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Abstract
Functional technical performance usually follows an exponential dependence on time but
the rate of change (the exponent) varies greatly among technological domains. This paper
presents a simple model that provides an explanatory foundation for these phenomena
based upon the inventive design process. The model assumes that invention – novel and
useful design – arises through probabilistic analogical transfers that combine existing
knowledge by combining existing individual operational ideas to arrive at new individual
operating ideas. The continuing production of individual operating ideas relies upon
injection of new basic individual operating ideas that occurs through coupling of science
and technology simulations. The individual operational ideas that result from this process
are then modeled as being assimilated in components of artifacts characteristic of a
technological domain. According to the model, two effects (differences in interactions
among components for different domains and differences in scaling laws for different
domains) account for the differences found in improvement rates among domains whereas
the analogical transfer process is the source of the exponential behavior. The model is
supported by a number of known empirical facts: further empirical research is suggested
to independently assess further predictions made by the model.
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Nomenclature and terminology
QJ = intensive performance of artifacts within a technological domain, J
t = time
IOI= individual operating ideas
PIOI = probability of combination of any two IOI
IOI0 = basic IOI – IOI that first introduce a natural phenomenon in the
Operations regime
IOIC = cumulative number of IOI in the Operations regime
IOIL =maximum number of possible IOI in Operations regime at time t
IOISC = IOIC successfully integrated into a domain artifact
K = annual rate of increase in IOIc in the Operations regime
KJ = annual rate (when time is in years) of performance improvement measured
by the slope of a plot of ln QJ versus time
fi = fitness in Understanding regime for a scientific field i
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FU = cumulative fitness of Understanding regime
dJ = interaction parameter of technological domain J defined as interactive
outlinks from a typical component to other components in artifacts in domain J
sJ = design parameter affecting the performance of an artifact in domain J
AJ = exponent of design parameter in power law for domain J , relating
performance and the design parameter

1. Introduction
Inventions are the outputs of the design process when they reach sufficient novelty
and utility to rate that term: they are a basic building block of technological
progress and the fundamental unit of this paper. In our formulation, technological
domains consist of designed artifacts that utilize a specified body of knowledge
to achieve a specific generic function (Magee et al. 2014). Thus, technological
domains involve a large number of inter-related inventions as even single artifacts
can embody multiple inventions. Arthur (2007) used the term ‘technologies’ to
describe something that bridges inventions and technological domains; according
to Arthur, these use ‘effects’ to achieve some ‘purpose’. Thus, one can also say that
each artifact is a material realization of its design that intentionally embodies the
effects.

This paper brings together three bodies of research that do not usually
interact. The first is the design research field, particularly its cognitive scientific
insights on the design process. The second is the technological change field where
most researchers have been economists or business scholars. The third area is
quantitative modeling of performance of artifacts.

The objective of the work reported here is to use understanding of the
design and invention process to model performance how well a specific designed
artifact achieves its intended function or purpose. In particular, we examine
performance trends – the time dependence of performance as realized in a
series of improved designs of artifacts that arise over time. We do so in an
attempt to develop an explanatory and quantitative predictive model for why
performance improves exponentially over multiple designs with widely varying
rates among technological domains, ranging from 3 to 65% annually for domains
characterized so far. Our research question is whether a quantitative predictive
model based upon foundations and insights about the design process leads to
results consistent with this exponential behavior and whether such a model helps
explain and possibly predict the variation in the rate of improvement, and in the
process generates empirically testable hypotheses about underlying mechanisms.
We first discuss relevant literature in each of the three intersecting fields.

2. Background
2.1. Design, invention and cognitive psychology literature
What connections between technological change and design research can be
inferred from the existing literature? Business scholars and economists often
view technical change as occurring inside a black box, and have usually avoided
examining design activities that are the source of technological change. An
important publication that begins to build a bridge between aspects of design
research and the economics of technological change is the paper by Baldwin
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& Clark (2006). These authors (and Luo, Olechowski & Magee 2014) point
specifically to a central role for design in achieving economic value. In addition to
economic perspectives, another view that somewhat ignores design is the linear
model accredited to Bush (1945), which considers technological change occurring
through application of science. As a counterview, in his seminal book,The Sciences
of the Artificial, Simon (1969, 1996) was the first to highlight that design is an
activity standing on its own right, like natural sciences, and has its own set of
logic, concepts and principles. While the primary goal of natural science is to
produce predictive explanations of natural phenomena, the primary goal of design
is to create artifacts. The design activity is central to creation and improvement
of artifacts in all technological domains and involves cognitive activities such as
the use of knowledge, reasoning and understanding. These indisputable cognitive
activities have been noted by many scholars who have studied invention and
design (Simon1969;Dasgupta 1996;Gero&Kannengiesser 2004;Hatchuel&Weil
2009).

In the context of realizing higher performance from subsequent generations
of artifacts, the role of invention, as one outcome of the design process, is a
critical one since improvement in performance of artifacts must strongly reflect
the inventions. As Vincenti (1990, p. 230) puts it, inventive activity is a source
of new operational principles, and normal configurations that underlie future
normal or radical designs. The operational principles (Polanyi 1962; Vincenti
1990) of an artifact describe how its components fulfill their special functions in
combining to an overall operation to achieve the function of the artifact.

Models found useful in describing the creative design process include the
Geneplore model (Finke, Ward & Smith 1996), topological structures (Braha &
Reich 2003), FBS (function-behavior-structure) theory (Gero & Kannengiesser
2004), concept–knowledge (CK) theory (Hatchuel & Weil 2009), infused design
(Shai, Reich & Rubin 2009), analytical product design (Frischknecht et al. 2009)
and other modeling approaches. Although all of these frameworks include – to
some degree – the key idea of combining existing ideas (for example in the form
of conceptual synthesis, and blending of mental models described in discussion
of the Geneplore model), the framework found most helpful in our modeling
of performance changes resulting from a cumulative design process is analogical
transfer. Although this idea can be traced as beginningwith Polya (1945) or earlier,
the framework remains an active area in design research (Clement,Mawby&Giles
1994; Holyoak & Thagard 1995; Goel 1997; Gentner & Markman 1997; Leclercq
& Heylighen 2002; Dahl & Moreau 2002; Christensen & Schunn 2007; Linsey,
Wood & Markman 2008; Tseng et al. 2008; Linsey, Markman & Wood 2012; Fu
et al. 2013). Scholars of analogical transfer (Gentner & Markman 1997; Holyoak
& Thagard 1995; Weisberg 2006) explain analogical transfer as involving the use
of conceptual knowledge from a familiar domain (base) and applying it to create
knowledge in a domain with similar structure (target): analogical transfer exploits
past knowledge in both the base and target domains. The analogies utilized can
be local, regional, or remote, depending on surface and structural similarities
between objects involved in the base and target domains. Weisberg discusses the
example of theWright brothers using several analogical transfers to first recognize
and solve the problem of flight control. First, they viewed flying as being similar
to biking in which the rider has to be actively involved in controlling the bike, an
application of regional analogy. Interestingly, many others attempting to design
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artifacts for flying did not access this regional analogy and thus did not even
identify the key control problem. Second, the Wright brothers studied birds to
see how they controlled themselves during flight, and learned that they adjusted
their position about the rolling axis using their wing tips. From this insight, they
had the idea of using similar moving surfaces, another instance of using regional
analogy. Lastly, they developed the idea of warping the wings, demonstrated by
using a twisted cardboard box, to act like vanes of windmills to make the airplane
roll. The use of three analogical transfers in combination to see and solve the flight
control problem is a clear case of analogical transfer but there is also evidence
(cited earlier in this paragraph) of much wider applicability.

There are more abstract versions of combinatorial analogical transfer that
have been proposed in the wider literature. Based on an extensive historical study
of mechanical inventions and drawing insights from Gestalt psychology, Usher
(1954) proposed a cumulative synthesis approach for creation of inventions. The
notion of bisociation (Koestler 1964; Dasgupta 1996) develops the cumulative
synthesis approach further and says that a new inventive idea is ideated combining
disparate ideas. More recently, Fleming (2001), Arthur (2007) have respectively
used the same combinatorial notions of invention in studying technological
change. Other research in the technological change literature also discusses a
related concept that is usually called ‘spillover’. Rosenberg (1982) showed that such
technological spillover greatly impacted the quantity and quality of technological
change in the United States in the 20th century – a result supported by Nelson &
Winter (1982), Ruttan (2001). Indeed, a recent paper by Nemet & Johnson (2012)
states that ‘one of the most fundamental concepts in innovation theory is that
important inventions involve the transfer of knowledge from one technical area
to another’. We note that these descriptions do not always make a clear distinction
regarding whether the transfer is occurring at the idea level or at the artifact level.
They are silent regarding how and from where designers or inventors get their
disparate ideas to combine and regarding details about the complexities of transfer
and combination.

Analogical transfer of ideas as a broad mechanism and expertise as the
foundation of ideas (Weisberg 2006) provides adequate specificity for modeling
science and invention in this paper. Weisberg contends that analogical transfer
is utilized in generation of both scientific and technological knowledge. Vincenti
(1990), Mokyr (2002) take the view that scientific and technological knowledge
can be classified into descriptive (Understanding) and prescriptive (Operations)
knowledge1 regimes. The Understanding regime can be seen as a body of
‘what’ knowledge and includes scientific principles and explanations, natural
regularities, materials properties and physical constants. A unit of understanding
(UOU) is falsifiable (Popper 1959) and enables explanation and prediction about
specific phenomena, including behavior of artifacts. The Operations regime,
on the other hand, can be viewed as a body of ‘design knowledge’, which
suggests how to leverage natural ‘effects’ (Arthur 2007; Vincenti 1990) to achieve
a technological advantage or purpose. It includes operating principles, design
methods, experimental methods and tools (Vincenti 1990; Dasgupta 1996). Based

1 We use the terms ‘Understanding’ and ‘Operations’, since each one brings more clarity to the nature
of underlying activity. Understanding refers to conceptual insight that is generated about an object or
environment, whereas Operations refers to the idea of acting on an object or environment to get some
desired effect, as well as experimental methods included in the term ‘science’.
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on this distinction, understanding enables generation of operational knowledge,
which ultimately contributes towards design of some artifact. However, operations
is not entirely based upon existing understanding and in fact innovations in
know-how can and often do occur before any understanding of related natural
effects is available.

