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Linear Dispersive Decay Estimates
for the 3+1 Dimensional Water Wave
Equation with Surface Tension

Daniel Spirn and J. Douglas Wright

Abstract. We consider the linearization of the three-dimensional water waves equation with surface

tension about a flat interface. Using oscillatory integral methods, we prove that solutions of this equa-

tion demonstrate dispersive decay at the somewhat surprising rate of t−5/6. This rate is due to com-

petition between surface tension and gravitation at O(1) wave numbers and is connected to the fact

that, in the presence of surface tension, there is a so-called “slowest wave”. Additionally, we combine

our dispersive estimates with L2 type energy bounds to prove a family of Strichartz estimates.

1 Introduction

The Korteweg–de Vries equation (ut = uxxx + uux), nonlinear Schrödinger equation

(iut = ∆u+N(u)), and nonlinear wave equation (¤u = N(u)) each serve as modula-

tion equations for the free-surface water wave problem in various physical scenarios;

see, for example, [3,4,6]. In fact, it was this purpose that led to the original derivation

of KdV. It is well known that solutions of the linearized versions of these equations

exhibit dispersion, characterized in part by the fact that the amplitude of solutions

decays algebraically in time while an L2 based norm remains constant. This obser-

vation, coupled with powerful techniques from harmonic analysis, has resulted in a

large number of breakthroughs in the existence theory for the nonlinear problems;

see, for example, [12]. Despite these successes, there is a lack of analogous (linear)

estimates for problems involving the motion of free-surface fluid interfaces.

In this paper we prove rigorous dispersive estimates for the linearized water wave

problem in 3 + 1 dimensions with surface tension. Specifically, we consider the mo-

tion of the interface between an ideal fluid below and a vacuum above, which together

occupy all of R3. We take z as the vertical coordinate and x and y as the horizontal.

We assume that the fluid velocity field is irrotational (in the bulk), that surface ten-

sion is present, and that gravity acts downwards. The fluid velocity field is given by

u(x, y, z, t), and the interface is assumed to be the graph of a function η(x, y, t). The

equations of motion for this scenario are well known ([5, 11]):

• ∆φ = 0 in the fluid domain;
• φz → 0 as z → −∞;
• u = ∇φ in the fluid domain;
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2 D. Spirn and J. D. Wright

• ηt + φxηx + φyηy = φz on the surface;

• φt + gη + 1/2|∇φ|2 = τ div
(

∇η√
1+η2

x +η2
y

)
on the surface.

Here g > 0 is the acceleration due to gravity, and τ is the surface tension constant.

Note that one can reformulate this problem purely in terms of the variables η(x, y, t)

and ϕ(x, y, t) = φ(x, y, η(x, y, t), t) ([2]). If one does so, and then linearizes about

the equilibrium η = φ = 0, the resulting system is

ηt = 1/2(Rx∂x + Ry∂y)ϕ, ϕt = τ (ηxx + ηy y) − gη,

where R j are the two dimensional Riesz transforms. Solutions of this system of equa-

tions can be determined by means of the Fourier transform. In particular,

η(x, t) =

∫

R2

eik·x cos(λ(|k|)t)η̂0(k)dk +

∫

R2

eik·x sin(λ(|k|)t)
|k|

λ(|k|) ϕ̂0(k)dk,

ϕ(x, t) =

∫

R2

eik·x cos(λ(|k|)t)ϕ̂0(k)dk −
∫

R2

eik·x sin(λ(|k|)t)
λ(|k|)
|k| η̂0(k)dk.

Thus, the solution of the linearized problem is given by linear combinations of the

operators S j , j = 1, 2, 3:

(1.1) S j(t) f (x) :=

∫

R2

ei(x·k+λ(|k|)t)

σ j(|k|)
f̂ (k)dk.

Here λ(r) :=
√

gr + τ r3, where g is the acceleration due to gravity, and τ is the

surface tension constant. Additionally, σ1(r) = 1, σ2(r) = λ(r)/r and σ3(r) =

1/σ2(r). Our main results are an amplitude dispersive decay estimate

‖S j(t) f ‖L∞ ≤ C|t|−5/6‖ f ‖
B

s j
1,1

and a set of associated Strichartz estimates; see Theorem 1.2.

