}\left(P_{i}\right)$ and $\operatorname{rad}\left(P_{i}\right) / \operatorname{soc}\left(P_{i}\right)$ is semisimple and nonzero. So, we can write

$$
\operatorname{rad}\left(P_{i}\right) / \operatorname{soc}\left(P_{i}\right) \cong \bigoplus_{j=1}^{r} d_{i j} S_{j}
$$

where $d_{i j} \geq 0$ and not all $d_{i j}$ are zero. It is also true that for all i, j we have $d_{i j}=d_{j i}$. We will give the proof in 2.6 below.

This is sufficient information to compute dimensions of Ω-translates of M. The crucial property is the following, which is well known. For convenience we give the proof.

Lemma 2.1. Assume that M is a module with no simple or projective summands. Then $\operatorname{soc}(M)=\operatorname{rad}(M)$.

Proof. Since M has no projective (hence injective) summand, it has radical length ≤ 2. Therefore, $\operatorname{rad}(M)$ is annihilated by J and hence is contained in $\operatorname{soc}(M)$. The socle of
M is semisimple and hence $\operatorname{soc}(M)=\operatorname{rad}(M) \oplus C$ for some submodule C of $\operatorname{soc}(M)$. We must show that $C=0$.

Let $\pi: M \rightarrow M / \operatorname{rad}(M)$ be the canonical surjection; then $\pi(C)$ is isomorphic to C : we write $C^{\prime}=\pi(C)$.

The module $M / \operatorname{rad}(M)$ is semisimple, so we can write $M / \operatorname{rad}(M)=C^{\prime} \oplus G$ for some semisimple module G. Let \tilde{G} be the submodule of M containing $\operatorname{rad}(M)$ such that $\tilde{G} / \operatorname{rad}(M)=G$.

Then we have that $\tilde{G} \cap C=0$ and $M=\tilde{G}+C$: namely, if $x \in \tilde{G} \cap C$, then $x+$ $\operatorname{rad}(M) \in G \cap C^{\prime}=0$ and therefore $x \in \operatorname{rad}(M)$, and then it is in the intersection of $\operatorname{rad}(M)$ with C and is zero. Furthermore, we have $M / \operatorname{rad}(M)=G+C^{\prime}$, which implies that $M=\tilde{G}+C$. So, if $C \neq 0$, then it is a semisimple summand of M, and by the assumption $C=0$.
2.4 Let M be a module such that $\operatorname{soc}(M)=\operatorname{rad}(M)$, so that both the socle of M and

 where t_{i} is the multiplicity of S_{i} in $M / \operatorname{rad} M$. Then we define the 'dimension vector' for M to be

$$
\underline{\operatorname{dim}}(M):=(\underline{t} \mid \underline{s}) .
$$

The usual dimension vector would be $\underline{t}+\underline{s}$.
The dimension vectors of the Ω-translates of M are usually completely determined in terms of the matrix E.

Lemma 2.2. Let X be the $2 r \times 2 r$ matrix which in block form is given by

$$
X=\left(\begin{array}{cc}
E & -I_{r} \\
I_{r} & 0
\end{array}\right)
$$

Assume that M has no simple or projective summands, and $\Omega(M)$ is not simple. Then

$$
\underline{\operatorname{dim} \Omega}(M)^{T}=X \underline{\operatorname{dim}}(M)^{T} .
$$

Proof. Consider the projective cover of M,

$$
0 \rightarrow \Omega(M) \rightarrow P_{M} \rightarrow M \rightarrow 0
$$

Then $P_{M} \cong \bigoplus_{i=1}^{n} t_{i} P_{i}$ since $P_{M} / \operatorname{rad}\left(P_{M}\right)$ must be isomorphic to $M / \operatorname{rad}(M)$. Since M has no projective (hence injective) summands, the socle of $\Omega(M)$ is isomorphic to $\operatorname{soc}\left(P_{M}\right)$ that is $\bigoplus t_{i} S_{i}$.

Also, since $\Omega(M)$ has no simple or projective summand, we know that $\operatorname{soc} \Omega(M)=$ $\operatorname{rad} \Omega(M)$.

Factoring out the socle of $\Omega(M)$, we get a short exact sequence

$$
0 \rightarrow \Omega(M) / \operatorname{soc} \Omega(M) \rightarrow P_{M} / \operatorname{soc}\left(P_{M}\right) \rightarrow M \rightarrow 0
$$

If we restrict this to the radical of $P_{M} / \operatorname{soc}\left(P_{M}\right)$, then we get a split exact sequence

$$
0 \rightarrow \Omega(M) / \operatorname{soc} \Omega(M) \rightarrow \operatorname{rad}\left(P_{M}\right) / \operatorname{soc}\left(P_{M}\right) \rightarrow \operatorname{soc}(M) \rightarrow 0 .
$$