An important aspect of design and invention is the cooperative interaction
between Understanding and Operations regimes (Musson 1972; Musson &
Robinson 1989). Using a historical perspective, Mokyr (2002) has carefully
observed that a synergistic exchange between the two has been occurring, where
each enables the other. The contribution of Understanding to Operations is well
known: it provides principles, and regularities of natural effects, including new
ones, in the form of predictive equations, and descriptive facts, such as material
properties. Fleming& Sorenson (2004) provide evidence that understanding helps
inventors by providing a richer map to search for operating ideas, which can
be combined together. Understanding also provides insight about where new
technological opportunities may be found (Klevorick et al. 1995). Beyond these
contributions, there is the more general view, discussed in the initial paragraph of
this section, that new operational ideas can be derived from new understanding.2
What is less discussed is the multi-faceted contributions of Operations to the
Understanding regime. In his paper, Sealing wax and string, de Solla Price (1986),
a physicist, and historian of science, highlighted that instruments (an output of the
Operations regime) were a dominant force in enabling scientific revolutions. He
states: ‘changes in paradigm that accompany great and revolutionary changes (in
science) were caused more often by application of technology to science, rather
than changes from ‘putting on a new thinking cap’. ‘Operations provide tools and
instruments to make measurements, and to make new discoveries. In his book,
The Scientist: A History of Science Told Through the Lives of its Greatest Inventors,
Gribbin (2002), a British astrophysicist, and science writer, has described how the
ability to grind eyeglass lenses made it possible to make better telescopes, and
hence paved the way for astronomers to make new discoveries. New or improved
observational techniques are still amajor driver of progress in science. Gribbin has
aptly summarized the enabling exchange between the two regimes: ‘new scientific
ideas leading. . . to improved technology and new technology providing scientists
with the means to test new ideas to greater and greater accuracy’. In addition,
the Operations regime provides new problems for the Understanding regime to
study, and has led to birth of new fields in Understanding (Hunt 2010). Based
upon these insights and with our focus on explaining performance improvement
arising from continuing streams of inventions, our model treats mutual exchange
between Understanding and Operations.

In design of artifacts, Simon (1962) introduced the notion of interactions
in his essay on the complexity of artifacts. When a design of an artifact is
changed from one state to another (with differences between the two states
as defined by multiple attributes, say D1, D2 and D3) by taking some actions
(say A1, A2 and A3), in many cases, any specific action taken may affect
more than one attribute, thus potentially manifesting as interactions of the
attributes. The same notion of interaction/conflicts is captured by the concept
of coupling of functional requirements (Suh 2001), or dependencies between
characteristics (Weber & Deubel 2003), which can occur when two or more

2 New operational ideas can also emerge from ‘old understanding’ as new functional needs arise.
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functional requirements are influenced by a design parameter. Theoretically it
seems ideal to have one design parameter controlling one functional requirement
to achieve a fully decomposable (modular) design (Suh 2001; Baldwin &
Clark 2000). However, Whitney (1996, 2004) has argued that, in reality, how
decomposable a design of an artifact can be depends on the physics involved
or additional constraints, such as permissible mass. These are reflected as
component-to-component, and component-to-system interactions, or as a need
to have multi-functional components. Consequently, Whitney argues, complex
electro-mechanical-optical (CEMO) systems, primarily designed to carry power,
cannot be made as decomposable as very-large-scale integration (VLSI) systems
primarily designed to transmit and transform information. For example, in energy
applications, the impedance of transmitting and receiving elements has to be
matched for maximum power transfer, thus making the two elements coupled.
Further, CEMO systems typically need to have multi-functional components
in order to keep the artifact size reasonable, creating coupling of attributes at
the component level. Another type of interaction Whitney has identified are
the side effects, such as waste heat in computers, and corrosion of electrodes
in batteries – that occur in artifacts, which in some electro-mechanical systems
can consume significant portion of the design effort for their mitigation. The
presence, and thus the resolution, of these different interactions cause significant
delay, consume significant engineering resources and potentially stop applications
of some concepts, thus making the level of interactions of a technological domain
a potentially strong factor influencing its rate of improvement. Based upon
Whitney’s work, the effect of interactions on rates of improvement was suggested
qualitatively by Koh & Magee (2008) and a quantitative model of the effect was
developed by McNerney et al. (2011) – see Section 2.3.

The influence of design parameters on artifact performance is an essential part
of design knowledge. Many technological domains have complex mathematical
equations relating some aspects of performance with design parameters. Indeed,
the so-called engineering science literature has such equations for many aspects
affecting the design of artifacts of perhaps all technological domains. Simpler
relationships concerning the geometrical scale of artifacts are also available and
generally give performance metrics as a function of a design variable raised
to a power. Use of power-law relationships can be found in: (1) Sahal (1985)
who studied scaling in three different sets of artifacts – airplanes, tractors and
computers; and (2) Gold (1974) who demonstrated that doubling the size of
a blast furnace reduces their cost by about 40%. The constant percent change
per doubling in size results from the power law (assumed by Gold) between
performance/cost and geometrical variables such as volume.

2.2. Technological change literature
What descriptive models and theories help us understand why technologies
improve and how the improvement patterns are structured? Schumpeter (1934)
introduced the idea that entrepreneurs, whose primary role is to provide
improved products and services through innovation, drive economic progress.
These innovations, which Schumpeter describes as industrial mutations, displace
competing products and services from the economy. However, they, too, are
displaced by higher performing innovations that follow, thus perpetuating the
cycle of creative destruction. Building upon Schumpeter’s notion, Solow (1956)
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recognized and incorporated technological change as the key element in his
quantitative explanatory theory of economic growth. The basic conclusion that
technological change is the foundation of sustained economic growth has stood
the test of time. Later, theorists of economic growth (Arrow 1962; Romer 1990;
Acemoglu 2002) have attempted to deal with the more complex problem of
embedding technological change within the economy (endogenous to different
degrees). Although the later theories are important, the issues are outside the scope
of this paper and will not be covered here. A related question of demand-pull and
technology push does have more relevance.

What drives technological innovation? Some early explanations emphasized
pure demand push (Carter &Williams 1957, 1959; Baker, Siegman & Rubenstein
1967; Myers & Marquis 1969; Langrish et al. 1972; Utterback 1974) where the
needs of the economy at a given time dictate technological direction. Mowery &
Rosenberg (1979) reanalyzed the data and methodology in this early work and
arrived at a strong role for science/technology push (the discoveries of scientists
and inventors primarily determine technological direction). Taking a balanced
view, Dosi (1982) argued that both market pull (customer needs and potential
for profitability) and technology push (in the form of promising new technology,
and the underpinning procedures) are equally important for being sources of
innovation.

Tushman & Anderson (1986) discuss discontinuities as having large socio-
technical effects and note that such discontinuities are an essential element of
technological change. In another highly referenced paper, Henderson & Clark
(1990) emphasize the importance of architectural change of artifacts – as opposed
to component change – having large effects on the firm-level impact of change.
Christensen & Bower (1996), on the other hand, view technological change
occurring as a series of disruptive product innovations that start in a niche
market catering to different functional requirements, but then rapidly improve
towards the requirements of mainstream performance. The disruptive technology
surpasses the mature market leaders (by achieving the necessary performance in
smaller, cheaper artifacts), and displaces them.

All of the concepts of technological change described in the preceding
paragraphs – at least implicitly – depend upon relative rates of change of
performance. This is the focus of our modeling effort, so we will now briefly
review concepts related to trends in performance of designed artifacts, and
what patterns they have followed. We first review two established frameworks
– generalizations of Wright’s early research, and Moore’s Law – for describing
trends in technological performance. In 1936, Wright (1936) in his seminal paper
‘Factors affecting the Cost of Airplanes’ for the first time introduced the idea
of measuring technological progress of artifacts. From his empirical study of
airplane manufacturing, he demonstrated that labor cost or total cost of specific
airplane designs decreased as a power law against their cumulative production.
This relationship is expressed as:

C = C0 P−w, (1)

where C0, and C are unit cost of the first, and subsequent airplanes respectively,
and where P and w are cumulative production and its exponent that relates it
to unit cost. Wright explains that labor cost reductions are realized as shop floor
personnel gain experience with the manufacturing processes, and material usage
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and have access to better production tools. SinceWright’s work, this approach has
been used to study production of airplanes and ships during World War II, and
extended to private enterprises (Yelle 2007). It should be noted that Wright did
not look at improvement due to new designs; instead he only considered improved
manufacturing of a fixed design.

Moore (1965) presented the second approach – using time as the independent
variable and investigating a series of newly designed artifacts – in his seminal
paper that describes improvement of integrated circuits. He observed that the
number of transistors on a die was doubling roughly every 18months (modified to
2 years in 1975). This exponential relationship between the number of transistors
on a die and time, famously known3 as Moore’s Law, can be mathematically
expressed as:

QJ (t) = QJ (t0) exp{KJ (t − t0)}, (2)

where QJ (t0) and QJ (t) are the number of transistors per die (a measure
of performance) at time t0 and time t , and KJ is the rate of improvement
(annual if time is in years). For integrated circuits, the exponential relationship
has held broadly true for five decades. Others (Girifalco 1991; Nordhaus 1996;
Koh & Magee 2006, 2008; Lienhard 2008) utilized this temporal approach to
study performance of different technologies, and have demonstrated that many
technologies exhibit exponential behavior with time. More recently, Magee et al.
(2014) extended the study to 73 different performance metrics in 28 different
technology domains. The performance curves have continued to demonstrate
exponential behavior, although annual rates vary widely across domains but not
across different metrics for a single domain. We note that Moore and all others
who used his framework basically compared the performance of different designs
over time differentiating the Wright and Moore frameworks. However, it is also
possible to use theWright framework for different designs, but only if the amount
produced increases exponentially with time (Sahal 1979; Nagy et al. 2013; Magee
et al. 2016).

In order to clarify for readers the nature of empirical performance data, we
present performance data for two sample domains, magnetic resonance imaging
(MRI) and electric motors (Figure 1a), and a summary of improvement rates for
28 domains (Figure 1b) from Magee et al. 2016. The exponential trend for each
domain can be described by Eq. (2), where QJ (t) and QJ (t0) are the intensive
performance of an artifact in domain J at time t and t0, and KJ is the annual rate
of improvement of the domain in question.

A recent paper (Benson & Magee 2015a) has empirically investigated the
variation of the improvement rates in these 28 domains. The work has important
relationships to the current work, so we describe it to not only note the
relationships but to also clarify the fundamental differences. Benson and Magee
found strong correlations between specific meta-characteristics of the patents
in the 28 domains4 and the improvement rate in the domains. These authors
found that patent meta-characteristics reflecting the importance (citations per
patent by other patents), recency (age of patents in a domain) and immediacy
(the average over time of the usage of current new knowledge in the domain)
are all correlated with the improvement rate. They found a particularly strong

3 This designation was given to the relationship by Cal Tech professor Carver Mead.
4 The patents are found by a new technique – Benson & Magee 2015b.
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Figure 1. (a) Exponential growth of performance in sample domains – electricmotor andmagnetic resonance
imaging (MRI). Adapted from Magee et al. 2016. (b) Annual rate of performance improvement, KJ , for
28 domains. Adapted fromMagee et al. 2016.

correlation (r = 0.76, p = 2.1× 10−6) with a metric that combines immediacy
and importance (the average number of citations that patents in the domain
receive in their first 3 years). The findings (and associated multiple regressions)
are robust over time and with domain selection and are of practical importance
in predicting technological progress in domains where performance data is not
available (Benson & Magee 2015a). Nonetheless, the conceptual basis for the
findings is observed attributes of the inventive output from a technological field
(importance, recency and immediacy of a patent set) and not the process of
invention, design knowledge or other technical aspects of designed artifacts in
the domain. The aim of the work reported in the present paper is to develop a
model that yields insights about the pace of change without recourse to concepts
based upon observation of the output over time. If fully successful, we would be
able to judge the potential for change based only upon the nature of the design
knowledge and we might even be able to find new approaches that might achieve
technological goals at more rapid improvement rates.