The time decay exponent of −5/6 here may seem unnatural but is formally the

optimal rate of decay, as we now demonstrate. Consider the group speed

λ ′(r) =
g + 3τ r2

2
√

gr + τ r3
.

Note that λ ′(r) = O(r−1/2) for r ∼ 0 and λ(r) = O(r1/2) for r → ∞. Since this

quantity tends to infinity as r → 0 and r → ∞, it clearly has a minimum value at

some point rs. That is to say, we will have a degenerate stationary point when r = rs.,

And so have for r ∼ rs

λ(r) ∼ λ(rs) + λ ′(rs)(r − rs) + 1/6λ ′ ′ ′(rs)(r − rs)
3.
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If we observe waves that move with speed equal to the minimum wave speed (that is

x = (x1, 0) = (−λ ′(rs)t, 0)), we have

∣∣∣∣
∫

|k|∼rs

ei(x·k+λ(|k|)t)dk

∣∣∣∣

∼
∣∣∣∣ rs

∫ π

θ=−π

∫

r∼rs

ei(rx1 cos(θ)+λ(r)t)drdθ

∣∣∣∣

∼ C

∣∣∣∣
∫

θ∼0

∫

r∼rs

ei(rx1 cos(θ)+λ(r)t)drdθ

∣∣∣∣

∼ C

∣∣∣∣
∫

θ∼0

∫

r∼rs

ei(−rλ ′(rs)t(1−θ2/2)+λ(rs)t+λ ′(rs)(r−rs)t+1/6λ ′ ′ ′(rs)(r−rs)
3t)

∣∣∣∣

∼
∣∣∣∣
∫

θ∼0

eiCtθ2

dθ

∣∣∣∣

∣∣∣∣
∫

r∼rs

eiCt(r−rs)
3

dr

∣∣∣∣

∼ Ct−1/2

∣∣∣∣
∫

θ∼0

eiC(t1/2θ)2

d(t1/2θ)

∣∣∣∣ t−1/3

∣∣∣∣
∫

r∼rs

eiC(t1/3(r−rs))3

d(t1/3r)

∣∣∣∣

∼ Ct−5/6.

(See also [7].)

Though this formal calculation is in some sense the heart of our estimate, there are

several technical complications that arise when making it rigorous. The first is that as

r → ∞, λ ′ ′(r) → 0. Typical stationary phase estimates that come into play for esti-

mating (1.1) require lower bounds on this quantity for large r. Moreover, the Fourier

multiplier operators σ j(r) complicate the stationary phase argument. We circumvent

both problems by requiring additional regularity of the initial data utilizing the Besov

norms. We have substantially improved the methods used in [9] wherein we proved

similar estimates for the 2+1 dimensional water wave problem that required sizable

regularity of the initial data.

1.1 Setup

Let {φ̂n} be a partition of unity subordinate to the regions

U0 :=
{
|k| ∈ [0, 1/2]

}
and Un :=

{
|k| ∈ [2n−2, 2n−1]

}

for n ≥ 1. In particular, we assume the support of φ̂n is in Un−1 ∪Un ∪Un+1 if n ≥ 1

and in U0∪U1 if n = 0. We let χn(k) be the characteristic function of Un−1∪Un∪Un+1

if n ≥ 1 and the characteristic function of U0 ∪U1 otherwise. Let I0 := [0, 1/2] and

In := [2n−2, 2n−1], n ≥ 1.
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Breaking up R2 into ∪n≥0Un and using the convolution estimate, we find

∣∣S j(t) f (x)
∣∣ ≤

∞∑

n=0

∣∣∣∣
∫

R2

ei(x·k+λ(|k|)t)

σ j(|k|)
χn(k)φ̂n(k) f̂ (k)dk

∣∣∣∣

≤
∞∑

n=0

sup
x

∣∣∣∣
∫

R2

ei(x·k+λ(|k|)t)

σ j(|k|)
χn(k)dk

∣∣∣∣‖φn ⋆ f ‖L1 .

The following proposition is our crucial decay estimate.