Hence, the dimension vector of $\Omega(M) / \operatorname{soc} \Omega(M)$ is equal to

$$
E \underline{t}^{T}-\underline{s}^{T}
$$

as required.
This is still true if $\Omega(M)$ is simple. Since we want to iterate the calculation, we exclude this.
2.5 If none of the modules $\Omega^{m}(M)$ for $m=1,2, \ldots, k+1$ is simple, it follows that the dimension vector of $\Omega^{k}(M)$ is equal to $X^{k} \underline{\operatorname{dim}}(M)^{T}$. The matrix X^{k} is of the form

$$
X^{k}=\binom{f_{k}(E)-f_{k-1}(E)}{f_{k-1}(E)-f_{k-2}(E)}
$$

Here $f_{k}(x)$ is the k th Chebyshev polynomial, given by

$$
f_{0}(x)=1, \quad f_{1}(x)=x, \quad f_{k}(x)=x f_{k-1}(x)-f_{k-2}(x) \quad(k \geq 2)
$$

The polynomial $f_{k}(x)$ is the characteristic polynomial of the $k \times k$ incidence matrix of the Dynkin diagram of type A_{k}, that is, it has entries $a_{i, i \pm 1}=1$ and $a_{i j}=0$ otherwise.

Also, $f_{k}(x)=U_{k}(x / 2)$, where $U_{k}(x)$ is a version of a Chebyshev polynomial of the second kind. These polynomials are studied extensively in numerical mathematics; see for example [14].
2.6 We recall that if S is a simple module, then, for any $k \geq 1$ and for any module M,

$$
\operatorname{Ext}^{k}(M, S)=\operatorname{Hom}\left(\Omega^{k}(M), S\right)
$$

We give the argument. Take the exact sequence

$$
0 \rightarrow \Omega^{k}(M) \rightarrow P_{k-1} \rightarrow \Omega^{k-1}(M) \rightarrow 0
$$

and apply $\operatorname{Hom}(-, S)$. If $\pi: P_{k-1} \rightarrow S$ is any homomorphism, then clearly this restricts to the zero map $\Omega^{k}(M) \rightarrow S$. Hence, the inclusion map from $\operatorname{Hom}\left(\Omega^{k-1}(M), S\right)$ to $\operatorname{Hom}\left(P_{k-1}, S\right)$ is an isomorphism. Therefore, $\operatorname{Hom}\left(\Omega^{k}(M), S\right) \cong \operatorname{Ext}^{1}\left(\Omega^{k-1}(M), S\right)$, which is isomorphic to $\operatorname{Ext}^{k}(M, S)$.

We claim that $d_{i j}=d_{j i}$, which shows that the matrix E is symmetric: we may assume that $i \neq j$. Then, since P_{j} is the projective cover of S_{j},

$$
d_{i j}=\operatorname{dim} \operatorname{Hom}\left(P_{j}, P_{i}\right)
$$

But P_{i} is also the injective hull of S_{i}, so the dimension is also equal to the number of times S_{i} occurs in P_{j}, which is equal to $d_{j i}$.

3. The main result

Assume that A is weakly symmetric and indecomposable with $J^{3}=0 \neq J^{2}$ and let λ be the largest eigenvalue of the matrix E. In this section we will show that if A has an ext-finite nonprojective module, then $\lambda=2$. This is Proposition 3.6, and it proves the main part of Theorem 1.1.

If there is an ext-finite nonprojective module, then we can take such a module M which is indecomposable. We will analyse the dimension vectors of the modules $\Omega^{k}(M)$ for large k.

We may assume that $\Omega^{k}(M)$ is not simple for $k \geq 0$: namely at most finitely many of the $\Omega^{k}(M)$ can be simple, since otherwise it would follow that M is periodic, but then M would not be ext-finite. So, there is some m such that for $k \geq m$ none of the modules $\Omega^{k}(M)$ is simple. We replace M by $\Omega^{m}(M)$. With M, also $\Omega^{m}(M)$ is extfinite and not projective; recall that Ω induces an equivalence of the stable category. The vanishing of extensions implies that dimension vectors satisfy an orthogonality condition, as follows.

Lemma 3.1. Assume that $\operatorname{Ext}^{k}(M, M)=0$ for $k>n$. Let $(\underline{t} \mid \underline{s})$ be the dimension vector of M and $\left(\underline{t}^{(k+1)} \mid \underline{s}^{(k+1)}\right)$ be the dimension vector of $\Omega^{k+1}(M)$. Then, for all $k>n$,

$$
(\underline{s} \mid-\underline{t}) \cdot\left(\underline{t}^{(k+1)} \mid \underline{s}^{(k+1)}\right)=0 .
$$

Proof. By the assumption, and by $2.1, \operatorname{soc}(M)=J M$, so we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow M_{2}=\operatorname{soc}(M) \rightarrow M \rightarrow M_{1}=M / J M \rightarrow 0 \tag{*}
\end{equation*}
$$

where M_{1} and M_{2} are semisimple. Write $M_{1}=\bigoplus_{i} t_{i} S_{i}$ and $M_{2}=\bigoplus_{i} s_{i} S_{i}$. Then $\operatorname{dim}(M)=(\underline{t} \mid \underline{s})$.