2.3. Literature on quantitative modeling of technological change
What research has attempted to model the technological performance trends
that we just discussed? Muth (1986) and Auerswald et al. (2000) have developed
models to explain Wright’s results by introducing the notion of search for
technological possibilities. Each paper assumes that random search, a key element
of technological problem solving, for a better technique is made within a
fixed population of possibilities. Considering a case of a single manufacturing
process, Muth (1986) developed a model to capture the idea of substituting
manufacturing sequenceswith better ones.He argues that shoppersonnel improve
the process by learning through experience and making random search for new
techniques, which enable improvement of processes leading to cost reductions.
Muth demonstrated that the notion of fixed possibilities easily leads to fewer
and fewer improvements that can be realized and he argues that the data (for
fixed designs) shows a leveling off and eventual stoppage as the model suggests.
Building onMuth’s idea of random search within a set of fixed design possibilities,
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Auerswald et al.modeled amulti-process system, in which different processes can
be combined to create diverse recipes, and for the first time introduced the notion
of interactions by allowing adjoining processes to affect each other’s cost.

Following similar reasoning as Muth and Auerswald et al., McNerney et al.
(2011) have developed a stochastic model to explain how the cost reduction of
a multi-component system is influenced by component interactions, which they
refer to as connectivity between components. McNerney et al. operationalized
the notion of interactions as outlinks representing influence of a component on
other components. When a specific component in a domain artifact changes
by introducing a new operational idea, the change affects the design of all the
components it influences. If the performance of the artifact (influencing and
influenced components) as a whole improves, then McNerney et al. consider the
interactions to be resolved and the operating idea is considered successful. The
McNerney et al. paper demonstrates that artifacts withmore interactions improve
more slowly than artifacts with less interactions.

Using agent-basedmodeling, Axtell et al. (2013) have developed a competitive
micro-economic model of technological innovation utilizing the notion of
technological fitness. Although they do not discuss or cite Moore’s law or
his work, they have demonstrated that cumulative technological fitness of all
agents increases exponentially overtime. This is different from other researchers
who have predominantly been focused on Wright’s framework. Consistently,
Axtell et al. consider new designs and not just process optimization.

Using a simulation approach, Arthur & Polak (2006) have modeled how
new generations of artifacts arise by combining currently available artifacts. The
artifacts considered are electronic logic gates. New designs (combinations) are
more complex logic gates that can then also be combined into evenmore complex
logic gates. In their model, Arthur and Polak specify several design goals towards
which the logic gates evolve. They have demonstrated that designs with higher
levels of complexity cannot be attained without realizing design configurations
with intermediate levels of complexity, and new designs with higher functionality
substitute for current designs with inferior functionality. This model is much
richer than other models in representing the artifact part of the design process;
however, it does not consider performance improvement, as do the other models.
It is also limited to developing pre-specified artifacts and is thus a specific process;
consequently it is not open-ended or general which are characteristics necessary
for modeling performance trends for general technological domains.

Although some are more explicit than others, one feature common to all these
models is that all utilize the notion of building upon the performance (in the form
of cost) or designs of the past, a key feature of cumulative processes included
in the model presented here. On the other hand, they do not consider three
aspects we believe essential for answering our research question; thus, these three
factors differentiate our model from this relevant past work. First, none of them
discusses or includes the influential role played by exchange between science and
technology. In this paper, we treat the design process and the exchange between
science and technology as important elements for understanding the change in
performance over time that in turn is essential to understanding technological
change. Second, none consider the design process or operating principles as part
of combinatorial analogical transfer – they instead look at combinations at the
artifact level instead of combination of ideas. In this paper, we consider both the

10/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.8


Figure 2. Model of exchange between Understanding and Operations regimes and
modulation of IOI assimilation by interaction (dJ ) and scaling (AJ ) parameters of
domain J .

idea and artifact regimes in developing our model. Third, no prior model has
considered (or modeled) the role of scaling of design parameters on performance.
In this paper, scaling is introduced and the resulting model results in scaling
having an important predicted influence on the rate of performance improvement.

3. Overview of the model
3.1. Conceptual basis of model
We utilize two sets of mechanisms from design to construct the overall model.
The first set, which gives rise to exponential trends, includes growth of knowledge
– understanding and operations – using combinatorial analogical transfer aided
with mutual exchange between the two. The second set, which gives rise to
variation in improvement rates, includes component interactions and scaling of
design variables. Since the goal of the model is to develop an explanatory and
quantitative predictive model, while modeling these mechanisms we have, where
necessary, simplified (removed details) and utilized abstraction to keep the model
tractable.

The overall architecture of the model is shown in Figure 2. Based on the
work of Vincenti (1990) and Mokyr (2002) that we discussed earlier, we classify
scientific and technical knowledge into Understanding and Operations regimes.
We further split the Operations regime into idea and artifact sub-regimes where
non-physical representation of artifacts are in the idea sub-regime. The idea
sub-regime, represented as an ideas pool, consists of individual operating ideas
(IOI). The IOI concept is an abstraction and generalizes the idea of operating
principle introduced byPolanyi (1962) and includes any ideas, including operating
principles, invention claims, design structures, component integration tricks,
trade secrets and other design knowledge that lead to performance improvement
of artifacts. An IOI is different from a UOU which includes scientific principles,
and factual information. An example of a UOU is the principle of total internal
reflection, which describes how a beam of light undergoes reflection inside a
dense medium, when the angle of incidence is above a critical value (see Figure 3).
This principle accurately describes a natural effect, but it does not prescribe how
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Figure 3. Examples of unit of understanding (UOU) and incremental operating idea
(IOI).

we can use it to transmit information. On the other hand, a pair of parallel
surfaces (or a fiber) enclosing a dense medium and utilizing the principle of
total internal reflection provides a mechanism – an operating principle – to
make a ray of light travel down the length of the medium (see Figure 3). Such
a mechanism is an example of an IOI. Unlike artifacts, which belong to a specific
technological domain, we model IOI in the ideas (IOI) pool as being non-domain
specific and available to all technological domains. For instance, the operating
principle of total internal reflection is utilized in fiber optic telecommunications,
fluorescent microscopy, and fingerprinting, very distinct technological domains.
In the idea sub-regime, designers/inventors source existing ideas (IOI) using
analogical transfer and combine them probabilistically to create new ideas (IOI).
Once new IOI are successfully created through probabilistic combination, they
become part of the IOI pool, thus enlarging the number of ideas (IOI) in the
pool for combination. It is important to clarify thatmodel considers combinations
at the ideas level rather than combination of components, with the former
being fundamental and allowing combination of ideas from different fields using
analogical transfer according to the ideas of Weisberg described earlier.

Growth in the explanatory reach of the Understanding regime also occurs
by the analogical transfer process described by, and also applied to, scientific
creativity by Weisberg. The Understanding regime is conceptualized to consist
of UOU. The units of understanding (UOU) from different fields within
the understanding regime participate to create a new UOU that potentially
(probabilistically) has a greater level of explanatory and predictive power.
Following the treatment in Axtell et al. (2013), we model the explanatory and
predictive power of a field of Understanding as a fitness parameter, fi . If the new
UOU has a greater fitness value, it replaces the UOU with the smallest fitness
value. Since our primary focus is on performance – the output of the Operations
regime, we simulate the Understanding regime only at this higher abstraction
level.

Although both regimes – Understanding and Operations – evolve indepen-
dently, they cannot do so indefinitely. We model the de Solla Price and Gribbin
insights by having each regime act as a ‘barrier breaker’ for the other regime.When
each regime hits a barrier, the other can eventually aid in breaking the barrier:
infusion of understanding enables creation of important IOI in the Operations
regime; and infusion of new operational tools enable new discoveries in the
Understanding regime.
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The performances of the artifacts in technological domains are improved by
a series of designs/inventions (IOI) over time. IOI enable designers to change
specific components in the domain artifact leading to a potential improvement.
Following McNerney et al.’s treatment, the IOI in question is assimilated only if
the performance of the artifact improves after accounting for interactions.

Another, and final, factor that we model is scaling, a property inherent in the
physics of the design of the artifact.5,6 The successfully assimilated IOI, which we
refer to as IOIS , effect improvement of the domain artifact by enabling favorable
change of a relevant design parameter. The design parameter is increased or
decreased such that it leads to improved performance7. Scaling refers to how
change in a design parameter relates to relative change in the performance of an
artifact. The formulation we use in the model is that relative performance change
is related to design parameters raised to some power, in other words scaled. As
covered in Section 2.1, this is the most widely used functional relationship with
decent empirical support and theoretical justification in some cases (Barenblatt
1996).

3.2. Mathematical summary
A performance (intensive) metric of a domain, labeled QJ , is a function of a set
of design parameters (s1, s2, s3) of a domain artifact and time, but for simplicity
here we consider only a single parameter (s). The design parameter is changed
by IOIs (successfully assimilated IOI into domain artifacts), which in turn are
assimilated from IOIC (number of accumulated operating ideas in the IOI pool
shown in Figure 2). IOIC is a function of time. Equations describing these nested
variables in logarithmic form are:

ln QJ = f1(ln s); ln s = f2(ln IOISC );

ln IOISC = f3(ln IOIC ); ln IOIC = f4(t). (3)

Assuming that the functions are continuous and all dependence is through the
named variables, the chain rule is applied and yields

d ln QJ /dt = d ln QJ /d ln s · d ln s/d ln IOISC

· d ln IOISC/d ln IOIC · d ln IOIC/dt. (4)

The first term on the right hand side represents relative impact of design
variable change on performance change, which will be shown in Section 4.5
to be equal to the scaling parameter (AJ ) when QJ follows a power law in
s : d ln QJ /d ln s = AJ . The second term is the ‘smaller-is-better/larger-is-better’
factor, and captures the notion whether a design variable has to be increased or
decreased in order to improve performance.We capture this dependence using an

5 Recall that the performance we consider in this paper is intensive, e.g., energy density, w cm−3.
6 In relations to artifacts such as software, physics refers to the mathematics behind the software.
7 Taguchi (1992) noted that some phenomena tend to work better when carried out at a smaller scale
(‘smaller is better’), while other are better at larger scale (‘larger is better’). Integrated circuits, for
example, perform better as dimensions are reduced, since smaller dimensions lead to shorter delays,
and higher density of transistors, both of which contribute towards improved computation per volume
or cost.

13/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.8


(a) (b)

Figure 4. Combination of individual operating ideas (a) basic and derived IOI (b)
accumulation of IOI through feedback.

abstraction and equate d ln s/d ln IOISC = ±1. Thus, Eq. (4) becomes

d ln QJ /dt = AJ · (±1) · d ln IOISC/d ln IOIC · d ln IOIC/dt. (5)

The third term on the right of Eq. (5) represents ‘difficulty of implementing
ideas’ in specific domains, and thus relates the domain specific successful IOISC to
the IOIC in the pool: wewill show in Section 4.4 – followingMcNerney et al. – that
d ln IOISC/d ln IOIC = 1/dJ , where dJ is the interaction parameter introduced
byMcNerney et al. for technological domain J . Finally, the fourth term represents
the rate of idea production. K = d ln IOIC/dt is arrived at by a simulation
of combinatorial analogical transfer which is presented in the first (following)
section of the results.