Proposition 1.1 Let s1 = 3/4, s2 = 1/4, and s3 = 5/4. Then

sup
x

∣∣∣∣
∫

Un

ei(x·k+λ(|k|)t)

σ j(|k|)
dk

∣∣∣∣ ≤ Ct−5/62s j n.

Here C is a constant independent of n.

Recall that the Besov space Bs
p,q can be defined by its norm

‖ f ‖Bs
p,q

:=

( ∞∑

n=0

(
2sn‖φn ⋆ f ‖Lp

) q
) 1/q

.

We show that Proposition 1.1 implies the following set of estimates.

Theorem 1.2 The linear operators S j satisfy the following dispersive estimate:

∥∥S j(t) f
∥∥

L∞
≤ Ct−5/6‖ f ‖

B
s j
1,1

,

where s j = { 3
4
, 1

4
, 5

4
} and the following Strichartz-type estimates:

‖S jg‖L
22/5
t (B

µ
22/5,2

)
≤ C‖g‖H

µ+γ j .

for any µ ∈ R, and γ j = { 9
44

, −6
11

, 21
22
}, respectively.

2 Stationary Phase Estimates

We prove Proposition 1.1 by means of the method of stationary phase, and so it is

important to understand the group speed λ ′(r) and its derivatives. The following

calculus lemma tells us all we need to know about the group speed as well as the

phase speed σ2(r).

Lemma 2.1 (i) The minimum value of λ ′(r) occurs at

rs =

√√
4/3 − 1 < 1/2 and κs := λ ′(rs) > 0.

(ii) There exists C > 1 such that for all r ≥ 1/2, C−1r1/2 ≤ λ ′(r) ≤ Cr1/2.
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(iii) There exists C > 1 such that for all r ≥ 1, C−1r1/2 ≤ σ2(r) ≤ Cr1/2.

(iv) There exists C > 1 such that for all r ≥ 1, C−1r−1/2 ≤ λ ′ ′(r) ≤ Cr−1/2.

(v) λ ′ ′ ′(1) = 0 and is the only zero of λ ′ ′ ′. In particular, if 0 < r ≤ 1/2, then

|λ ′ ′ ′(r)| ≥ C > 0.

We will make repeated use of the van der Corput estimate, whose proof can be

found in [10].

Lemma 2.2 Let h(r) be Ck on [a, b] with −∞ ≤ a < b ≤ +∞ and k ≥ 2. Suppose

that h(k)(r) is either always positive or always negative on [a, b]. Then

∣∣∣∣
∫ b

a

eit(κr+h(r))dr

∣∣∣∣ ≤ Ct−1/k
{

min
[a,b]

|h(k)|
}−1/k

,

where C is a positive constant that depends only on k (and not on a or b).

Moreover, if |κ + h ′(r)| ≥ c0 > 0 and h ′ ′(r) has a finite number of zeros in [a, b],

then ∣∣∣∣
∫ b

a

eit(κr+h(r))dr

∣∣∣∣ ≤ Ct−1
{

min
[a,b]

|κ + h ′|
}−1

.

The next lemma is also modified from one in [10].

Lemma 2.3 For any h and ψ sufficiently smooth,

∣∣∣∣
∫ b

a

eih(r)ψ(r)dr

∣∣∣∣ ≤ sup
r∈[a,b]

∣∣∣∣
∫ r

a

eih(r)dr

∣∣∣∣

(∣∣ψ(b)
∣∣ +

∫ b

a

∣∣ψ ′(r)
∣∣dr

)
.

Proof Let F(r) =
∫ r

a
eih(ρ)dρ. Then the integral is

∫ b

a
F ′(r)ψ(r). Integrating by parts

yields the estimate.

Remark 2.4 We will frequently encounter integrals of the form
∫ b

a
|ψ ′(r)|dr. It is

straightforward to show that if ψ ′(r) = 0 at a finite number of values of r ∈ R, then

∫ b

a

∣∣ψ ′(r)
∣∣dr ≤ C sup

[a,b]

|ψ|,

where C does not depend on explicitly on the size of [a, b], but only on the number

of zeros. (This fact is of course used to prove the second part of Lemma 2.2.)