We apply the functor $\operatorname{Hom}(M,-)$ to $(*)$, which gives the long exact sequence of homology. Part of this is

$$
\cdots \rightarrow \operatorname{Ext}^{k}(M, M) \rightarrow \operatorname{Ext}^{k}\left(M, M_{1}\right) \rightarrow \operatorname{Ext}^{k+1}\left(M, M_{2}\right) \rightarrow \operatorname{Ext}^{k+1}(M, M) \rightarrow .
$$

Consider $\operatorname{Ext}^{k}\left(M, M_{1}\right)$; this is isomorphic to $\bigoplus_{i} t_{i} \operatorname{Ext}^{k}\left(M, S_{i}\right)$, and $\operatorname{Ext}^{k}\left(M, S_{i}\right)$ is isomorphic to $\operatorname{Hom}\left(\Omega^{k}(M), S_{i}\right)$ (see Section 2.6). This has dimension

$$
\sum_{i} t_{i} t_{i}^{(k)}
$$

Similarly, $\operatorname{Ext}^{k+1}\left(M, M_{2}\right)$ has dimension

$$
\sum_{i} s_{i} t_{i}^{(k+1)}
$$

By exactness, we get for $k>n$ that $\operatorname{Ext}^{k}\left(M, M_{1}\right) \cong \operatorname{Ext}^{k+1}\left(M, M_{2}\right)$. Equating dimensions,

$$
\sum_{i} t_{i} t_{i}^{(k)}=\sum_{i} s_{i} t_{i}^{(k+1)}
$$

By 2.3, we know that $\underline{t}^{(k)}=\underline{s}^{(k+1)}$. Using this, and rewriting the last identity, we get the claim.

We analyse $(\underline{s} \mid-\underline{t}) \cdot\left(\underline{t}^{(k+1)} \mid \underline{s}^{(k+1)}\right)$, which is equal to

$$
\begin{equation*}
(\underline{s} \mid-\underline{t}) X^{k+1}(\underline{t} \mid \underline{s})^{T} \tag{1k}
\end{equation*}
$$

for $k>n$. We substitute X^{k+1} and expand; then (1k) becomes

$$
\begin{equation*}
\underline{s} f_{k+1}(E) \underline{t}^{T}-\underline{t} f_{k}(E) \underline{t}^{T}-\underline{s} f_{k}(E) \underline{s}^{T}+\underline{t}_{k-1}(E) \underline{s}^{T} \tag{2k}
\end{equation*}
$$

The matrix $f_{k-1}(E)$ is symmetric, so we can interchange \underline{t} and \underline{s} in the last term. Then, using the recurrence relation for the Chebyshev polynomials,

$$
f_{k+1}(x)=x f_{k}(x)-f_{k-1}(x)
$$

the expression ($2 k$) becomes

$$
\begin{equation*}
\underline{s} E f_{k}(E) \underline{t}^{T}-\underline{t} f_{k}(E) \underline{t}^{T}-\underline{s} f_{k}(E) \underline{s}^{T} \tag{3k}
\end{equation*}
$$

Since E is real symmetric, there is an orthogonal matrix R such that $R^{T} E R=D$, a diagonal matrix. We substitute $E=R D R^{T}$, and we set $\underline{\alpha}:=\underline{s} R$ and $\underline{\beta}:=\underline{t} R$. With this, noting also that $R f_{k}(E) R^{T}=f_{k}\left(R E R^{T}\right)$, expression (3k) becomes

$$
\begin{equation*}
\underline{\alpha} D f_{k}(D) \underline{\beta}^{T}-\underline{\beta}_{k}(D) \underline{\beta}^{T}-\underline{\alpha} f_{k}(D) \underline{\alpha}^{T} . \tag{4k}
\end{equation*}
$$

The matrices involved are diagonal; let $\lambda_{1}, \ldots, \lambda_{r}$ be the eigenvalues of D. Then (4k) is equal to

$$
\sum_{i=1}^{r}\left(\alpha_{i} \beta_{i} \lambda_{i}-\beta_{i}^{2}-\alpha_{i}^{2}\right) f_{k}\left(\lambda_{i}\right)
$$

If we denote the distinct eigenvalues of D by μ_{1}, \ldots, μ_{m}, then this becomes

$$
\begin{equation*}
\sum_{j=1}^{m}\left(\sum_{\lambda_{i}=\mu_{j}} \alpha_{i} \beta_{i} \lambda_{i}-\beta_{i}^{2}-\alpha_{i}^{2}\right) f_{k}\left(\mu_{j}\right) \tag{5k}
\end{equation*}
$$

Then Lemma 3.1 shows that ($5 k$) is zero for all $k>n$. The coefficients $c_{j}:=$ ($\sum_{\lambda_{i}=\mu_{j}} \alpha_{i} \beta_{i} \lambda_{i}-\beta_{i}^{2}-\alpha_{i}^{2}$) do not depend on k. We take any m of these equations for $k>n$ and write them in matrix form. That is, consider a matrix

$$
C:=\left(\begin{array}{cccc}
f_{N}\left(\mu_{1}\right) & f_{N}\left(\mu_{2}\right) & \cdots & f_{N}\left(\mu_{m}\right) \\
f_{N+i_{1}}\left(\mu_{1}\right) & f_{N+i_{1}}\left(\mu_{2}\right) & \cdots & f_{N+i_{1}}\left(\mu_{m}\right) \\
\cdots & & & \\
f_{N+i_{m-1}}\left(\mu_{1}\right) & f_{N+i_{m-1}}\left(\mu_{2}\right) & \cdots & f_{N+i_{m-1}}\left(\mu_{m}\right)
\end{array}\right)
$$

with $N>n$ and $0<i_{1}<i_{2}<\cdots<i_{m-1}$. Then, for any such C,

$$
C\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right)=0
$$

Since N can be arbitrarily large, one may expect that for some choice of parameters, the matrix C is nonsingular, and hence show that the c_{i} must be zero.

