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1. Introduction

Let R be a ring with identity and let £2 be a totally ordered set. Let Q' be a totally
ordered set which is disjoint from and equipotent to Q with ':Q->Q' an order preserving
bijection. Define Q , = Q u Q ' and let Q, be totally ordered by inheriting the order from
Q and Q.' and with co<X\ for all cu eil and X'eQ'. Let M be the free R-module i?(n°. We
define the alternate bilinear form (*, *) on M by

foralla,/>6Q,

The symplectic group Sp(Q, R) is the group of R-automorphisms I of M for which
(X{x),X(y)) = (x,y), for all x,yeM. We see that Sp(Q,R) is a subgroup of GL{QUR) and,
since Q, is totally ordered, we can think of any XeSp(Q,R) as an invertible Q, xQ,
matrix over R partitioned as

H-3• [
fi

We shall call X eSp(Q, R) a symplectic transformation or matrix. If we let J denote the
Qj x Qj matrix

r o n
l-i oj'

where / is the fixfi identity matrix then clear that X is a symplectic matrix if and
only if X'JX = J. (X' denotes the transpose a matrix of X.)

209
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The structure of Sp(Q, R) has been the subject of many investigations: when Q is finite
and R is a division ring, Dieudonne studied Sp(£l,R) in (4) and (5); when Q is infinite,
Spiegel in (8) examined Sp(Q,R) when R is a division ring and Maxwell in (6) classified
the normal subgroups of Sp(Q, R) when R is a commutative ring in which 2 is a unit.
We continue this investigation to give a classification of the subnormal subgroups of
Sp(Q, R) when Q is infinite and R is a commutative ring with identity. The classification
we shall obtain is similar to the "sandwiching" results of Bass (3) and Wilson (9) in
which the congruence subgroups play a major role.

2. Preliminaries

For the rest of this paper Q shall always denote an infinite set and all rings R will
have identity. Let aeR, a , jJeQj; we denote the Q J X Q J matrix whose only non-zero
entry is in the (a, /S)th position and is a by aeaP. We let 1 denote the Q, x Q , identity
matrix. Following Robertson (7), we define the Q j x Q , matrices tXfl(a), rXfl(a), ru(a), sX)1(a)
and sxx(a), for a e R and X, fi e Q, X =f= fx, by

We also quote from (7) the following lemma which is a list of commutator identities.

Lemma 1. Let R be a commutative ring, a,beR and ?.,fi,a,(leQ.

(') irxj<b), sa0(aj] = 1, / , /i distinct from a, ft,
(») [rjb), saP(aJ] = txp(ba) a, fi,). distinct,

(iii) LrxMsax(a)~] = ha(ba)rxx(b
2a) X + <x,

(iv) trxx(b),saX(a)l = tXa(ba)Sx<I(-ba2) X + a.,
(v) [>A /M txl!(by] = s^iab) X, fi, fi distinct,

(vi) [sXfl(a),tJb)-] = l a f A,/i,
(vii) tsXll(a),tXli(b)-]=Sllll(2ab) X^fi,

(viii) Lsxx(a),tXli(b)']=sXtt(ab)sltll(ab2) X£fi,
(ix) LsXll{a), tafl{b)~] = 1 X, n distinct from a, P,
(x) [rXll(a), tap(fe)] = 1 X, n distinct from a, 0,

(xi) trxM)> ̂ ( k ) ] = raX{ - ab) X, fi, a distinct,
(xii) lrXtl(a),txl)(b)-] = l

(xiii) lrXtl(a),tXlt(b)] = rxx(-2ab)
(xiv) [rAA(a),Ub)-] = raX(-ab)rxx(ab2)

We define ESp(Q,R) to be the subgroup of Sp(Q,R) generated by {rXfi(a), sX/l(a):X,neQ,
aeR}. For any two-sided ideal p of R, ESp(Q, p) will denote the normal closure of
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{rXft(a), sX/JL(a):A.,fie£l, asp} in ESp{Q,R), Sp(Q,p) will denote the kernel of the group
homomorphism Sp(Q,R)->Sp{Q,R/p) induced by the projection R^R/p and Sp'(Cl,p)
will denote the inverse image of the centre of Sp(Q, R/p). Clearly

It is easy to show that the groups £Sp(Q,R) and £Sp(Q,p) coincide with ESp(R) and
ESp(p) of Maxwell (6). It follows from (6) that when R is commutative ESp(Q, R) and
ESp(Gl,p) are normal subgroups of Sp(Q,R). However, the proofs of 2.2-2.5 of (6) do not
depend upon the commutativity of R and thus we may state