3 Proof of Proposition 1.1

Without loss of generality, we set x = (0, y). We convert to polar coordinates in the

integral and set κ = y/t :

sup
x

∣∣∣∣
∫

Un

ei(x·k+λ(|k|)t)

σ j(|k|)
dk

∣∣∣∣ = sup
κ

∣∣∣∣
∫ 2π

0

∫

In

eit(κr sin(θ)+λ(r))

σ j(r)
rdrdθ

∣∣∣∣ .
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We will proceed by cases.

Case 1: |κ| ≤ 1/2κs.

No wave packet can move with speed less than κs; this is well known experimen-

tally for (small amplitude) surface water waves; see [11]. The estimate we prove here

quantifies this. Consider

Is := sup
|κ|≤κs/2

∣∣∣∣
∫ 2π

0

∫

In

eit(κr sin(θ)+λ(r))

σ j(r)
rdrdθ

∣∣∣∣

≤ C sup
|κ|≤κs/2

∣∣∣∣
∫

In

eit(κr+λ(r))

σ j(r)
rdr

∣∣∣∣ .

Note that r/σ j(r) remains bounded as r → 0 for all j, and so there are no additional

difficulties when treating the integral over low frequencies, r ∈ I0.

Applying Lemma 2.3 and Remark 2.4 to this integral gives

∣∣∣∣
∫

In

eit(κr+λ(r))

σ j(r)
rdr

∣∣∣∣

≤ sup
b∈In

∣∣∣∣
∫ b

min In

eit(κr+λ(r))dr

∣∣∣∣

(∣∣∣
max In

σ j(max In)

∣∣∣ +

∫

In

∣∣∣
( r

σ j(r)

) ′∣∣∣dr

)

≤ C
( 2n

σ j(2n)

)
sup
b∈In

∣∣∣∣
∫ b

min In

eit(κr+λ(r))dr

∣∣∣∣ .

Now we estimate the remaining oscillatory integral by means of the second part

of Lemma 2.2, since we know κ + λ ′(r) is bounded away from zero

∣∣∣∣
∫ b

min In

eit(κr+λ(r))dr

∣∣∣∣ ≤C

t

(
min

In

|κ + λ ′|
)−1

≤ C

tλ ′(2n)
.

Therefore, we have

Is ≤
C

t

( 2n

λ ′(2n)σ j(2n)

)
≤ Ct−12s j n.

Remark 3.1 In fact, the rate of decay for κ ≤ 1/2κs is faster than any power of 1/t .

This follows by noting that, for any N ∈ N,

eit(κr+λ(r))
=

( 1

t(κ + λ ′(r))

∂

∂r

)N(
eit(κr+λ(r))

)

and then integrating by parts N times inside the oscillatory integral.

Case 2: |κ| ≥ 1/2κs.

In this situation, there may be stationary points at which κ + λ ′(r) = 0. In par-

ticular, we notice that at λ ′ ′(rs) = 0, meaning that we will get quite slow decay when
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κ ∼ κs. For the 2+1 dimensional water wave equation, this results in an overall time

decay of t−1/3; see [9]. The additional space dimension will increase the rate here.

The zeroth Bessel function is given by

J0(z) :=
1

2π

∫ 2π

0

eiz sin(θ)dθ.

We rewrite the integral to be estimated:

Ifast := sup
|κ|≥1/2κs

∣∣∣∣
∫ 2π

0

∫

In

eit(κr sin(θ)+λ(r))

σ j(r)
rdrdθ

∣∣∣∣

= sup
|κ|≥1/2κs

C

∣∣∣∣
∫

In

J0(trκ)eitλ(r) r

σ j(r)
dr

∣∣∣∣ .

The following estimate for J0(z) is well known (see [1]):

sup
z∈R

|z|3/2
∣∣∣ J0(z) −

√
2
πz

cos(z − π/4)
∣∣∣ < ∞.

And so we have

Ifast ≤ sup
|κ|≥1/2κs

∣∣∣∣
∫

In

√
2

πtrκ cos(trκ − π/4)eitλ(r) r

σ j(r)
dr biggr|

+ sup
|κ|≥1/2κs

C

∫

In

∣∣∣∣
(

J0(trκ) −
√

2
πtrκ cos(trκ − π/4)

) r

σ j(r)

∣∣∣∣dr.