4. Results
4.1. Overall IOI simulation
As noted in Section 3.1, we model the IOI as resulting from combining knowledge
from prior IOI by probabilistic analogical transfer. Figure 4(a) schematically
represents combination of IOI, in which specific IOI a and b combine to create IOI
d with a probability, PIOI. If this combination attempt succeeds, the newly created
IOI d then is added to the pool of IOI (Figure 4b). In subsequent time steps, IOI
d can attempt to combine with another specific IOI in the pool, such as IOI c,
to probabilistically create a more advanced IOI e. As combination advances, the
cumulative number of IOI, IOIC grows. We further make the distinction between
derived IOI and basic IOI, which we label as IOI0. IOI0 are fundamental IOI,
which first introduce a natural effect into an operational principle to achieve some
purpose. The example (described in Section 3.1) of a pair of close parallel surfaces
(or a fiber) enclosing a dense medium and utilizing principle of total internal
reflection to transmit a beam of light longitudinally can be viewed as an example
of an IOI0. In contrast, derived IOI, just as the term suggests, are obtained through
combination of two IOI0, or between an IOI0 and a derived IOI or between two
derived IOI. In this sense, IOI a, b, and c in the figure represent IOI0 and IOI d
and e, derived IOI.

In one run of the simulation, we start with the initial number of basic IOI,
IOI0. At each time step, the maximum number of combinations we allow to be
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Figure 5. Growth of IOIC over time: initial IOI0 = 10, probability of combination,
PIOI0 = 0.25: (a) linear Y -axis (b) logarithmic Y -axis.

created is equal to half the number of total IOI available. The intention is to allow
each operating idea to combine with another operating idea once per time step
on average. Figure 5 shows results from a simulation run starting with 10 basic
IOI and a probability of combination, PIOI0 equal to 0.25. Figure 5a and 5b with
time steps on the X-axis and the cumulative number of operating ideas, IOIC
on the Y-axis show that the cumulative number of operating ideas, IOIC , grows
exponentially with time at an improvement rate (K ) of 0.116± 0.005.

For this simplified case, the rate of growth of IOI, K , can be mathematically
shown to be equal to ln(1 + PIOI/2),= 0.118 which can be easily derived as
follows:

At time step t, number of IOI newly created = PIOI · IOIC (t)/2 (6)
IOIC (t + 1) = IOIC (t)+ PIOI · IOIC (t)/2 = IOIC (t) · (1+ PIOI/2) (7)

Ratio of IOIC between consecutive time steps, r = IOIC (t + 1)/IOIC (t)
= (1+ PIOI/2) (8)

Then, in general, IOIc(t) can be written in terms of an initial IOI0 and ratio, r
and time step, t ; the expression can be stated in an exponential form.

IOIC (t)= IOI0r t
= IOI0 exp{ln r · t} = IOI0 · exp{ln(1+ PIOI/2) · t}

= IOI0 · exp{k · t}, (9)

where, the rate of growth of IOIC (t),

K = ln(1+ PIOI/2). (10)

For very small values of PIOI

K ≈ PIOI/2. (11)

The simulation results to this point assume that indefinitely large numbers of
operating ideas, IOI, can be created out of few basic IOI. This is because themodel
assumes that the same operating ideas can be repeatedly used to create new IOI
without limit. (For example, recombining (a,b) with a, then with b would give
new operating IOI (((a,b),a),b) and eventually an arbitrarily large number of a,
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(a) (b)

Figure 6. Growth of cumulative IOIC(t) after implementing the constraint that IOI0

can be used only once by any specific derived IOIs ; (a) semi-log plot and (b) linear
plot.

b pairs.) Indefinite multiple uses of the same basic idea to create innumerable
IOI does not appear to be realistic. In order to better reflect this intuition, we
introduce a constraint that any derived IOI can utilize an IOI0 only once. The
constraint operationalizes the notion that counting repetitious use of basic IOI
as new designs that potentially improve performance is unrealistic. According to
this constraint, derived IOI ((a,b),c) in Figure 4would be allowed, but not ((a,b),b).
Employing this constraint, the simulation yields the results in Figure 6(a), a semi-
log graph, showing the cumulative number of IOI initially growing exponentially
with time. However, later on the curve bends over and hits a limit, demonstrating
that all combination possibilities have been used up, and the pool of operating
ideas stagnates which is also shown on the linear plot (Figure 6b) resembling a
well-known ‘S curve’.

The maximum number of combination possibilities, which is a function of
IOI0 in the pool, defines the limit. This limit, ormaximumnumber of combination
possibilities, is given by a simple combinatorics equation (Cameron 1995):

IOImax = 2IOI0 − 1. (12)

Eq. (12) entails that the limit increases rapidly as IOI0 increases, due to its
geometric dependence on IOI0. For example, for IOI0 equal to 5, 10, 15 and 20
the corresponding limits are 31, 1023 (Figure 6), 32767 and 1,048575 combination
possibilities.

A natural question that arises from this result is: what might determine the
IOI0 over time? We postulate a role for Understanding in this regard and we first
briefly look at how Understanding evolves over time.

4.2. Combinatoric simulations for Understanding regime
Just like the Operations regime, we model the Understanding regime to also grow
through a probabilistic analogical transfer process, in which UOU combine to
create new UOU. In this model, we envision that the Understanding regime is
composed of many fields, with each field having an explanatory reach. Using a
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(a) (b)

Figure 7. (a) Triangular distribution of possible fitness values that can be assumed by
a new unit of understanding. (b) Growth of FU (cumulative fitness of Understanding
regime) over time.

treatment similar to the one used by Axtell et al. (2013), the explanatory reach of
a field may be viewed as a fitness value of the theoretical understanding of that
field, which we denote with fi . Following Axtell et al., when units from two fields
with fitness values, f1 and f2, combine, the fitness of the resulting unit is randomly
chosen from a triangular distribution with the base or X-axis denoting the fitness
values ranging from 0 to f1 + f2, and the apex representing the maximum value
of the probability distribution function, given by 2/( f1+ f2). See Figure 7a. If the
resulting fitness of the new understanding unit is higher than the fitness of either
of the two combining units, the new understanding unit replaces the unit whose
fitness is the smallest among the three. We assume the cumulative fitness of the
Understanding regime (FU ) as a whole to be equal to the sum of the individual
fitness value of each field.

Our simulation assumes 10 fields with starting fitness values ranging from 0
to 1, which are randomly assigned. Consequently, the average cumulative fitness
(FU ) value is initially 5. As the simulation proceeds, fitness values of the 10 fields
grow independently, and as a result, the cumulative fitness of the Understanding
regime grows. Figure 7b shows results from a simulation run exhibiting roughly
exponential growth of cumulative fitness over time. Thus, a simple model for
growth of the Understanding regime is also exponential. However, as with the
Operations regime, unlimited growth by simple combination of scientific theories
is not realistic.

The Understanding regime also cannot progress by simple combination
of existing understanding but instead experiences a limit that we envision as
depending upon availability of operational (technological) tools available for
testing scientific hypotheses and for discovering new effects. We express this
dependence through an equation which expresses the maximum cumulative
fitness at any time, max FU (t), as simply proportional to the IOI existing at that
time:

max FU (t) = Z F · IOIC (t), (13)

where IOIC thus represents an approximation for the effectiveness of available
operational tools, and Z F is a constant of proportionality. This equation captures
the concept first suggested by Price that the extent (or scope) of explanatory
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reach of the Understanding regime is dependent upon what experimental tools
are available for scientists and researchers. It also recognizes in the terms of our
model that these tools are essentially operational artifacts.

4.3. Exchanges between Understanding and Operations regimes
As discussed in Section 3.1, prior qualitative work indicates that the interaction
of Understanding and Operations is probably best modeled by assuming mutual
beneficial interaction. In our model, we capture this enabling exchange from the
Understanding to the Operations regime using a simple mathematical criterion:

FU (t)/FU (t_prev) > cutoff_ratio(R) (14)

where, FU (t) and FU (t_prev) represent cumulative fitness values at time step t
and the most recent time step, t_prev, at which a IOI0 had been introduced.

This criterion states that when cumulative fitness of theUnderstanding regime
grows by some multiple (R) from the time when the last IOI0 was invented,
understanding has improved enough to generate a new IOI0, which becomes
available for combinationswith all existing IOI. The threshold ratio, R, determines
the frequency at which IOI0 are created.

We now show results from a simulation including the exchange and limits on
IOI0. In the simulation, we study how synergistic exchange from Understanding
influences the rate of growth of IOI0 in the Operations regime, including escape
from stagnation. We focus particularly on two variables, namely, the initial
number of IOI0 in the Operations regime and the threshold ratio R for creation of
new IOI0. Other pertinent variables are the probability of combination, PIOI the
number of attempts per time step and the number of time steps per year and are
not varied in this set of results.

For this simulation study, Table 1 presents the parameter values for IOI0
(column 3) and the threshold ratios of cumulative fitness (column 4) that are
used. As an example, 5B3R starts with IOI0 of 5 and a new IOI0 is created when
cumulative fitness grows by a factor of 3. Both the initial number of IOI0 and the
threshold ratios of cumulative fitness are set at 3 different values, giving a total
set of 9 parameter combinations. For all 9 runs, the probability for combination is
kept constant at 0.25, and we assume one attempt per yearly time step.

The simulation results in Figure 8 shows the temporal growth of IOIC in the
Operations regime for the nine runs shown inTable 1. Runs 5B3R and 5B5R clearly
stand out: they have a bumpy growth since they encounter periods of stagnation
multiple times, as they evolve.Moreover, their effective rates of growth aremeager,
standing only at 0.055 and 0.04, which is much lower than 0.118, the rate given by
Eq. (10) {ln(1+PIOI/2)}. Columns 5, 6 and 7 list the K , R2 and K calculated using
ln(1+PIOI/2), respectively. The small deviations fromEq. (10) found for the other
7 runs are within the 2-sigma estimated from multiple simulation repetitions for
each run.