Lemma 3.2. There are $N>n$ and $0<i_{1}<i_{2}<\cdots<i_{m}$ such that C is nonsingular.

Proof. We use induction on m. Assume first that $m=1$. We have $f_{0}\left(\mu_{1}\right)=1 \neq 0$. Whenever $f_{u-1}\left(\mu_{1}\right) \neq 0$ and $f_{u}\left(\mu_{1}\right)=0$, then $f_{u+1}\left(\mu_{1}\right)=-f_{u-1}\left(\mu_{1}\right) \neq 0$. So, at worst, every second one of the values can be zero.

Now we fix some $N>n$ such that $f_{N}\left(\mu_{1}\right) \neq 0$. Consider the matrix with rows

$$
R_{N+j}:=\left(f_{N+j}\left(\mu_{1}\right), f_{N+j}\left(\mu_{2}\right), \ldots, f_{N+j}\left(\mu_{m}\right)\right)
$$

for $j=0,1,2, \ldots, k$ and k large, $k>m+2$. We replace R_{N+k} by $R_{N+k}+R_{N+k-2}-$ $\mu_{1} R_{N+k-1}$ and obtain as the new last row

$$
\left[0,\left(\mu_{2}-\mu_{1}\right) f_{N+k-1}\left(\mu_{2}\right), \ldots,\left(\mu_{m}-\mu_{1}\right) f_{N+k-1}\left(\mu_{m}\right)\right]
$$

Similarly we replace R_{N+k-1} and so on. This process ends when row R_{N+2} has become

$$
\left[0,\left(\mu_{2}-\mu_{1}\right) f_{N+1}\left(\mu_{2}\right), \ldots,\left(\mu_{m}-\mu_{1}\right) f_{N+1}\left(\mu_{m}\right)\right] .
$$

By construction, $f_{N}\left(\mu_{1}\right) \neq 0$, and we take the row of $f_{N}\left(\mu_{i}\right)$ as the first row of our required submatrix.

We apply the inductive hypothesis to the matrix with rows consisting of R_{N+2}, \ldots, R_{N+k} omitting the first column. Note that from each column we can take a nonzero scalar factor $\mu_{i}-\mu_{1}$. The remaining matrix has the same shape again with $m-1$ columns. So, by the inductive hypothesis, it has $m-1$ rows which form a nonsingular submatrix.
Example 1. The roots of $f_{r}(x)$ are precisely the eigenvalues of the $r \times r$ matrix E with $e_{i, i \pm 1}=1$ and $e_{i j}=0$ otherwise (see Section 2.5). By the Cayley-Hamilton theorem, we know that $f_{r}(E)=0$. In [11], it is proved that the sequence of matrices $\left(f_{m}(E)\right)$ is periodic. In fact, one can see from the proof there that there are r successive rows which are linearly independent, but there are rows of zeros.

For example, if $r=2$, then the eigenvalues are ± 1 and the rows are

$$
\begin{array}{cc}
1 & -1 \\
0 & 0 \\
-1 & 1 \\
-1 & -1 \\
0 & 0 \\
1 & 1 \\
1 & -1 \\
0 & 0
\end{array}
$$

Corollary 3.3. If ($1 k$) is zero for all $k>n$, then, for all j with $1 \leq j \leq m$,

$$
\sum_{\lambda_{i}=\mu_{j}}\left(\alpha_{i} \beta_{i} \lambda_{i}-\beta_{i}^{2}-\alpha_{i}^{2}\right)=0 .
$$

This follows from the previous lemma.
Let $\lambda_{1}=\lambda$, the largest eigenvalue of E. We assume that A is indecomposable and therefore E is an irreducible matrix. Therefore, λ has multiplicity one as an eigenvalue
of E, and there is a real eigenvector \underline{v} with $v_{i}>0$ for all i. We may take it as a unit vector, and then \underline{v}^{T} is the first column of R, where $R^{T} E R=D$. Recall that $\underline{\alpha}=\underline{s} R$ and $\underline{\beta}=\underline{t} R$. These have first components

$$
\alpha_{1}=\sum_{i} s_{i} v_{i}, \quad \beta_{1}=\sum_{i} t_{i} v_{i} .
$$

Since \underline{s} and \underline{t} are nonzero in $\mathbb{Z}_{\geq 0}^{r}$, it follows that α_{1} and β_{1} are positive. Because λ has multiplicity one, the sum in Corollary 3.4 for λ has only one term, and we deduce the following result.