We handle the first piece by the method of stationary phase. In fact, this integral

is nearly identical to those we studied in [9]. We employ Lemma 2.3 exactly as in our

estimate for Is and find

∣∣∣∣
∫

In

√
2

πtrκ
cos(trκ − π/4)eitλ(r) r

σ j(r)
dr

∣∣∣∣

= C sup
±

√
1

κt

∣∣∣∣
∫

In

eit(rκ±λ(r))

√
r

σ j(r)
dr

∣∣∣∣

≤ C

√
1

κt

( 2n/2

σ j(2n)

)
sup
b∈In
±

∣∣∣∣
∫ b

min In

eit(κr±λ(r))dr

∣∣∣∣ .

Notice that rs ∈ I0 and λ ′ ′(rs) = 0. However, λ ′ ′ ′(r) is bounded away from zero

in U0. And so, in this interval, we apply the van der Corput estimate with k = 3 to

find

sup
b∈[0,1/2]

±

∣∣∣∣
∫ b

0

eit(κr±λ(r))dr

∣∣∣∣ ≤ Ct−1/3
(

min
r∈In

|λ ′ ′ ′(r)|
)−1/3

≤ Ct−1/3.
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For all n ≥ 1, λ ′ ′(r) 6= 0 for r ∈ In. Thus we use the van der Corput estimate with

k = 2:

sup
b∈In
±

∣∣∣∣
∫ b

min In

eit(κr±λ(r))dr

∣∣∣∣ ≤ Ct−1/2
(

min
r∈In

|λ ′ ′(r)|
)−1/2

≤ Ct−1/22n/4.

And so, we can conclude, for any n,

sup
|κ|≥1/2κs

∣∣∣∣
∫

In

√
2

πtrκ cos(trκ − π/4)eitλ(r) r

σ j(r)
dr

∣∣∣∣ ≤ Ct−5/6 23n/4

σ j(2n)
≤ Ct−5/62ns j .

Now we estimate the error made by approximating J0. First we consider n ≥ 1.

Then

sup
|κ|≥1/2κs

C

∫

In

∣∣∣∣
(

J0(trκ) −
√

2
πtrκ cos(trκ − π/4)

) r

σ j(r)

∣∣∣∣dr

≤ sup
|κ|≥1/2κs

C

∫

In

∣∣∣ (trκ)−3/2 r

σ j(r)

∣∣∣dr ≤ C

t3/2

∫

In

1√
rσ j(r)

dr ≤ C

t3/2
2ns j .

If n = 0, then

sup
|κ|≥1/2κs

C

∫

I0

∣∣∣∣
(

J0(trκ) −
√

2
πtrκ cos(trκ − π/4)

) r

σ j(r)

∣∣∣∣dr

≤ sup
|κ|≥1/2κs

C

∫ 1/2

0

∣∣∣ (trκ)−5/6 r

σ j(r)

∣∣∣dr ≤ C

t5/6

∫ 1/2

0

1

r1/6σ j(r)
dr ≤ C

t5/6
.

4 Strichartz Estimates

We can now use the L∞ estimate, along with an L2 estimate below, to establish a

family of Strichartz type estimates on the operators S j . Our first result follows.

Proposition 4.1 Let 1 ≤ r ≤ 2 and 1
q

= 1 − 1
r
, then

(4.1)
∥∥S j(t)F−1[χnφ̂n f ]

∥∥
Lq ≤ Ct−

5
6

( 2
r
−1)2α j n‖φn ⋆ f ‖Lr ,

which in turn implies

‖S j(t) f ‖Lq ≤ Ct−
5
6

( 2
r
−1)‖ f ‖

B
α j
r,1

.

Here α1 =
3
2r
− 3

4
, α2 =

3
2r
− 5

4
, and α3 =

3
2r
− 1

4
.

Proof We will use interpolation between our L∞ estimates above and an L2 bound

to prove (4.1). To establish the L2 bound we have the following straightforward esti-

mate:

‖S j(t) f ‖L2 ≤
∞∑

n=0

∥∥∥F
−1

[ eiλt

σ j

χnφ̂n f̂
]∥∥∥

L2
≤

∞∑

n=0

∥∥∥
χn

σ j

φ̂n f̂
∥∥∥

L2
.
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For each individual wavelet we have
∥∥∥

χn

σ j

φ̂n f̂
∥∥∥

L2
≤

∥∥∥
χn

σ j

∥∥∥
L∞

∥∥ φ̂n f̂
∥∥

L2 ≤
C

σ j(2n)
‖φn ⋆ f ‖L2 .