Both 5B3R and 5B5R start with low initial IOI0 of 5 and have higher
cumulative fitness threshold ratios (R) for infusion of new IOI0. Low initial IOI0
implies that theOperations regime has a lownumber of combinatorial possibilities
of IOI to start with. In addition, since new IOI0 are not coming fast enough to
push the frontier of combinatorial possibilities of IOI far enough, the Operations
regime quickly exhausts the possibilities and again stagnates. Run5B5R stagnates
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Table 1. Simulation study: Parameter values of IOI0 and R (threshold ratios of cumulative fitness of
Understanding) for the study. Results: K is the slope fitting the simulation results to an exponential with
R2 for the fit (also shown). Other parameters, such as probability of combination, PIOI = 0.25, are kept
constant

Simulation run Initial IOI0 Threshold ratio
R

Simulation
avg. K (±2 std dev)8

R2 K = ln(1+ PIOI/2)

1 5B1.5R 5 1.5 0.123 (±0.011) 0.998 0.118
2 5B3R 5 3.0 0.055 (±0.019) 0.959 0.118
3 5B5R 5 5.0 0.039 (±0.007) 0.943 0.118
4 10B1.5R 10 1.5 0.122 (±0.011) 0.997 0.118
5 10B3R 10 3.0 0.115 (±0.007) 0.998 0.118
6 10B5R 10 5.0 0.117 (±0.007) 0.983 0.118
7 20B1.5R 20 1.5 0.116 (±0.007) 0.998 0.118
8 20B3R 20 3.0 0.116 (±0.009) 0.998 0.118
9 20B5R 20 5.0 0.119 (±0.016) 0.998 0.118

Figure 8. Growth of IOIc; initial IOI0 and R (cumulative fitness ratio) for each run
are shown in the legend for each run; e.g., 10B5R represents 10 IOI0 and fitness ratio
of 5.

for longer periods compared to 5B3R since it has a higher threshold ratio (R)
for infusion of a new IOI0 and thus slower progress. The Operations regime
cannot escape the stagnation until another IOI0 is created with infusion of new
understanding. It is clear from the curves that this pattern repeats itself time after
time.
8 The standard deviation was estimated from seven repetitions for each simulation run.
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Other simulation runs, except run 10B5R grow exponentially and smoothly
and their rates are consistent with the theoretical value calculated using ln(1 +
PIOI/2), 0.1178. These curves have either high enough IOI0 to start with or fast
infusion of IOI0, or both. Run 5B1.5R, for example, starts with a low number of
IOI0 but has fast infusion of IOI0, since the threshold ratio R is only 1.5. On the
other hand, run 20B5R has slow infusion of IOI0 (high R), but starts with high
initial IOI0.

These runs do not exhibit stagnation for two reasons. The first reason is
that the frontier of combinatorial possibilities for some runs is very far from
the number of realized IOI at a given time step. For example, run 20B5R has
over a million possibilities when it starts with 20 IOI0. The second reason is
that the frontier of the combinatorial possibilities keeps on moving further away
as IOIc increases. Run 5B1.5R, for example, starts with 5 IOI0, and yet it never
experiences stagnation due to fast infusion of IOI0 (low R) that push the frontier of
combinatorial possibilities. The growth of IOIC is also free of stagnation for runs
(e.g., such as Run10B3R) with medium number of initial IOI0 and medium rate
of infusion of IOI0 (medium R). This is true because both factors in combination
ensure that frontier of combinatorial possibilities is far enough to start with, and
the frontier continues to move rapidly enough with time.

Run 10B5R exhibits somewhat unusual behavior. Although it grows smoothly
at the beginning for quite some time, it experiences stagnation later on. This
is because the frontier of combinatorial possibilities is far enough away to
sustain steady growth early on. Later, the Operations regime exhausts the
combinatorial possibilities before new IOI0 arrive. However, once a new IOI0
arrives, it jumpstarts again but it briefly halts at each new limit demonstrating
the value of frequent interchange between Understanding and Operations in this
simulation.9

Wehave seen that a combinatorial process combinedwith synergistic exchange
between Understanding and Operations leads to an exponentially growing pool
of operating ideas, IOIC . This growth is described by an exponential function:

IOIC (t) = IOI0(t0) exp{K (t − t0)} (15A)

K =
d ln IOIc

dt
, (15B)

where, K = the effective rate of growth of IOIC , IOI0(t0) = the number of
initial basic IOI, t = time, t0 = initial time.

Our overall model (Section 3, Figure 2) envisages that this exponentially
growing pool of operating ideas, IOIC , provides the source for the exponential
growth of performance of technological domains. How does this exponential
growth of IOIC result in performance improvement and what accounts for the
variation in rates of performance improvement across technological domains?

4.4. Modeling interaction differences among domains
As explained in Section 3, two factors potentially responsible for modulating the
exponential growth of operating ideas as they are integrated into technological
domains are the domain interactions and scaling of relevant design variables. We

9 The simulations are based upon infusion of IOI0 depending upon a ratio (R) of growth in cumulative
understanding, but similar results are found with assuming a model of difference in FU .
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(a) (b)

Figure 9. Interactions in an artifact; (a) illustration of interactions as outlinks (b)
sample space of probabilities for unit cost.

consider domain interactions first following the work of McNerney et al. (2011)
who modeled how interactions in processes affect unit cost. We build on their
mathematical treatment to analyze the effect of interactions between components
upon integrating an IOI into an artifact in a domain, which in turn improves
the artifact’s performance. Figure 9a shows a simplified schematic of an artifact
in a technological domain that has three components (1, 2, 3) with interaction
being depicted by outgoing arrows, representing influence, from a component
to other components, including itself. The outgoing arrows are referred to as
outlinks. The number of outlinks, d , from a component provides a measure of
its interaction level, and has value of 1 or greater as McNerney et al. assume each
component at least affects itself. For simplicity, Figure 9a shows each component
with two outlinks, to itself and to another component. We represent an instance
of an attempt being made to improve the performance of component 2 by an IOI
being inserted. Since component 2 interacts with itself and another component,
the performance of the interacting component is also changed by the insertion but
in a fashion described probabilistically. The performance improvement attempt is
accepted, only if the performance of the artifact as a whole improves. If that does
occur, we follow McNerney et al. and consider the interactions being successfully
resolved to improve the performance.

For a simplified artifact with d number of outlinks for each component (d = 2
in Figure 9a), McNerney et al.’s treatment McNerney et al. (2011) for unit cost
results in the following relationship:

dC/dm = −B · Cd+1, (16)

where, C = unit cost normalized with respect to initial cost,10m = number of
attempts, d = number of outlinks, B = constant.

This equation states that the level of interaction inherent in the domain artifact
influences the rate of unit cost reduction. We adapt this equation for our analysis
in the following manner. We interpret the number of attempts as IOIc since the

10 The normalized unit cost is 1 or less so increases in d in Eq. (16) result in less improvement per
attempt.
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number of IOI determines the attempts (at each attempt an IOI is being introduced
into an artifact to make a design change). Secondly, cost reduction is inversely
related to performance improvement, such as in a typical metric kWh/$.11 With
these extensions of McNerney et al. Eq. (16) can be re-written as:

d(Q)/dIOIc = B · Q−(d−1), (17)

where, Q = performance.
Since as shown in Eqs. (4) and (5), successfully resolved operating ideas in

a domain, IOISC , are the source for its performance improvement, we replace
performance Q of a domainwith IOISC . An IOI is considered a successful attempt
if the interaction resolution leads to net performance improvement of the artifact,
and the count of successful IOI is denoted by IOISC . Themodified equation shown
below states that the interaction level, d , has a retarding effect on the growth of
IOISC in a domain.

d(IOISC )/dIOIc = B · IOI−(d−1)
SC . (18)

We solve the differential equation by separating the variables (IOISC on the
left and IOIC on the right), and integrating both sides using dummy variables,
and express IOISC explicitly. The integration limits are: (a) for the right side, 0 to
IOIC , (b) for the left side, 1 to IOISC . The result is:

IOISC = (B · d · IOIC + 1)1/d . (19)

Since B and d are close to unity, and IOIc � 1, we can ignore 1 in the brackets.
Since our goal is to determine {d ln IOISC/d ln IOIC }, we take the natural log of
both sides and differentiate it with respect to ln IOIC , resulting in the following
expression which will be substituted into Eq. (5) in Section 4.6:

d ln IOISC/d ln IOIc = 1/dJ . (20)

4.5. Performance models – scaling of design variables
Our research question is concerned with intensive technological performance of
domain artifacts. The intensive technological performance represents an innate
performance characteristic of an artifact.We operationalize the notion of intensive
performance by dividing desirable artifact outputs with resource constraints
(e.g., mass, volume, time, cost) as discussed in Section 2.2 (see Figure 1a for
electric motors metric).We now consider three examples of relationships between
intensive performance and design variables.

4.5.1. Selected examples
We first consider blast furnaces used in the manufacturing of steel as
representative of reaction vessels of various kinds. Widely used performance
attributes for a blast furnace are capacity and cost, where cost can be considered
the resource constraint. So, an intensive performance metric can be defined as
capacity (output per hour or day typically) per unit cost. The capacity of a reaction
vessel is proportional to its volume while its cost is primarily proportional to

11 The concept can be further generalized to include performance metrics which involve other
resource constraints such as volume, mass, and time, instead of cost (e.g., kWh m−3).

22/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.8


surface area (Lipsey, Carlaw & Bekar 2006). The following dimensional analysis
shows that following these simplistic assumptions, intensive performance of a
reaction vessel is linearly proportional to size, s.

Q RV = capacity/cost of reaction vessel = s3/s2
= s1. (21)

Gold (1974) has empirically shown that the cost of a blast furnace goes up
by 60% when the capacity is doubled. Intensive performance Q RV using this
empirical finding goes up by 1.25 (=2/1.6) when s3 doubles, and thus s goes up
by 1.26 (=2.333) closely agreeing with the simply derived equation (21).

A second example we consider is specific power output from internal
combustion (and other heat) engines. Power output (kW) is proportional to
volume occupied by the combustion chamberminus the heat loss from the engine,
which in turn is proportional to the engine’s surface area. The power, then, is:

power = As3
−−Bs2

; B/A < 1, (22)

where A and B are constants for power generation and heat loss, respectively.
Q I C = specific power α power/volume of engine; thus specific power is

= (As3
− Bs2)/s3

= A − B/s. (23)

Eq. (23) indicates that similar to reaction vessels, specific power output of IC
engines increases with size so both are ‘larger is better’ artifacts. For small values
of B/As, specific power increases approximately linearly with s. For larger values
of s, the increase is less than linear in s.

As a final example, we consider information technologies, whose performance
improvement ranks amongst the highest. Several modern information tech-
nologies depend upon integrated circuit (IC) chips. Electronic computers have
been improving performance by reducing the feature sizes of transistors in IC
chips for microprocessors. The number of computations per second per unit
volume, an intensive measure of performance, depends upon frequency and the
number of transistors in a unit volume. Frequency is inversely proportional to the
linear dimension of a feature, s, and the number of transistors per unit area is
inversely proportional to area of the feature. Thus,

Computation per sec per cc = 1/s · 1/s2
= s−3. (24)

The dimensional analysis indicates that computations per second increases
rapidly for a decrease in a linear dimension of a feature. This is due to the cubic (or
higher)12 dependence of computations per second on feature size. The negative
sign captures the fact that reduction of the design variable increases performance
– smaller is better for this artifact.

4.5.2. Generalization of scaling of design variables
The three examples we have presented illustrate the notion that intensive
performance improved by different degrees depending how the design variables
are scaled. In the first two cases, a 10% increase in a design variable will improve
performance by 10% or less. However, in the case of computations, for the same

12 If the vertical dimension also decreases over time as the feature size decreases, a higher power –
perhaps approaching 4 – would apply.
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10% change in design variable (feature size), the performance would improve by
over 33%. This dependence is modeled as a power-law:13

QJ = s AJ (25)
ln QJ = AJ ln s (26)

d ln QJ /d ln s = AJ , (27)

where, AJ is the scaling factor for domain J , s is the design variable.