Corollary 3.4. The numbers α_{1} / β_{1} and β_{1} / α_{1} are roots of the equation

$$
X^{2}-\lambda X+1=0
$$

The aim is to show that $\alpha_{1}=\beta_{1}$; this needs some more information. We may do the same calculation with $\Omega^{m}(M)$ instead of M for any $m \geq 0$; denote the corresponding numbers by $\beta_{1}^{(m)}$ and $\alpha_{1}^{(m)}$. For any such m, the two quotients must therefore be roots of the above quadratic equation, that is,

$$
\begin{equation*}
\frac{\beta_{1}^{(m)}}{\alpha_{1}^{(m)}}+\frac{\alpha_{1}^{(m)}}{\beta_{1}^{(m)}}=\lambda . \tag{**}
\end{equation*}
$$

We can say more.
Lemma 3.5. We have $\beta_{1}^{(m+1)}=\lambda \beta_{1}^{(m)}-\alpha_{1}^{(m)}$.
Proof. To prove this, it suffices to take $m=0$. We have $\underline{t}^{(1)}=E \underline{t}^{T}-\underline{s}$ and therefore

$$
\underline{t}_{i}^{(1)}=\left(E \underline{t}^{T}\right)_{i}-s_{i}
$$

Now $\left(E \underline{t}^{T}\right)_{i}=\sum_{k=1}^{r} e_{i k} t_{k}=\sum_{k=1}^{r} e_{k i} t_{k}$ (recall that E is symmetric). Then

$$
\beta_{1}^{(1)}+\alpha_{1}^{(0)}=\sum_{i=1}^{r}\left(E \underline{t}^{T}\right)_{i} v_{i}
$$

We substitute and change the order of summation and get that this is equal to

$$
\sum_{k=1}^{r}\left(\sum_{i=1}^{r} e_{k i} v_{i}\right) t_{k} .
$$

The coefficient of t_{k} is the k th entry of $E \underline{v}^{T}=\lambda \underline{v}$, which is λv_{k}. So,

$$
\beta_{1}^{(1)}+\alpha_{1}^{(0)}=\lambda \sum_{k} v_{k} t_{k}=\lambda \beta_{1}^{(0)}
$$

as stated.
Proposition 3.6. If M is ext-finite, then $\alpha_{1}=\beta_{1}$. In particular, $\lambda=2$.

Proof. (1) First we claim that $\alpha_{1}^{(m)} / \beta_{1}^{(m)}=\alpha_{1}^{(m+1)} / \beta_{1}^{(m+1)}$.
By Lemma 3.5, and since $\alpha_{1}^{(m+1)}=\beta_{1}^{(m)}\left(\right.$ recall that $\left.\underline{s}^{(m+1)}=\underline{t}^{(m)}\right)$,

$$
\frac{\beta_{1}^{(m+1)}}{\alpha_{1}^{(m+1)}}=\lambda-\frac{\alpha_{1}^{(m)}}{\beta_{1}^{(m)}} .
$$

Using also ($* *$), we deduce that

$$
\frac{\beta_{1}^{(m+1)}}{\alpha_{1}^{(m+1)}}+\frac{\alpha_{1}^{(m+1)}}{\beta_{1}^{(m+1)}}=\lambda=\lambda+\frac{\alpha_{1}^{(m+1)}}{\beta_{1}^{(m+1)}}-\frac{\alpha_{1}^{(m)}}{\beta_{1}^{(m)}}
$$

and hence the claim follows.
The set of positive numbers $\left\{\alpha_{1}^{(m)}, m \geq 0\right\}$ is bounded below, and it is a discrete subset of \mathbb{R}; therefore, it has a minimum. That is, we may choose M in its Ω-orbit so that the number $\alpha_{1}^{(1)} \leq \alpha_{1}^{(m)}$ for all $m \geq 0$.

Then $\beta_{1}^{(1)}=\alpha_{1}^{(2)} \geq \alpha_{1}^{(1)}=\beta_{1}^{(0)}$ and $\alpha_{1}^{(1)} \leq \alpha_{1}^{(0)}$. It follows that

$$
\begin{aligned}
& \frac{\alpha_{1}^{(0)}}{\beta_{1}^{(0)}}=\frac{\alpha_{1}^{(0)}}{\alpha_{1}^{(1)}} \geq 1, \\
& \frac{\alpha_{1}^{(1)}}{\beta_{1}^{(1)}}=\frac{\alpha_{1}^{(1)}}{\alpha_{1}^{(2)}} \leq 1
\end{aligned}
$$

and hence the fractions must be equal to 1 .
So, the quadratic equation of Corollary 3.4 has one root equal to 1 . The product of the roots is 1 , so both roots are equal to 1 and then $\lambda=2$.

We have proved that for $\lambda \neq 2$, the algebra has no ext-finite modules.
Remark. Assume that $\lambda=2$. For the algebras without (Fg) (which are of type \tilde{A} or local), the vector \underline{v} is a multiple of $(1,1, \ldots, 1)$ and, if $\alpha_{1}^{(m)}=\beta_{1}^{(m)}$ for all m, then the socle and the top of any Ω-translate of M have the same dimension. So, M has even dimension, and it follows that M cannot be an Ω-translate of a simple module. Namely, the Ω-translates of simple modules have odd dimensions for these algebras.

