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The unsteady behaviour of a rarefied gas caused by a sudden change of the angular velocity
of a sphere, placed in an otherwise quiescent gas, is investigated based on the linearized
Bhatnagar–Gross–Krook model of the Boltzmann equation and the diffuse reflection
boundary condition. The initial and boundary value problem is solved numerically by
the method of characteristics, which is capable of tracking the discontinuity of the
velocity distribution function moving in the phase space. The transient behaviour of the
macroscopic quantities, such as the circumferential flow velocity and shear stress as well
as the heat flow around the sphere, is clarified for a wide range of the Knudsen number.
Furthermore, the long-time behaviour of the macroscopic quantities is elucidated, that is,
they approach terminal values with a rate t−3/2 for t � 1, with t being a time variable. The
analytical expression for the free molecular gas as well as for the slip flow is obtained.
It is found that the circumferential heat flow reverses its direction as time proceeds when
the Knudsen number is finite. More precisely, the direction is the same as that of the
circumferential velocity of the sphere in the initial stage and opposite in the final stage,
being reversed at some point of time depending on the distance from the sphere. This
makes a clear contrast with the case of a free molecular gas, for which the heat flow is
always in the direction of the sphere rotation in finite time and vanishes in the long-time
limit.

Key words: non-continuum effects, kinetic theory

1. Introduction

The transient behaviour of fluids caused by impulsive change of boundary data is of
great interest in fluid mechanics. In rarefied gas dynamics, the most classical problem of
this type is the linearized Rayleigh problem (e.g. Yang & Lees 1956; Gross & Jackson
1958; Cercignani & Sernagiotto 1964; Sone 1964), which is described as follows. Suppose
that a rarefied gas is initially at equilibrium with an infinite plane at rest which is
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maintained at a uniform and constant temperature. At time t∗ = 0, the plane suddenly
starts to move in its surface with a uniform velocity. We investigate the unsteady behaviour
of the gas caused by the impulsive motion of the plane for t∗ > 0. The linearized
Rayleigh problem describes the propagation of the transverse momentum into the gas and
contains both the free-molecular-like and the continuum-flow-like behaviours in a single
problem. These characters have been revisited in recent mathematical studies (Kuo 2011,
2017).

Later on, flows caused by a sudden change of boundary data have been investigated
in various situations (e.g. Sone & Sugimoto 1990; Aoki et al. 1991; Doi 2016). However,
most of the studies are limited to spatially one-dimensional problems. In the present paper,
we extend the linearized Rayleigh problem to a spatially three-dimensional axisymmetric
flow. More specifically, we consider a rigid sphere placed in a rarefied gas which is initially
at thermal equilibrium with the sphere. Suppose that the sphere is suddenly set into a
rotational motion around one of its diameters at t∗ = 0. We investigate the linear response
of the gas to the impulsive rotation of the sphere for t∗ > 0.

Unlike the one-dimensional Rayleigh problem for a planer boundary, the sphere
radius appears as a quantity having a physical dimension of length in addition to the
molecular mean free path in the present problem. Thus, their quotient, known as the
Knudsen number, plays an important role in characterizing unsteady response. Another
important difference from the one-dimensional Rayleigh problem lies in the fact that
the present problem admits a steady solution (Loyalka 1992; Andreev & Popov 2010;
Taguchi, Saito & Takata 2019). Thus, the speed of approach to the final steady state
is also of interest. A non-trivial response occurring in the heat flow will be discussed
as well.

It should be mentioned that the instantaneous change in the boundary data introduces
a ( jump) discontinuity in the velocity distribution function (VDF) at time t∗ = 0 on the
sphere, which propagates in the phase space as time proceeds. Indeed, the abrupt change
in the macroscopic quantities taking place in the initial stage is closely related to the
discontinuity of the VDF. In addition, we have discontinuities originating from the fact
that the sphere is a convex body, that is, due to the molecules making grazing collisions
with the sphere. These effects are fully accounted for in the present study, devising a
method of characteristics based on the integral form of our basic equation. To make
the problem tractable, we employ the Bhatnagar–Gross–Krook (BGK) model (Bhatnagar,
Gross & Krook 1954; Welander 1954) of the Boltzmann equation and the diffuse reflection
boundary condition on the sphere.