4.6. Bringing all elements together
We now bring the results for rate of IOISC growth and influence of interaction
and scaling together. For the reader’s convenience, we reproduce Eq. (4) here, and
substitute the results for the four factors:

d ln QJ /dt = d ln QJ /d ln s · d ln s/d ln IOISC

·d ln IOISC/d ln IOIC · d ln IOIC/dt. (4)

Substituting the results fromEqs. (27), (20) and (15B) for the first, third and fourth
terms,±1 for the second term and then rearranging, we get:

KJ =
d ln QJ

dt
= (∓1)AJ

1
dJ

K . (28)

Eq. (28) represents the overall model of the annual rate of improvement for
domain J . According to this equation, KJ , the annual rate of improvement of
domain J depends upon K , the exponential rate at which the IOIC pool increases
in size. K is then modulated by domain specific parameters, dJ (interaction)
inversely and AJ (scaling) proportionally to result in a domain specific rate of
improvement KJ . The minus sign is converted into positive one by negative sign
of AJ (for those cases where smaller is better). One observation to note is that AJ
and dJ are constants for a given domain, thus resulting in a time invariant rate (or
a simple exponential) for a domain.

5. Discussion
The goal of this paper was to develop a mathematical model that utilizes
mechanisms in the design/invention process to examine the nature of
technological performance improvement trends. The exploration has utilized
simulation to gain insight into a combinatorial process based upon analogical
transfer and Understanding/Operations exchange and quantitatively modeled
interactions and scaling. In this section, we first briefly review the consistencies of
themodel with empirical results (and what is known about technological change).
All empirical results we are aware of are found to support the model. Another
goal in developing a quantitative model as done in this paper is to generate
predictions that can be further tested empirically. Thus, after discussing the known
agreements with the model, we consider the (largely as yet) untested predictions
of the model regarding how the long-term performance of artifacts collectively
improves at the technological domain level.

According to the model, the exponential nature of performance improvement
for all technological domains arises in the idea realm of the operational knowledge
13 The engine example demonstrates that this is an approximation in many cases.
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regime, where new inventive ideas are created using combinatorial analogical
transfer of existing ideas, which, in turn, become the building blocks for future
inventive ideas. We emphasize that the combinations modeled are occurring at
the idea level, although combinations can also take place between components.
As noted in Section 3.1, we make this distinction as the former is much more
pervasive and allows combination of ideas from different fields; however, it is
likely that some ideas cannot be combined and this is treated probabilistically
since many combination attempts fail. The model demonstrates this incessant
cumulative combinatorial aspect of knowledge in both the Understanding and the
Operations regimes manifests as exponential trends. The combinatorial model is
simple but it leads naturally to the exponential behavior with time that has only
been obtained previously byAxtell et al. in amodel that went beyond performance
to diffusion over a set of agents. Since such exponential behavior with time is one
of the most widely noted behaviors of technical performance (Moore 1965; Koh
&Magee 2006, 2008; Nagy et al. 2013; Magee et al. 2014), the combinatoric model
enacting analogical transfer that was developed in the current paper is clearly
supported by what is known empirically about performance trends with time.

The Operations and the Understanding regimes can improve independently
in the model but not indefinitely. How long the Operations regime can improve
depends in the model upon the size of the technological possibility space, which
according to the model is dependent on the number of basic IOI, fundamental
operational principles, existing. The Understanding regime can also experience
stagnation, but this happens when the operational tools that scientists and
researchers use for discovery and testing hypotheses are not adequate. The
Operations regime comes to its rescue by providing these operational tools in
form of empirical methods, tools and instruments (increased numbers of IOI),
which greatly enhances the scientists ability to discover and test, and thus further
push the limits of understanding in themanner suggested by de Solla Price (1986),
Gribbin (2002) and in the following quote from Toynbee (1962).

Physical Science and Industrialism may be conceived as a pair of dancers
both of whom know their steps and have an ear for the rhythm of the music.
If the partner who has been leading chooses to change parts and to follow
instead there is perhaps no reason to expect that he will dance less correctly
than before.

In this sense, the Operations regime and the Understanding regime are like
two independent neighbors who interact for mutual benefit. In the model, their
frequency of interaction however influences their effective rate of growth. Our
model is a specific realization that achieves this mutual interaction that has
previously been widely noted from deep qualitative research.

The results in Figure 8 are summarized as a surface plot in Figure 10. K ,
the effective rate of growth of IOIC was determined by the initial IOI0, and
the frequency of interaction (α 1/ln R). The former determined the envelope
of technological possibility space. When IOI0 are high, the effective rate of
growth K is close to the theoretical combinatorial rate determined by Eq. (10)
{ln(1 + PIOI/2)}, irrespective of whether there was frequent exchange. However,
when the IOI0 are low, the limit is hit repeatedly, translating into halting and
a reduced effective rate of growth. The value of K in this case was determined
by the frequency of enabling exchange from the Understanding regime, with
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Figure 10.Variation of K as a function of initial IOI0 and R. Lower R refers to higher
frequency of interaction with the Understanding regime.

higher frequency (low R) leading to higher effective rate. With sufficiently high
frequency, even with low initial IOI0, the effective rate K eventually approaches
the theoretical rate.

Detailed historical studies of technological change (Mokyr 2002) note
centuries of slow, halting progress that eventually becomes much more rapid and
sustained starting in the late 18th century in the UK. An interesting consistency of
these observations with ourmodel is seen since ourmodel attributes the transition
to sustained higher improvement rate to the combinatorial growth of individual
ideas that are able to reinforce one another by the analogical transfer mechanism.
That our model partially accomplishes this through the synergistic exchange
between Understanding and Operations is also consistent with the detailed
historical studies as interpreted by many observers (Schofield 1963; Musson 1972;
Rosenberg & Birdzell 1986; Musson & Robinson 1989; Mokyr 2002; Lipsey et al.
2006).

The KJ values found empirically vary by approximately a factor of 22 (from
0.03 to 0.65 according to Magee et al. (2016). Eq. (28) states that annual
improvement rate for a domain is determined by the product of K times
the scaling parameter, AJ , and the reciprocal of the interaction parameter,
dJ . According to this result, the last two parameters produce the variation of
improvement rates across domains. During the embodiment process, interactions
prevalent in the domain artifacts influence how many inventive ideas can be
absorbed. The percent increase in successfully absorbed ideas by a domain artifact
is inversely proportional to the average interaction parameter of the domain dJ . By
definition, the minimum value of d is 1 and the maximum might be higher but a
value of 6 appears reasonable. The other factor that is predicted to differentiate
domains is performance scaling. Inventive ideas affect artifact performance by
modifying the design parameters in domain artifacts. The model indicates that
the relative improvement of performance for a given number of absorbed new
operating ideas is governed by the scaling parameter AJ . The examples presented
in Section 4.5 illustrated that the value of AJ can vary across domains. In
particular, for the IC domain (where smaller is better), AJ is apparently 3 to 4
times larger than for typical larger-is-better domains such as combustion engines.
Thus, the range of K J empirically observed is potentially explainable by changes
in dJ and AJ , but much more empirical work is needed to fully support these
quantitative implications of Eq. (28) as will be discussed further below.
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The empirical findings of Benson &Magee (2015a) also support the model. In
particular, they found no correlation of rates in domains with effort in a domain
(measured by number of patents or patenting rate) or with the amount of outside
knowledge used by a domain (this is very large for all domains). They interpreted
their findings by a ‘rising seametaphor’ that represents all inventions and scientific
output being equally available to all domains but that fundamentals in the domains
determine the rate of performance improvement. Overall effort in Understanding
(science) and invention increase the rates in all domains but the differences among
rates of improvement are due to differences in fundamental characteristics among
the domains. The model in this paper identifies interactions and scaling as two
such fundamentals and Eq. (28) is specific about the variation expected due to
these two fundamental characteristics.

Thus, our model is supported by what is known empirically including
exponential dependence of performance on time; slow, halting progress in
the early stages of technological development; a role for science in enabling
technological performance improvement; the range of variation in performance
improvement across domains; and the importance of domain fundamentals to
variation in performance. However, to what extent does it achieve the ideal level
of understanding mentioned in Section 2 when discussing the related Benson
and Magee research? It is – as desired – based upon what is known about the
design/inventive process and does not rely upon characteristics only determined
by observation of output in a domain. Moreover, it provides explanations of
existing empirical results not made by prior models. However, does it make any
new predictions; do its assumptions appear reasonable; and what new avenues of
design research if any does it open up for further exploration? We consider these
issues in the remainder of the discussion.

There are three new predictions made by the model as instantiated in Eq (28).
These are: (1) that the noise in estimating K J should vary with K J linearly
rather than for example be independent of KJ ; (2) that performance improvement
comparisons across domains vary as 1/dJ where d is the interaction parameter;
and (3) that performance improvement across domains vary as AJ . The first
prediction follows from the fact that themodel ascribes all variation in the process
to the probabilistic analogical transfer process that creates IOI and thus any noise
generated in the process is amplified by the same factors that determine KJ
(namely 1/dJ and AJ ). Very recent work appears to confirm the first prediction.
In a careful study of the observed noise in a wide variety of domains, Farmer
& Lafond (2016) have found that the variation in KJ is proportional to KJ
offering empirical support to the form of Eq. (28). This is potentially an important
confirmation of a prediction of themodel but the carefulwork by Farmer&Lafond
(2016) has potential data limitations (detailed in their paper) and further work of
this kind is highly desirable. Prediction 2 is that component interactions (dJ ),
which characterize the domains, influence improvement rate by modulating the
implementation of IOI in the domain artifacts. This prediction can be tested by
study of the performance improvement rates over a variety of domains where
an independent assessment of dJ is made. The authors have performed such
a test using patent data (Basnet & Magee 2016) and the results show strong
correlation of the performance improvement rate (KJ ) with the inverse of the
interaction parameter (dJ ) directly supporting our model (Eq. (28)) and the
underlying model of McNerney et al. Prediction 3 is that relative improvement
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among domains varies proportionally to the scaling parameter for the domain
design parameters, a consequence of performance following a power law with the
design parameters. If scaling laws were found (or derived) for a variety of domains
whose rate of progress is known, prediction 3 can also be tested. In this paper,
we showed that the factor A is at least 3 times larger for Integrated circuits than
for combustion engines. While this provides preliminary support for the model
since Integrated circuits improve about 7 times faster than combustion engines
(Magee et al. 2016), two points do not achieve a rigorous test. One would need to
have reliable scaling factors for at least 10 domains with varying KJ to determine
whether this part of the model is empirically supported.

A fundamental aspect of the overall model is that it differentiates between the
idea/knowledge and artifact aspects of design and invention. Such decomposition
is an essential step in arriving at our key result (Eq. (28) through Eq. (5)). It
is not clear that this assumption is testable so it must remain an unverified
assumption or definition but we do note that it appears to accord with reality in
that inventors/designers spend significant amount of time working with ideas and
representations of artifacts, for example in the form of sketches and drawings, well
before they build artifacts. Others have noted the higher leverage of analogical
transfer between ideas as opposed to designed artifacts (Weisberg 2006).