4. Algebras where $\lambda=2$

Assume that A is an algebra as in Theorem 1.1, such that the largest eigenvalue λ of E is equal to 2 . We will now show that if A does not satisfy (Fg), then A has ext-finite nonprojective modules. This will prove the other direction of Theorem 1.1.

By [12], when $\lambda=2$ and condition (Fg) fails, the algebra is Morita equivalent to either the q-exterior algebra or to an algebra of type \widetilde{A}, which we call a double Nakayama algebra. In both cases, there is a deformation parameter which is not a root of unity (and nonzero). In both cases we will construct explicitly ext-finite nonprojective modules.
4.1. The \boldsymbol{q}-exterior algebra. Let $\Lambda=\Lambda(q)=K\langle x, y\rangle /\left(x^{2}, y^{2}, x y+q y x\right)$ and $0 \neq q \in$ K. We assume that q is not a root of unity. It was discovered by R. Schulz, some years
ago, that this algebra has ext-finite nonprojective modules; see [15, Section 4]. The modules below are essentially the same as studied in [15], but for completeness we give the details.

For $0 \neq \lambda \in K$, we define a Λ-module $M=C(\lambda)$ as follows. It is two dimensional and x, y act by

$$
x \mapsto\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y \mapsto\left(\begin{array}{ll}
0 & \lambda \\
0 & 0
\end{array}\right) .
$$

This module is clearly indecomposable and not projective, and it is easy to check that $C(\lambda) \cong C(\mu)$ only if $\lambda=\mu$. We construct $C(\lambda)$ as the submodule of Λ generated by $\zeta=-\lambda q x+y \in \Lambda$, and take a basis $\zeta, x \zeta$.

Lemma 4.1. We have $\Omega^{m}(C(\lambda)) \cong C\left(q^{-m} \lambda\right)$ for $m \geq 0$.
Proof. We find that $\Omega(M)=\{z \in \Lambda: z \zeta=0\}=\Lambda \zeta_{1}$, where $\zeta_{1}=y-\lambda x$; and then $y \zeta_{1}=\lambda q^{-1} x \zeta_{1}$. That is, $\Omega(M) \cong C\left(\lambda q^{-1}\right)$, and the statement follows.

For convenience we give a proof showing that the module $C(\lambda)$ is ext-finite.
Lemma 4.2. If $\mu \in K$ and $\mu \neq \lambda$ or $q \lambda$, then $\operatorname{Ext}^{1}((C(\mu), C(\lambda))=0$.
Proof. A projective cover of $C(\mu)$ is of the form

$$
0 \rightarrow C\left(\mu q^{-1}\right) \rightarrow \Lambda \rightarrow C(\mu) \rightarrow 0
$$

Applying $\operatorname{Hom}(-, C(\lambda))$ gives a four-term exact sequence

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}(C(\mu), C(\lambda)) & \rightarrow \operatorname{Hom}(\Lambda, C(\lambda)) \rightarrow \operatorname{Hom}\left(C\left(\mu q^{-1}\right), C(\lambda)\right) \\
& \rightarrow \operatorname{Ext}^{1}(C(\mu), C(\lambda)) \rightarrow 0
\end{aligned}
$$

With the assumptions, the first and third terms are one dimensional. Also, $\operatorname{Hom}(\Lambda, C(\lambda)$ is two dimensional and hence the ext-space is zero.
Corollary 4.3. Let $M=C(\lambda)$; then $\operatorname{Ext}^{k}(M, M)=0$ for $k \geq 2$. Hence, M is ext-finite and not projective.
Proof. We have that $\operatorname{Ext}^{k}(M, M) \cong \operatorname{Ext}^{1}\left(\Omega^{k-1}(M), M\right)=\operatorname{Ext}^{1}\left(C\left(q^{-k+1} \lambda\right), C(\lambda)\right)=0$.
4.2. Double Nakayama algebras. We consider algebras of the form $A=A(t)=$ $K Q / I$, where $K Q$ is the path algebra of a quiver of the form

We label the vertices by \mathbb{Z}_{r}, and the arrows are $a_{i}: i \mapsto i+1$ and $b_{i}: i+1 \mapsto i$. The ideal I is generated by $a_{i+1} a_{i}, b_{i} b_{i+1}$ and

$$
b_{i} a_{i}+a_{i-1} b_{i-1} \quad(i \neq 0), \quad b_{0} a_{0}+t a_{r-1} b_{r-1}
$$

where $0 \neq t \in K$. We call this algebra, and any Morita equivalent version, a double Nakayama algebra. We want to show that if t is not a root of unity, then A has nonprojective ext-finite modules.

The idea is to show that A has a suitably embedded subalgebra isomorphic to a quantum exterior algebra, and then show that the ext-finite modules for this subalgebra, constructed before, induce to ext-finite A-modules.