Lemma 2. For any two-sided ideal p of a ring R, £Sp(Q, R) and ESp(Q, p) are normal
subgroups ofSp{Q,R) and ESp{Cl,p) = [_ESp{Q,R),

Simple matrix arguments show that the centre of Sp(Q,R) comprises all matrices oi
the form

rl
rl

01
rl\

for all central units r of R with r2 = l. Since all matrices in ESp(Q,R) differ from the
identity matrix in only finitely many rows, we see that £Sp(Q, R) has trivial centre. From
these remarks we are able to deduce

Lemma 3. Let R be a commutative ring. If H is a subgroup of Sp(£l,R) that is
normalised by £Sp(Q, R) then the following assertions are equivalent.

(i)
(ii)
(iii) tfn£Sp(Q,R)=l.

(For any group G we use Z(G) to denote the centre of G.)
For any symplectic matrix X we let J(X) denote the two-sided ideal generated by the

matrix entries Xa0, Xxx-X00, for all a,jSeni; a=/= J? (c.f. (9)). We shall call J(X) the level
of X and the entries XaP and X^—X^ the generators of J(X). For any subgroup H of
Sp(fi, R) we denote by J(H) the ideal which is the sum of the ideals J(X), for all XeH,
and by K(H) the ideal which is the sum of the ideals J{X), for all XeH n ESp(Q,R), (c.f.
(2)). For any commutative ring R and any XeSp{QR) it is clear that J(X) is the least
ideal p of R such that XeSp'(Q,p) and that XeZ(Sp(n,R)) if and only if J(X) = 0.

We now complete this section by recalling some general group theoretic definitions.
We say that a subgroup H of a group G is a subnormal subgroup of G if there exists a
normal series of subgroups

We shall write H~=adG. The least integer d such that H<idG is called the defect of H
in G. We define the terms yt{G) of the lower central series of G by yx{G) = G,
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], i = 2,3,.... A group G is called nilpotent if ym(G)= 1, for some integer m.
If c + 1 is the least value of m satisfying this condition then c is called the class of G.

3. Statement and discussion of results

We shall prove

Theorem 1. Let R be a commutative ring with identity and let Q be an infinite linearly
ordered set. Whenever G is a subgroup of Sp(Q, R) that contains ESp(£l, R) and H is a
subnormal subgroup of G of defect d, then there exists an ideal p of R such that

ESp(Q, (4p/(d>) ̂  H ^ Sp'(Q, p)

where f(d) = (6d — I)/5, for each integer d^.1.

Notice that if H is a normal subgroup of Sp(Q, R) then we can take G = Sp(Q, R) and
d=l. If we assume that 2 is a unit in R then we obtain the inclusions
ESp(Q, p) _ H ^ Sp'(Q, p). Conversely, if we assume that such inclusions hold for a
subgroup H of Sp(Q, R) then it follows from Lemma 2 that H is normalised by
£Sp(Q, R). Thus, Theorem 1 reduces to the main theorem of (6) when applied to normal
subgroups of Sp(Q, R). In fact, our next result shows more clearly how Theorem 1
extends the work of (6).

Theorem 2. Let R be a commutative ring in which 2 is a unit and let H be a subgroup
of ESp(Q, R). The following assertions are equivalent.

(i) H is a subnormal subgroup of ESp(Q, R).
(ii) For some ideal p of R and some integer m

We shall see that the ideal p of Theorems 1 and 2 is J(H), the level of H. We have
remarked that the sandwiching

£Sp(Q, J(H)) ̂ H^ Sp'(Q, J(H))

of a subgroup H of ESp(Q, R) is a sufficient condition for the normality of H. However,
the following example shows that, when 2 is not a unit in R, the sandwiching

ESp(Q, 4J(H)) g H ̂  Sp'(Q, J{H))

of Theorem 1 is not in general a sufficient condition for the normality of H.

Example. If we let W denote the set of natural numbers {1, 2, 3,...} and let H be the
subgroup of ESp(N,Z) generated by £Sp(/V,4Z) and {rij{n):i,jeN, neZ} then we see
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that ESp{N,AZ)^H ^Sp\N,Z). However, H is not a normal subgroup of ESp(N,Z) since
tl2(l)£H while t12(l) = [r13(l),5

4. Technical lemmas

We begin with

Lemma 4. If H is a subgroup of Sp(Q, R) that is normalised by ESp{Q, p), for some
two-sided ideal p of R then K(H) contains yx, for all generators y of J(H) and all x e p .

