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1. Introduction
It is known that the theory of Cauchy's problem for differential equations

with two independent variables is reducible to the corresponding problem
for systems of quasi-linear equations. The reduction is carried further, by
means of the theory of characteristics, to the case of systems of equations of
the special form first considered by H. Lewy [1]. The simplest case is that of
the pair of equations

dz, dz*

where the a(i depend on zx and z2 • The problem to be considered is that of
finding functions z^x, y), z2{x, y) which satisfy (1) and which take pre-
scribed values on x + y = 0.

For brevity we shall say that a function f[a,b,c, • • •) of the arguments
a, b, c, • • • is of class C{n)[a, b, c, • • •], or simply of class C(B), when all the
partial derivatives of / with respect to these variables of order ^ n exist and
are continuous. If on the line x = X, y = ~X the Cauchy data are C(2)[A], if
the coefficients atj are Cl2)[zlt zs], and if

*21 «22

Lewy showed
(I) that there exists a solution-pair zx, z2 of equations (1) of classC(1)[a;, y]

defined near x = y = 0 and which takes the prescribed values on a? + y = 0,
and for which the "mixed" derivatives

dx dy ' dx dy

exist and are continuous.
u
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(II) that the solution just described is unique.
Lewy's method consists in replacing the differential equations by differ-

ence equations and then establishing the validity of a limiting process.
Other writers [2] have obtained the same results under the weaker hypoth-
esis that the Cauchy data are C(1)[A] on the line x = X, y = —X.

But the result on uniqueness is conditional on the existence and continuity
of the derivatives (2). This involves a condition that is awkward to express
for the derived uniqueness theorems for more general equations. In fact
these theorems as stated in [2], [3] are not proven. To make this point clear
let us consider Monge's equation

(3) Ar + 2Hs + B( = C.

Here
82z 82z d2z

r = , s = , t = .
dx2 8x dy dy2

We write also

dz dz
dx dy

In (3) the coefficients A, H, • • • will depend on x, y, z, p, q, and we suppose
them to be functions of class C(2).

Five C(1) functions x(X), y(X), z(X), p(X), q(X) form a "strip" if

(4) dz = pdx + qdy

identically in A. Cauchy's problem for the equation (3) is to find a solution
z(x, y) of class C(2) which "contains" this strip. For equation (3), the strip is
"regular" if

(5) A dy2 — 2Hdxdy + Bdx2 =£ 0,

and is "hyperbolic" if

(6) H2 - AB > 0.

Set w = H -\- VH2 — AB.we may suppose that the square root is chosen so
that w does not vanish on the strip. Then

(7) AB + w2 = 2Hw

(8) (»• - AB)2 = 4w*(H2 - AB) > 0.

Lewy's characteristic equations belonging to the equation (3) may be written
down in the form

wxa — Aya = 0, wyfi — Bxfi = 0, \
(9) wpm + Bqa - Cya = 0, Aj>, + wq, - Cx, = 0,

*a-p*.-Wa = 0, z, - pxfi - )
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where the suffixes denote partial derivatives:

8x
xa= — , etc.

dec
This system of equations may be discussed in just the same .way as the pair
(1). Under the assumptions indicated the coefficients in (9) are Cl2)[x, y, z,
p, q]. It has been shown [2] that the system of equations (9) have a unique
solution x(cc, /S), • • •, q(x, /?) of class C(1)[a, /?] which reduce to x(X), • • •, q(X)
on a = X, ft = — X, and for which all the derivatives

(10) x a P , • • •, qaP

exist and are continuous. The uniqueness established depends upon this last
condition (10). If for instance the system (9) were satisfied by functions of
class C(1)[oc, /?] which satisfy also the conditions on a = X, /? = —X, but for
which the derivatives (10) do not exist, then these functions would yield a
solution of the regular hyperbolic Cauchy problem different from the one
whose existence has been established. This possibility is not excluded by the
discussion of [1], [2], [3]. Lewy recognises this effectively in a footnote to
his paper.

The proof of the statement just made may be had in a few lines. If
x = dx/dX, etc., we have

On a + jS =

d{x,
a (a,

Hence by

= o,
y)

P)

(8),

using

\w

(5)

(9).

AB)

*.y)

*a y«

*i> yfi

= w(Ay2

Ay2-'.

w —B
—A w

0, — Bx +
wx -

- 2Hxy + Bx2).