Note that for an arrow $a_{i}: i \rightarrow i+1$ we have in the algebra that $a_{i}=e_{i+1} a_{i} e_{i}$, where e_{i} is the idempotent corresponding to vertex i.

Lemma 4.4. The algebra A has a subalgebra Λ isomorphic to $\Lambda(q)$, where $q^{r}-t^{-1}=0$, and A is projective as a left and right Λ-module.

Proof. Let $x:=q^{r} a_{0}+q^{r-1} a_{1}+q^{r-2} a_{2}+\cdots+q a_{r-1}$ and $y:=b_{0}+b_{1}+b_{2}+\cdots+b_{r-1}$. One checks that $x y+q y x=0$ but $x y \neq 0$; and clearly $x^{2}=0$ and $y^{2}=0$. Take Λ to be the subalgebra with generators x, y.

Consider A as a left Λ-module; one checks that $A=\bigoplus_{i=0}^{r-1} \Lambda e_{i}$ and that $A=$ $\bigoplus_{i=0}^{r-1} e_{i} \Lambda$.

Remark. (1) By the previous lemma, the functor $A \otimes_{\Lambda}(-)$ is exact and takes projective modules to projective modules. In the following we write $A \otimes(-)$ for $A \otimes_{\Lambda}(-)$. Also, for any Λ-module N, the module $A \otimes N$ has dimension $r \cdot \operatorname{dim} N$.
(2) We have $x e_{i}=q a_{i}=e_{i+1} x$ and $y e_{i}=b_{i-1}=e_{i-1} y$. Hence,

$$
e_{i}(y x)=(y x) e_{i}=q b_{i} a_{i} .
$$

(3) If the Λ-module N has no nonzero projective summands, then $A \otimes N$ has no nonzero projective summands: more generally, a module of a selfinjective algebra has no nonzero projective summands if and only if it is annihilated by the socle of the algebra.

Here, the socle of A is spanned by the elements $b_{i} a_{i}$ and, for $w \in N$,

$$
q\left(b_{i} a_{i}\right) \otimes w=e_{i}(y x) \otimes w=e_{i} \otimes y x w=0
$$

since $y x$ is in the socle of Λ.
Now let $M=C(\lambda)$, the Λ-module as in Subsection 4.1.
(4) By (1) and (3),

$$
\Omega(A \otimes M) \cong A \otimes \Omega(M)=A \otimes C\left(q^{-1} \lambda\right)
$$

Lemma 4.5. If $r>0$, then the space $\operatorname{Hom}_{A}\left(A \otimes C\left(q^{-r} \lambda\right), A \otimes M\right)$ has dimension r.

Proof. By adjointness,

$$
\begin{equation*}
\operatorname{Hom}_{A}\left(A \otimes C\left(q^{-r} \lambda\right), A \otimes M\right) \cong \operatorname{Hom}_{\Lambda}\left(C\left(q^{-r} \lambda\right), A \otimes M\right) \tag{*}
\end{equation*}
$$

where $A \otimes M$ is restricted to Λ. We work with the Λ-homomorphisms. One checks that the Λ-socle of $A \otimes M$ is equal to $A \otimes \operatorname{soc} M=\operatorname{rad}_{\Lambda}(A \otimes M)$ and hence this has dimension r.

The space ($*$) contains all maps with image in the Λ-socle of $A \otimes M$ and this has dimension r. So, we must show that for $r \neq 0$ there are no other homomorphisms, that is, we have no monomorphism from $C\left(q^{-r} \lambda\right)$ to $A \otimes M$ for $r \neq 0$.

Assume that there is a monomorphism; then its image is a cyclic Λ-submodule of $A \otimes M$ of dimension two. So, let ξ be a generator for a cyclic two-dimensional submodule of $A \otimes M$. We may assume that ξ is of the form

$$
\xi=\sum_{i \in \mathbb{Z}_{r}} c_{i}\left(e_{i} \otimes \zeta\right)
$$

(if $w \in \operatorname{soc}(A)$, then $w \otimes \xi=0$. Furthermore, if $w \in \operatorname{rad}(A)$ and $w \otimes \xi$ is in the socle of $A \otimes M$, then it may be omitted from a cyclic generator).

We require that $x \xi$ and $y \xi$ are linearly dependent. By the identities in Remark 4.5,

$$
x \xi=\sum_{j \in \mathbb{Z}_{r}} c_{j-1}\left(e_{j} \otimes x \zeta\right), \quad y \xi=\sum_{j \in \mathbb{Z}_{r}} c_{j+1}\left(e_{j} \otimes y \zeta\right)=\sum_{j \in \mathbb{Z}_{r}} \lambda c_{j+1}\left(e_{j} \otimes x \zeta\right) .
$$

Assume that $y \xi=\mu x \xi$ for some scalar $\mu \neq 0$. The set $\left\{e_{j} \otimes x \zeta: j \in \mathbb{Z}_{r}\right\}$ is linearly independent, so we must have

$$
c_{j-1} \mu=\lambda c_{j-1} \quad\left(j \in \mathbb{Z}_{r}\right)
$$

So, we get if r is even, $c_{j}=\left(\mu^{-1} \lambda\right)^{r / 2} c_{j}$ for all j and, if r is odd, $c_{j}=\left(\mu^{-1} \lambda\right)^{r-1} c_{j}$ for all j.