Our operator S j f satisfies the following for fn = F−1[χnφn f ]

‖S j fn‖L∞ ≤ Ct−5/62s j n‖ fn‖L1

‖S j fn‖L2 ≤ C

σ j(2n)
‖ fn‖L2 .

Recall the Riesz–Thorin Interpolation Theorem, which implies that for ‖Tg‖L∞ ≤
M0‖g‖L1 and ‖Tg‖L2 ≤ M1‖g‖L2 , then ‖Tg‖Lr ≤ M‖g‖Lq with 1

r
= 1 − θ

2
and 1

q
=

θ
2

with M ≤ M1−θ
0 Mθ

1 . Therefore, if we take 1
r

+ 1
q

= 1, then ‖S j fn‖Lq ≤ M‖ fn‖Lr ,

where

M ≤ M1−θ
0 Mθ

1 ≤ C
( 2s j n

t
5
6

) 2
r
−1( 1

σ j(2n)

) 2− 2
r

.

Since σ j(2n) ≈ {1, 2n/2, 2−n/2}, respectively, we have

∥∥S jF
−1[χnφn f ]

∥∥
Lq ≤ Ct−

5
6

( 2
r
−1)2α j n‖φn ⋆ f ‖Lr ,

where α1 =
3
2r
− 3

4
, α2 =

3
2r
− 5

4
, α3 =

3
2r
− 1

4
, 1 ≤ r ≤ 2, and 1

r
+ 1

q
= 1, as claimed

above.

We can now prove the Strichartz estimates by using a duality argument; see, for

example, [8].

Theorem 4.2 We have

‖S jg‖
L

22/5
t (B

−µ j

22/5,2
)
≤ C‖g‖

H
β j ,

where µ j = { 9
44

,− 1
22

, 5
11
} and β j = {0,−1/2, 1/2}, respectively.

We compute the norm of S(t) by duality, so we compute for a test function η:

∣∣ 〈S j(t)g, η〉L2(R3+1)

∣∣ =

∣∣∣∣
∫

t

∫

k

eitλ(|k|)σ−1
j ĝ η̂ dkdt

∣∣∣∣(4.2)

≤
∥∥σ

−1/2
j ĝ

∥∥
L2

k

·
∥∥∥∥

∫

t

eitλσ
−1/2
j η̂ dt

∥∥∥∥
L2

.

Therefore, we need an estimate on the second term on the right-hand side. In partic-

ular,
∥∥∥∥

∫

t

eitλσ
−1/2
j η̂dt

∥∥∥∥
2

L2

=

∥∥∥∥
∞∑

n=0

φ̂nχn

∫

t

eitλσ
−1/2
j η̂ dt

∥∥∥∥
2

L2

≤ C

∞∑

n=0

∥∥∥∥
∫

t

eitλσ
−1/2
j η̂ φ̂n χndt

∥∥∥∥
2

L2

.

(4.3)
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For a particular wavelet we use our dispersive inequality

∥∥∥∥
∫ ∞

−∞

eitλσ
−1/2
j χn φ̂n η̂(t) dt

∥∥∥∥
2

L2
k

=

∫ ∞

t=−∞

∫ ∞

s=−∞

(
eiλtσ

−1/2
j χnφnη̂, eiλsσ

−1/2
j χnφ̂nη̂

)
L2

k

dsdt

=

∫ ∞

t=−∞

(
χnφ̂nη̂,

∫ ∞

s=−∞

eiλ(s−t)σ−1
j χnφ̂nη̂

)

L2
k

dsdt

=

∫ ∫ (
φn ⋆ η(t),F−1

[
ei(s−t)λ(|k|)σ−1

j χφ̂nη̂(s)
])

L2
dsdt

≤
∫

t

∫

s

‖φn ⋆ η(t)‖Lr

∥∥∥F
−1

[
ei(s−t)λ(|k|)σ−1

j χφ̂nη̂(s)
]∥∥∥

Lq
dsdt

≤
∫

t

∫

s

2α j n

|t − s| 5
6

( 2
r
−1)