A potentially important and non-obvious assumption made in the model is
that inventive effort increases as the cumulative number of IOI – IOIC – increases.
This assumption is introduced when we assume that every existing IOI undergoes
a combination attempt in each time step. As IOIC increases, this means that more
inventions are attempted in each successive time step. This assumption is critical
to obtaining the exponential time dependence for IOIC and thus for Q because
the growth of IOIC would be choked off if inventive attempts did not increase over
time. Although a rigorous test of this assumption is suggested for further work, we
do note support for the assumption in the exponential growth of patents over time
(Youn et al. 2014; Packalen & Bhattacharya 2015).14 Approximate support is also
given by the roughly exponential growth of R&D spending over time (NSF, 2014)
and by the roughly exponential growth of graduate engineers globally15 over time
(NSF, 2014).

The model assumes a simple exchange between Understanding (largely
science) and Operations (largely technology) as described by Eqs. (13) and
(14). The details of this mechanism are not testable but in our opinion not
critical because other formalisms (based upon differences rather than ratios and
based upon count of UOU rather than our choice of explanatory reach) lead to
results closely similar to those reported here. Therefore, this assumption remains
unverified but is not critical to our conclusions. Similarly, the initial value of
IOI0 chosen in the simulation (and the exchange frequency with Understanding
(α1/ ln R)) is essential to our finding of halting slow growth that can transition
to sustained and more rapid growth. Although this finding is consistent with
detailed observation as noted above and the initial number of useful ideas must
be small, there is no independent means of assessing IOI0. Moreover, we have
made a number of assumptions in parameter values to construct a simple and

14 Both of these papers show more rapid exponential increases before 1870 and slower but still
exponential increases over time from 1870 to the present in the number of US patents.
15 Other supporting evidence is also possible to see in the NSF material at http://www.nsf.gov/
statistics/seind14/index.cfm/overview/c0s1.htm#s2
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operational simulation. The values for parameters in the simulation, such as PIOI,
number of time steps, number of scientific fields, R, fitness values are chosen to
keep the computational cost reasonable, without sacrificing the essential aspects.
Simulations show that results are robust to different combinations of parameter
values with respect to exponential trends and variation in rates. Therefore,
these choices and simplifications do not undercut the explanatory or predictive
capabilities of the model but do limit the potential for non-calibrated calculation
of, for example, the improvement rate for a domain since K is only approximately
known.

To make the model tractable, we have made number of simplifying
abstractions, introducing several other limitations to the model. Since the model
is not agent-based, it does not distinguish between organizations nor between
inventors. Since our goal is to explain the patterns at the domain level, we consider
the domain as one entity. For this reason, variations among organizations or
among inventors within a domain are not taken into account, and hence themodel
is not useful to understand organizational or individual inventor effectiveness
in its current form and any systematic differences among inventor capability
across domains is ignored. Second, once IOI are created by any inventor, the
model assumes they are instantly available for combinatorial analogical transfer
across the pool underlying all domains. Thus, the model does not take into
account time delay that can result due to, for example, geography, secrecy and
governmental regulations, and hence is not useful for studying such factors’
influence in technological change. Third, the model assumes that 2 pre-existing
ideas are sufficient (probabilistically) to create another idea whereas inventions
also result frombringingmore than 2 pre-existing ideas together. However, adding
such complications to themodel and simulation does not change the fundamental
findings since the creation of new ideas would still increase as the number of
pre-existing ideas increase as long as we still assume an increasing invention
effort. Fourth, although conceptually the notion of fitness of scientific fieldsmakes
sense, how the fitness can be measured, and who measures it for a scientific field
are contested, especially for rapidly growing fields.

This analysis of the predictions points out that some key aspects of Eq. (28)
have the potential to be empirically tested and thus are clear future research
activities suggested by the model. Among these future research activities, one
important issue to discuss is the extensions possible to design research potentially
opened up by the currentwork. Themodel in this paper explicitly considers design
changes in succeeding artifacts in a series to be the central element in technological
change over time. Thus, it adds to the few other papers (Baldwin&Clark 2006; Luo
et al. 2014) that have connected these two large fields of research – technological
change and design theory. This paper in particular connects design conceptually
and quantitatively to changes in performance over time. Since there is significant
data of this type (Moore 1965; Girifalco 1991; Nordhaus 1996; Koh & Magee
2006, 2008; Lienhard 2008), this paper points the way for further quantitative
comparisons of models based upon design theory with data. Another line of
research that this model suggests is more explicit consideration of interactions
and scaling as part of design theories. The current model explores simple models
for both of these that are capable of predicting differences in time dependence
of performance in differing domains. Design of artifacts could conceptually be
changed so that the potential for improvement with ongoing redesign is enhanced
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possibly through reduced interactions or more intensive scaling relationships.
Thus, the current paper suggests the potential importance of further research
on specific differences in design approaches with different scaling laws and with
different level of interactions.

6. Concluding remarks
The model and simulations of the improvements in performance due to a series
of inventions (new designs) over time presented in this work are based upon
a simple version of analogical transfer as a combinatorial process among pre-
existing operational/inventive ideas. The model is supported by a number of
empirically known aspects of technological change including:

(1) the transition from slow, hesitant technological change to more sustained
technological progress as technological ideas accumulate;

(2) a role for the emergence of the scientific process in stimulating the transition
in point 1;

(3) the exponential increase of performancewith time (generalizedMoore’s Law)
seen quite widely empirically;

(4) that stochastic noise in the slopes of the log performance vs time curves is
proportional to the slope;

(5) the level of effort in domains is not important in the rate of progress.

The model also indicates that:

(6) The rate of performance increase in a technological domain is at least partly
(and possibly largely) due to fundamental technical reasons (component
interactions and scaling of design variables), rather than contextual
reasons (such as investment in R&D, scientific and engineering talent, or
organizational aspects).

Numerousmodeling assumptionsweremade in developing themodel but only
some of these are critical to the conclusions just listed. Further specific research
is suggested to move some critical assumptions into the testable category, and to
consider interactions and scaling parameters in new design approaches. These
are discussed in the paper particularly for the assumptions underlying point 6
above. The tests involve detailed studies of the interaction and scaling parameters
in a variety of domains. All of this future research could support or lead to
modification of point 6.

Acknowledgments
The authors are grateful to the International Design Center of MIT and the
Singapore University of Technology and Design (SUTD) for its generous support
of this research. They would also like to thank Dr James McNerney for helpful
discussion about artifact interactions. The authors also acknowledge valuable
input on an earlier version of this paper by Dr James McNerney and Dr Daniel. E
Whitney.

30/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.8


References
Acemoglu, D. 2002 Directed technical change. The Review of Economic Studies 69 (4),

781–809.
Arrow, K. J. 1962 The economic implications of learning by doing. The Review of

Economic Studies 29 (3).
Arthur, W. B. 2007 The structure of invention. Research Policy 36 (2), 274–287.
Arthur, W. B. & Polak, W. 2006 The evolution of technology with a simple computer

model. Complexity 11 (5), 23–31.
Auerswald, P., Kau, S., Lobo, H. & Shell, K. 2000 The production recipes approach to

modeling technological innovation: an application to learning by doing. Journal of
Economic Dynamics & Control 24, 389–450.

Axtell, R. L., Casstevens, R.,Hendrey, M., Kennedy, W. & Litsch, W. 2013 Competitive
Innovation and the Emergence of Technological Epochs Classification: Social Sciences
Short title: Competitive Innovation Author contributions. Retrieved from
http://www.css.gmu.edu/∼axtell/Rob/Research/Pages/Technology_files/Tech Epochs
.pdf.

Baker, N. R., Siegman, J. & Rubenstein, A. H. 1967 The Effects of Perceived Needs and
Means on the Generation of Ideas for Industrial Research and Development Projects.
IEEE Transactions on Engineering Management; (December).

Baldwin, C. Y. & Clark, K. B. 2000 Design Rules: The Power of Modularity. MIT Press.
Baldwin, C. Y. & Clark, K. B. 2006 Between ‘knowledge’ and ‘The economy’: the notes

on the scientific study of designs. In Advancing Knowledge and The Knowledge
Economy (ed. B. Kahin & D. Foray), pp. 298–328. MIT Press.

Barenblatt, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional
Analysis and Intermediate Asymptotics. Cambridge University Press.

Basnet, S. &Magee, C. L. 2016 Dependence of technological improvement on artifact
interactions. Retrieved from http://arxiv.org/abs/1601.02677.

Benson, C. L. &Magee, C. L. 2015a Quantitative determination of technological
improvement from patent data. PloS One, (April)
http://doi.org/DOI:10.1371/journal.pone.0121635 April 15, 2015.

Benson, C. L. &Magee, C. L. 2015b Technology structural implications from the
extension of a patent search method. Scientometrics 102 (3), 1965–1985.

Braha, D. & Reich, Y. 2003 Topological structures for modeling engineering design
processes. Research in Engineering Design 14 (4), 185–199.

Bush, V. 1945 Science: The Endless Frontier. Transactions of the Kansas Academy of
Science 48 (3).

Cameron, P. J. 1995 Combinatorics: Topics, Techniques, Algorithms, 1st edn. Cambridge
University Press.

Carter, C. F. &Williams, B. R. 1957 Industry and Technical Progress: Factors Governing
the Speed of Application of Science to Industry. Oxford University Press.

Carter, C. F. &Williams, B. R. 1959 Investment in Innovation. Oxford University Press.
Christensen, C. M. & Bower, J. L. 1996 Customer power, strategic investment, and the

failure of leading firms. Strategic Management Journal 17 (3), 197–218.
Christensen, B. T. & Schunn, C. D. 2007 The relationship of analogical distance to

analogical function and preinventive structure: the case of engineering design.
Memory & Cognition 35 (1), 29–38.

Clement, C. A,Mawby, R. & Giles, D. E. 1994 The effects of manifest relational
similarity on analog retrieval. Journal of Memory & Language 33 (3), 396–420.

31/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

http://www.css.gmu.edu/~axtell/Rob/Research/Pages/Technology_files/Tech Epochs.pdf
http://www.css.gmu.edu/~axtell/Rob/Research/Pages/Technology_files/Tech Epochs.pdf
http://arxiv.org/abs/1601.02677
http://doi.org/DOI:10.1371/journal.pone.0121635
https://doi.org/10.1017/dsj.2016.8


Dahl, D. W. &Moreau, P. 2002 The influence and value of analogical thinking during
new product ideation. Journal of Marketing Research 39 (1), 47–60.

Dasgupta, S. 1996 Creativity and Technology. Oxford University Press.
de Solla Price, D. J. 1986 Sealing wax and string. In Little Science, Big Science and beyond,

Columbia University Press.
Dosi, G. 1982 Technological paradigms and technological trajectories. Research Policy 11

(3), 147–162.
Farmer, J. D. & Lafond, F. 2016 How Predictable is Technological Progress? Research

Policy 45, 647–665. Available at: http://www.ssrn.com/abstract=2566810.
Finke, R. A.,Ward, T. B. & Smith, S. M. 1996 Creative Cognition: Theory, Research, and

Applications. MIT Press.
Fleming, L. 2001 Recombinant uncertainty in technological search.Management Science

47 (1), 117–132.
Fleming, L. & Sorenson, O. 2004 Science as a map in technological search. Strategic

Management Journal 25 (89), 909–928.
Frischknecht, B., Gonzalez, R., Papalambros, P. Y. & Reid, T. 2009 A design science

approach to analytical product design. International Conference on Engineering
Design, Design Society, Palo Alto, CA, (August), 35–46.