Hence, if there is such element ξ, then $\mu=\lambda \cdot \omega$ for some root of unity ω.
If $\mu=q^{-r} \lambda$, then $\mu=\lambda \cdot \omega$ only if $r=0$, and our claim is proved.
Proposition 4.6. Let $M=C(\lambda)$. Then $A \otimes M$ is ext-finite and not projective.
Proof. We have by the remark that $A \otimes M$ is not projective, and that $\Omega^{r}(A \otimes M) \cong$ $A \otimes C\left(q^{-r} \lambda\right)$. Take the exact sequence

$$
0 \rightarrow A \otimes C\left(q^{-r-1} \lambda\right) \rightarrow A \otimes \Lambda \rightarrow A \otimes C\left(q^{-r} \lambda\right) \rightarrow 0
$$

and apply the functor $\operatorname{Hom}_{A}(-, A \otimes M)$. Then, by using adjointness, we get the fourterm exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{\Lambda}\left(C\left(q^{-r} \lambda\right), A \otimes M\right) \rightarrow \operatorname{Hom}_{\Lambda}(\Lambda, A \otimes M) \rightarrow \operatorname{Hom}_{\Lambda}\left(C\left(q^{-r-1} \lambda\right), A \otimes M\right) \\
& \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(C\left(q^{-r}\right), A \otimes M\right) \cong \operatorname{Ext}_{A}^{r}\left(\Omega^{r}(A \otimes M), A \otimes M\right) \rightarrow 0
\end{aligned}
$$

If $r>0$, then the first and third terms of the sequence have dimension r. Also, the second term has dimension $2 r$ and hence the fourth term is zero. Hence, for all $r>0$, we have $\operatorname{Ext}_{A}^{1}\left(\Omega^{r}(A \otimes M), A \otimes M\right)=0$. This is isomorphic to $\operatorname{Ext}_{A}^{r+1}(A \otimes M, A \otimes M)$ and hence $A \otimes M$ is ext-finite.

References

[1] I. Assem, D. Simson and A. Skowroński, 'Elements of the representation theory of associative algebras', in: Techniques of Representation Theory, London Mathematical Society Student Texts, 65, Vol. 1 (Cambridge University Press, Cambridge, 2006).
[2] M. Auslander and I. Reiten, 'On a generalized version of the Nakayama conjecture', Proc. Amer. Math. Soc. 52 (1975), 69-74.
[3] M. Auslander, I. Reiten and S. Smalø, 'Representation theory of Artin algebras', Cambridge Stud. Adv. Math. 36 (1995).
[4] D. J. Benson, Representations and Cohomology. II. Cohomology of Groups and Modules, Cambridge Studies in Advanced Mathematics, 31 (Cambridge University Press, Cambridge, 1991).
[5] D. J. Benson, 'Resolutions over symmetric algebras with radical cube zero', J. Algebra 320(1) (2008), 48-56.
[6] O. Celikbas and R. Takahashi, 'Auslander-Reiten conjecture and Auslander-Reiten duality', J. Algebra 382 (2013), 100-114.
[7] L. W. Christensen and H. Holm, 'Algebras that satisfy Auslander's condition on vanishing of cohomology', Math. Z. 265 (2010), 21-40.
[8] K. Diveris and M. Purin, 'The generalized Auslander-Reiten condition for the bounded derived category', Arch. Math. 98(6) (2012), 507-511.
[9] K. Diveris and M. Purin, 'Vanishing of self-extensions over symmetric algebras', J. Pure Appl. Algebra 218(5) (2014), 962-971.
[10] K. Erdmann, M. Holloway, N. Snashall, O. Solberg and R. Taillefer, 'Support varieties for selfinjective algebras', K-Theory 33(1) (2004), 67-87.
[11] K. Erdmann and S. Schroll, 'Chebyshev polynomials on symmetric matrices', Linear Algebra Appl. 434(12) (2011), 2475-2496.
[12] K. Erdmann and \emptyset. Solberg, 'Radical cube zero weakly symmetric algebras and support varieties', J. Pure Appl. Algebra 215(2) (2011), 185-200.
[13] D. A. Jorgensen, 'Finite projective dimension and the vanishing of $\operatorname{Ext}_{R}(M, M)$ ', Comm. Algebra 36(12) (2008), 4461-4471.
[14] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, 2nd edn, Pure and Applied Mathematics (John Wiley, New York, 1990).
[15] R. Schulz, 'Boundedness and periodicity of modules over QF rings', J. Algebra 101 (1986), 450-469.
[16] Ø. Solberg, 'Support varieties for modules and complexes', in: Trends in Representation Theory of Algebras and Related Topics, Contemporary Mathematics, 406 (American Mathematical Society, Providence, RI, 2006), 239-270.

KARIN ERDMANN, Mathematical Institute, University of Oxford, ROQ, Oxford OX2 6GG, UK e-mail: erdmann@maths.ox.ac.uk

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