Proof. Let x e p . We must consider y = Alxp or y = Atlfl — At>p, for some n,pe€lu

and AeH. We examine only the case n,peQ in detail; the other cases can be proved
using similar arguments. First suppose y^A^. Pick XeCl, k^p,\i and put t = tpX(x).
Then [t,A~l]eESp(n,R)nH, by hypothesis and so for all il/e£lu >l/^n,
lt,A~%^eK(H) and l^A'^-l eK(H), since elements of ESp(Q,R) differ from the
identity matrix in only finitely many rows. But

It, A~l\^ = AwxA^1 - A^.xA'-l,

and

But

and hence A^x
It remains to show that K{H) contains {A^ — A^x. If we examine [t, / l " 1 ] ^ and

[t,A~l~\pp — 1, applying the same technique as above, we see that Appx—xAxxeK(H)
where X is chosen as above. Similarly we see that K(H) contains A^x—xAxx and hence
K(H) contains (A^-A^x.

Lemma 4 allows us to deduce

Corollary 1. / / H is a subgroup of Sp(Q, R) that is normalised by ESp(£l, p), for some
two-sided ideal p of R, then J(H)p^K(H).

Next we prove

Lemma 5. Let R be a commutative ring and let H be a subgroup of Sp(Q, R) that is
normalised by ESp(il,p), for some ideal p of R. Let AeH n ESp(Q,R) and let x be any
generator of J(A). Let u,ep, i = l , . . . , 5, let y = 4u5u4u3u2utx and let X,y.eQ., Zj=fi. H
contains rX/1(y), rxx(y), sX/1(y) and sxx(y).
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Proof. We may suppose that xj=0, for otherwise there is nothing to prove. We must
consider x = Aafl or x = Am—l, for some a , P e Q u a^/9. We examine only the case
a, fi e Q in detail; the other cases can be proved using similar arguments.

First suppose that x = Axfi. Let </>eQ, </>=/=!, n, a, /?, be such that the 0th column and
the 4>'th row of A are trivial. (A row (column) is said to be trivial if it is equal to the
corresponding row (column) of the identity matrix.) From Lemma 1 we see that

[r*A~"2), M " i ) , ^ ] ] = r^(2u2ulX) (1)

for any ul,u2ep. Let if/eCl, <A =/=</>, A, /J., a, /? be such that the i^'th row and the i/rth
column of A are trivial:

lrM{y), t*0(n)] = r w ( - uy)ru{u2y)

shows that H contains r^<j>(2u3u2uix), since r^(u2y)eH by (1). Finally the identities

show that H contains the required matrices when x = Axp.
Now suppose that x = Aom — 1. If we let <j> be as above then Lemma 1 shows that

The proof of this case is now completed using repeated applications of Lemma 1, as
above.

We are now able to deduce

Corollary 2. / / R is a commutative ring and if H is a subgroup of Sp(Q, R) that is
normalised by ESp(Q,p),for some ideal p of R, then H contains ESp(Q,4p6J(H)).

5. The proof of the theorems

We begin with the proof of Theorem 1. Let H, G, d and / be as in the statement of
the theorem. Whenever p ^ q , Sp'(Q, p) g Sp'(Cl, q). Thus, since X e Sp'(Cl, J(X)), from the
remarks following Lemma 3, we see that XeSp'(Q,J(H)), for all XeH. Hence
H^Sp'(Q,J(H)). It remains to prove the first inclusion and to do this we shall use an
inductive argument. If d= 1 then H is normalised by ESp(Q,R) so that H contains

ESp(Q, 4R6J(H)) = ESp{Q, 4J(H)).
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Now suppose that £Sp(Q, (4J(K)Y(k)) ^ K, for all subgroups K with subnormal chains of
length k<d. If we put J 0 = J(Hd_1), where

then we see that Hd_1 contains ESp{&, (4J0)/('i~1)). But J = J(H)^J0 so that H contains

by Corollary 2. We conclude, by the principle of induction, that whenever H is as in the
statement of Theorem 1, ESp(Q, (4p)/(d)) ̂  H, where p is the level of H. This, together
with our initial remarks, completes the proof of Theorem 1.

We now prove Theorem 2. The proof of (i) implies (ii) follows from Theorem 1.
Suppose therefore that (ii) holds. Since {ESp(n, R) n Sp'(Q, p))/£Sp(Q, pm) is nilpotent
there is a series

£Sp(fi, Pm)^ym^---^yi= ESp(O, R) n Sp'(Q, p)

where yt = y^ESpiQ, R) n Sp'(Cl, p)), i = 1,.. ,w. Hence

is a normal series from H to ESp(Q, R) of length m + 1 and we conclude that H is a
subnormal subgroup of ESp{£l, R) of defect at most m+ 1.
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