Fu, K., Chan, J., Cagan, J., Kotovsky, K., Schunn, C. &Wood, K. 2013 The meaning of
‘near’ and ‘far’: the impact of structuring design databases and the effect of distance of
analogy on design output. Journal of Mechanical Design 135 (2), 021007.

Gentner, D. &Markman, A. B. 1997 Structure mapping in analogy and similarity.
American Psychologist 52 (1), 45–56.

Gero, J. S. & Kannengiesser, U. 2004 The situated function-behaviour-structure
framework. Design Studies 25 (4), 373–391.

Girifalco, L. A. 1991 Dynamics of Technological Change. Van Nostrand Reinhold.
Goel, A. K. 1997 Design, analogy, and creativity. IEEE Expert 12 (3).
Gold, B. 1974 Evaluating scale economies: the case of Japanese blast furnaces. The Journal

of Industrial Economics 23 (1), 1–18.
Gribbin, J. 2002 The Scientists: A History of Science Told Through the Lives of Its Greatest

Inventors. Random House.
Hatchuel, A. &Weil, B. 2009 C-K design theory: an advanced formulation. Research in

Engineering Design 19 (4), 181–192.
Henderson, R. M. & Clark, K. B. 1990 Architectural innovation: the reconfiguration of

existing product technologies and the failure of established firms. Administrative
Science Quarterly 35 (1), 9–30.

Holyoak, K. J. & Thagard, P. R. 1995 Mental Leaps: Analogy in Creative Thought. MIT
Press.

Hunt, B. J. 2010 Pursuing Power and Light. Johns Hopkins University Press.
Klevorick, A. K., Levin, R. C., Nelson, R. R. &Winter, S. G. 1995 On the sources and

significance of interindustry differences in technological opportunities. Research
Policy 24 (2), 185–205.

Koestler, A. 1964 The Act of Creation. Hutchinson & Co.
Koh, H. &Magee, C. L. 2006 A functional approach for studying technological progress:

Application to information technology. Technological Forecasting and Social Change
73 (9), 1061–1083.

32/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

http://www.ssrn.com/abstract=2566810
https://doi.org/10.1017/dsj.2016.8


Koh, H. &Magee, C. L. 2008 A functional approach for studying technological progress:
extension to energy technology. Technological Forecasting and Social Change 75,
735–758.

Langrish, J., Gibbons, M., Evans, W. G. & Jevons, F. R. 1972 Wealth from Knowledge: A
Study of Innovation in Industry. Halst/John Wiley.

Leclercq, P. &Heylighen, A. 2002 Analogies per hour. In Artificial Intelligence in
Design’02 (ed. J. S. Gero), pp. 285–303. Kluwar Academic Publishers.

Lienhard, J. H. 2008 How Invention Begins: Echoes of Old Voices in the Rise of New
Machines. The Oxford University Press.

Linsey, J. S.,Markman, A. B. &Wood, K. L. 2012 Design by analogy: a study of the
wordtree method for problem re-representation. Journal of Mechanical Design 134 (4).

Linsey, J. S.,Wood, K. L. &Markman, A. B. 2008 Modality and representation in
analogy. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 22,
85–100.

Lipsey, R. G., Carlaw, K. I. & Bekar, C. T. 2006 Economic Transformations: General
Purpose Technologies and Long Term Economic Growth. The Oxford University Press.

Luo, J.,Olechowski, A. L. &Magee, C. L. 2014 Technology-based design and sustainable
economic growth. Technovation 34 (11), 663–677.

Magee, C. L., Basnet, S., Funk, J. L. & Benosn, C. L. 2014 Quantitative empirical trends in
technical performance (No. ESD-WP-2014-22). Cambridge, MA. Retrieved from
http://esd.mit.edu/WPS/2014/esd-wp-2014-22.pdf.

Magee, C. L., Basnet, S., Funk, J. L. & Benson, C. L. 2016 Quantitative empirical trends
in technical performance. Technological Forecasting & Social Change
http://doi.org/10.1016/j.techfore.2015.12.011.

McNerney, J., Farmer, J. D., Redner, S. & Trancik, J. E. 2011 Role of design complexity
in technology improvement. Proceedings of the National Academy of Sciences of the
United States of America 108 (38), 9008–9013.

Mokyr, J. 2002 The Gifts of Athena: Historical Origins of the Knowledge Economy.
Princeton University Press.

Moore, G. E. 1965 Cramming more components onto integrated circuits. Electronics 38
(8), 1–4.

Mowery, D. & Rosenberg, N. 1979 The influence of market demand upon innovation: a
critical review of some recent empirical studies. Research Policy 8 (2), 102–153.

Musson, A. E. 1972 Science, Technology and Economic Growth in the Eighteenth Century,
1st edn. (ed. A. E. Musson). Routledge.

Musson, A. E. & Robinson, E. 1989 Science and Technology in the Industrial Revolution.
Gordon and Breach Science Publishers.

Muth, J. F. 1986 Search theory and the manufacturing progress function.Management
Science 32 (8), 948–962.

Myers, S. &Marquis, D. G. 1969 Successful Industrial Innovation. National Science
Foundation.

Nagy, B., Farmer, J. D., Bui, Q. M. & Trancik, J. E. 2013 Statistical basis for predicting
technological progress. PloS One 8 (2), e52669.

Nelson, R. R. &Winter, S. G. 1982 An Evolutionary Theory of Economic Change. Harvard
University Press.

Nemet, G. & Johnson, E. 2012 Do important inventions benefit from knowledge
originating in other technological domains? Research Policy 41 (1).

33/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

http://esd.mit.edu/WPS/2014/esd-wp-2014-22.pdf
http://doi.org/10.1016/j.techfore.2015.12.011
https://doi.org/10.1017/dsj.2016.8


Nordhaus, W. D. 1996 Do real-output and real-wage measures capture reality? The
history of lighting suggests not. In The Economics of New Goods, pp. 29–70, retrieved
from http://www.nber.org/chapters/c6064.pdf.

Packalen, M. & Bhattacharya, J. 2015 Cities and Ideas. Available at:
http://www.nber.org/papers/w20921.

Polanyi, M. 1962 Personal Knowledge: Towards a Post-Critical Philosophy. University of
Chicago Press.

Polya, G. 1945 How to Solve It: A New Aspect of Mathematical Method, 1st edn. Princeton
University Press.

Popper, K. 1959 Logic of Scientific Discovery, 1st edn. Hutchinson & Co.
Romer, P. M. 1990 Endogenous technological change. Journal of Political Economy 98 (5).
Rosenberg, N. 1982 Inside the Black Box: Technology and Economics. Cambridge

University Press.
Rosenberg, N. & Birdzell, L. E. Jr 1986 How the West Grew Rich: The Economic

Transformation of the Industrial World. Basic Books.
Ruttan, V. W. 2001 Technology, Growth, and Development: An Induced Innovation

Perspective. Oxford University Press.
Sahal, D. 1979 A theory of progress functions. AIIE Transactions 11 (1), 23–29; retrieved

from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+I+I+E+Tr
ansactions#8.

Sahal, D. 1985 Technological guideposts and innovation avenues. Research Policy 14 (2),
61–82.

Schofield, R. 1963 The Lunar Society of Birmingham: A Social History of Provincial
Science and Industry in Eighteenth-Century England. Clarendon.

Schumpeter, J. A. 1934 The Theory of Economic Development. Harvard University Press.
Shai, O., Reich, Y. & Rubin, D. 2009 Creative conceptual design: extending the scope by

infused design. CAD Computer Aided Design 41 (3), 117–135.
Simon, H. A. 1962 The architecture of complexity. Proceedings of the American

Philosophical Society 26 (6), 467–482.
Simon, H. A. 1969 The Sciences of the Artificial, 1st edn. MIT Press.
Simon, H. A. 1996 The Sciences of the Artificial, 3rd edn. MIT Press.
Solow, R. M. 1956 A contribution to the theory of economic growth. The Quarterly

Journal of Economics 70 (1), 65–94.
Suh, N. P. 2001 Axiomatic Design: Advances and Applications, 1st edn. The Oxford

University Press.
Taguchi, G. 1992 Taguchi on Robust Technology Development: Bringing Quality

Engineering Upstream. ASME Press Series.
Toynbee, A. J. 1962 Introduction: The Geneses of Civilizations, A Study of History, 12.
Tseng, I.,Moss, J., Cagan, J. & Kotovsky, K. 2008 The role of timing and analogical

similarity in the stimulation of idea generation in design. Design Studies 29 (3),
203–221.

Tushman, M. L. & Anderson, P. 1986 Technological discontinuities and organizational
environments life cycles. Administrative Science Quarterly 31, 439–465.

Usher, A. P. 1954 A History of Mechanical Inventions, 1st edn. Beacon Press.
Utterback, J. M. 1974 Innovation in industry and the diffusion of technology. Science

(New York, N.Y.) 183 (4125), 620–626.
Vincenti, W. 1990 What Engineers Know, and How They Know It. John Hopkins

University Press.

34/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

http://www.nber.org/chapters/c6064.pdf
http://www.nber.org/papers/w20921
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+I+I+E+Transactions#8
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+I+I+E+Transactions#8
https://doi.org/10.1017/dsj.2016.8


Weber, C. &Deubel, T. 2003 New Theory-based Concepts for PDM and PLM
Property-Driven Development / Design (PDD). In International Conference on
Engineering Design ICED 03, August 19–21, 2003, pp. 1–10.

Weisberg, R. W. 2006 Creativity. In Creativity, 1st edn. pp. 153–2007. John Wiley & Sons,
Inc.

Whitney, D. E. 1996 Why mechanical design will never be like VLSI design. Research in
Engineering Design 8, 125–138.

Whitney, D. E. 2004 Physical limits to modularity. InMIT Engineering System Division
Internal Symposium. Retrieved from
https://esd.mit.edu/symposium/pdfs/papers/whitney.pdf.

Wright, T. P. 1936 Factors affecting the cost of airplanes. Journal of Aerospace Science
122–138.

Yelle, L. E. 2007 The learning curve: historical review and comprehensive survey. Decision
Sciences.

Youn, H., Bettencourt, L. M. A., Strumsky, D. & Lobo, J. 2014 Invention as a
combinatorial process: evidence from US patents. Journal of the Royal Society,
Interface 12, 2015027. Available at:
http://rsif.royalsocietypublishing.org/content/12/106/20150272.

35/35

https://doi.org/10.1017/dsj.2016.8 Published online by Cambridge University Press

https://esd.mit.edu/symposium/pdfs/papers/whitney.pdf
http://rsif.royalsocietypublishing.org/content/12/106/20150272
https://doi.org/10.1017/dsj.2016.8

	Modeling of technological performance trends using design theory
	Introduction
	Background
	Design, invention and cognitive psychology literature
	Technological change literature
	Literature on quantitative modeling of technological change

	Overview of the model
	Conceptual basis of model
	Mathematical summary

	Results
	Overall IOI simulation
	Combinatoric simulations for Understanding regime
	Exchanges between Understanding and Operations regimes
	Modeling interaction differences among domains
	Performance models – scaling of design variables
	Selected examples
	Generalization of scaling of design variables

	Bringing all elements together

	Discussion
	Concluding remarks
	Acknowledgments
	References