ZHxy + Bx2 ^ n

- Ay,
wy

0

d(*,P) 2y/(H2-AB)

This implies also ya ^ 0. We may therefore express z, p, q as functions of
x, y of class C(1>. Then

dz = zada. + z0dfi = {pxa + qya)da. + (j>xfi + qyfi)d(} = pdx + qdy.

Sop = 3z/dx,q = dz/dy and z is of class C(2) [a;, y]. Finally, from equation (9),

0 = w2pa + wBqa — wCya

= w2(rxa + sya) + wB(sxa + tya) — wCya

= Awyar + (w2 + AB)yas + BwyJ — Cwya

= wya[Ar + 2Hs + Bt - C].

Since wya ^ 0, so equation (3) is satisfied.
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It will be seen that, contrary to the statements of the text books, we
cannot infer on the basis of anything yet proved, the uniqueness of the solu-
tion of Cauchy's problem for functions z(x, y) of class C(2> simply. To obtain
any statement of uniqueness for equation (3) we would need to admit only
those solutions of class C(2) such that, when x, y, z, f, q are expressed by
means of the characteristic parameters a, /9, all the mixed derivatives (10)
exist and are continuous. This is the awkward and unsatisfactory result for
Monge's equation which I referred to at the beginning. It wil be clear also
that what we need is an unconditional uniqueness theorem; in the case of
the pair of equations (1) we need a proof of uniqueness which is independent
of the existence or otherwise of the derivatives (2). Such a proof will now
be given.

2. The Uniqueness Theorem

Suppose zlt zz and zx, z2 are two solution-pairs of (1) of class Ca)[x, y] and
that on x -\- y = 0,

zx = z1, z2 = z2.

Write dtj = a^fa, z%). Set u1 = zx — zlt u2 = z% — z2 so tha t ult u2 both
vanish on x -\- y = 0. Now we find

8 8zt 8z, 8 8zx
( a M ) a a + U M + (a' fl)

d , , 8z2
— (a12u2) = a12- a12
ox ox

8z2

~8x •8x

8z2
(a12) + (d12 — a12) — .

Adding, and using equations (1),

— U12U2) = « ! U2—

8z2

^

Now apply the mean value theorem to the differencesdn — alt, d12 — a12.
Then we can find a constant K1 > 0 such that near x = 0, y = 0

In just the same way,

8 .

Again, if

u = a12 u2, v = a
21

a22 u2
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we find, for a suitable constant K2,

- (a22u - a12v)

- (allV — a21u)
(11)

Mi =

\U2\ =

M)

Hence if K = 2K1K2,

du <
dx =

(12) K(\u\ + \v\),
8v
Yy

From these inequalities (12) and the fact that u = 0, v = 0onx-\-y = 0
it follows that u, v vanish identically. For, choose a constant G such that

M ^ G, \v\ ^ G.

Considering the part of the plane x -f y > 0, set

_ G
n~n\

so that

ox oy

By induction we find, in {x -\- y) > 0,

(13) I«I^C, M^f..
This is true already for n = 0; if we suppose it holds for (« — 1) then

u = J-v 3a; dx

and similarly |»| ^ Cn-
Since Cn -^ 0 as « ->- oo, so we infer u = 0, i> = 0, in x + y > 0. It is

obvious that the result holds also for x -\- y < 0.
Now from (11), %, u2 vanish identically, so that zr = zltz2 = z2, and any

CU) solution of the Cauchy problem for (1) is unique. Of course, it now fol-
lows from the existence theorem itself, that a C(1) solution necessarily admits
the continuous derivatives (2).

It will be clear that the discussion above extends so as to obtain similar
results for a system of N = m + n equations of the form

2 « « ^ = 0 , * = 1 , 2, . . . ,m .
i=i dx

" dz1_Q ._m

i-i " dy

https://doi.org/10.1017/S1446788700026343 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026343


16 W. B. Smith-White [6]

References

[1] H. Lewy: Math. Ann. Band 98, 1927.
[2] Courant u. Hilbert: Methoden der mathematischen Physik, Band II, Kap. 6. Berlin:

Springer 1937.
[3] R. Sauer: Anfangswertprobleme bei partiellen Differenzialgleichungen, Kap. 3. Berlin:

Springer 1958.

University of Sydney.

https://doi.org/10.1017/S1446788700026343 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026343