‖φn ⋆ η(t)‖Lr‖φn ⋆ η(s)‖Lr dsdt,

which we combine with (4.3) to get

∥∥∥∥
∫

t

eitλσ
−1/2
j η̂dt

∥∥∥∥
2

L2
k

dsdt

≤ C

∞∑

n=0

∫

t

∫

s

2α j n

|t − s| 5
6

( 2
r
−1)

‖φn ⋆ η(t)‖Lr‖φn ⋆ η(s)‖Lr dsdt

= C

∫

t

∫

s

|t − s|− 5
6

( 2
r
−1)

∞∑

n=0

2
α j n

2 ‖φn ⋆ η(t)‖Lr 2
α j n

2 ‖φn ⋆ η(s)‖Lr dsdt

≤ C

∫

t

∫

s

|t − s|− 5
6

( 2
r
−1)

( ∞∑

n=0

(
2

α j n

2 ‖φn ⋆ η(t)‖Lr

) 2
) 1/2

×
( ∞∑

n=0

(
2

α j n

2 ‖φn ⋆ η(s)‖Lr

) 2
) 1/2

dsdt

= C

∫

t

∫

s

|t − s|− 5
6

( 2
r
−1)‖η(t)‖

B
α j /2

r,2

‖η(s)‖
B

α j /2

r,2

dsdt.

We can now use the classical Hardy–Sobolev–Littlewood inequality

∣∣∣∣
∫ ∫

f (s)|s − t|−ℓg(t)dsdt

∣∣∣∣ ≤ Np,ℓ,n‖ f ‖Lp‖g‖Lq

for 1 < p, q < ∞, 0 < ℓ < n, and 1
p

+ 1
q

+ ℓ
n

= 2. If p = q and f = g, then

|
∫ ∫

f (x)|x − y|−ℓ f (y)dxdy| ≤ C‖ f ‖2
Lp , where 2

p
= 2 − ℓ

n
= 2 − ℓ, or p =

2
2−ℓ .
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Applying this to our wavelet bound we see

∥∥∥∥
∫

t

eitλσ
−1/2
j η̂dt

∥∥∥∥
2

L2
k

≤ C‖η‖2

L
p
t

(
B

α j /2

r,2

)

so long as p =
2

2−( 5
6

( 2
r
−1))

=
12r

17r−10
. Choosing p = r then r =

22
17

and so

(4.4)

∥∥∥∥
∫ ∞

−∞

eitλσ
−1/2
j χφ̂nη̂(t)dt

∥∥∥∥
L2

k

≤ C‖η‖
L

22/17
t

(
B

µ j

22/17,2

)

where µ j = { 9
44

,− 1
22

, 5
11
}, respectively.

We return now to the adjoint estimate (4.2) with our new tool (4.4):

∣∣ 〈S j(t)g, η〉L2(R3+1)

∣∣ ≤ C‖g‖
Ḣ

β j

∥∥∥∥
∫

t

eitλ(k)σ
−1/2
j η̂dt

∥∥∥∥
L2

k

≤ C‖g‖
Ḣ

β j ‖η‖
L

22/17
t

(
B

µ j

22/17,2

)

and by duality

‖S jg‖
L22/5

(
B
−µ j

22/5,2

) ≤ C‖g‖
H

β j

where β j = {0,−1/2, 1/2}, respectively.

If we convolve our initial data g with (1 − ∆)ν/2 for some real number ν, then we

find

‖S jg‖
L22/5

(
B

ν−µ j

22/5,2

) ≤ C
∥∥S j(1 − ∆)ν/2g

∥∥
L22/5

(
B
−µ j

22/5,2

)

≤ C
∥∥ (1 − ∆)ν/2g

∥∥
H

β j ≤ C‖g‖
H

ν+β j

This implies that the linear operators S j satisfy the following Strichartz estimates

‖S jg‖
L22/5

(
B

µ
22/5,2

) ≤ C‖g‖H
µ+γ j

for µ ∈ R and γ j = { 9
44

,− 6
11

, 21
22
}, respectively. This completes Theorem 1.2.
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