The transient behaviour of a rarefied gas around a spherical body is important in many
applications in microscience or nanoscience as well as in vacuum engineering. The present
problem is expected to provide fundamental information on the unsteady behaviour of
rarefied gas if combined with recent results focusing on oscillatory shear-driven flows
(e.g. Park, Bahukudumbi & Beskok 2004; Hadjiconstantinou 2005; Sharipov & Kalempa
2008; Doi 2010; Yap & Sader 2012, 2016).

The rest of the paper is organized as follows. In § 2, the precise statement of the problem
is given along with the formulation using the similarity solution. Then, we discuss the
discontinuity of the VDF in § 3, followed by the introduction of a numerical method
in § 4. We summarize analytical results for the free molecular gas as well as for the
continuum flow in § 5. Section 6 presents numerical results, where we show the behaviours
of the macroscopic quantities as well as that of the VDF. Section 7 is devoted to further
discussion and § 8 concludes the paper.
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FIGURE 1. Schematic of the problem. (a) A sphere originally kept at rest for t∗ < 0 starts to
rotate at time t∗ = 0 with a constant angular velocity. (b) The angular velocity Ω∗ of the sphere.

2. Formulation

2.1. Problem
Consider a sphere with radius L placed in a monatomic rarefied gas at rest with density
ρ0, temperature T0, and pressure p0 = ρ0RT0, where R is the specific gas constant (i.e. the
Boltzmann constant divided by the mass of a molecule). There is no external force acting
on both the gas and the sphere. At time t∗ = 0, the sphere starts to rotate impulsively
around a diameter with constant angular velocity Ω∗ > 0. The situation is schematically
described in figure 1. We investigate the unsteady behaviour of the gas for t∗ > 0 based on
the BGK model of the Boltzmann equation and the diffuse reflection boundary condition,
under the assumption that Ω∗L is so small compared with the thermal speed (2RT0)

1/2 that
the equation and the boundary condition can be linearized about the initial equilibrium
state at rest for t∗ < 0.

2.2. Basic equations
Let us introduce the dimensionless time t by t∗ = L(2RT0)

−1/2t. We introduce the
Cartesian coordinates Lxi (i = 1, 2, 3) centred at the sphere centre in such a way that
the x1 axis coincides with the axis of revolution, and denote the molecular velocity
and the VDF by (2RT0)

1/2ζi and ρ0(2RT0)
−3/2(1 + φ(x, ζ , t))E, respectively, where

E = π−3/2 exp(−|ζ |2). We further introduce the following macroscopic variables. Let
ρ0(1 + ω(x, t)) denote the density, (2RT0)

1/2ui(x, t) the flow velocity, T0(1 + τ(x, t))
the temperature, p0(1 + P(x, t)) the pressure, p0(δij + Pij(x, t)) the stress tensor and
p0(2RT0)

1/2Qi(x, t) the heat-flow vector of the gas, respectively. It is convenient to
introduce a spherical coordinate system (Lr, θ, ϕ) with its origin at the sphere centre
and with the polar direction oriented to the positive x1 direction, i.e. x1 = r cos θ ,
x2 = r sin θ cos ϕ and x3 = r sin θ sin ϕ. The corresponding components of vectors and
tensors are denoted by using (r, θ, ϕ) as subscripts. For instance, uϕ is the circumferential
component of the flow velocity in the ϕ direction.
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The linearized BGK equation and its boundary and initial conditions for the present
problem are summarized as follows:

∂φ

∂t
+ ζi

∂φ

∂xi
= 1

k
L(φ), (2.1a)

L(φ) = −φ + ω + 2ζiui +
(
ζ 2

j − 3
2

)
τ, (2.1b)

ω = 〈φ〉, ui = 〈ζiφ〉, τ = 2
3

〈(
ζ 2

j − 3
2

)
φ
〉
, (2.1c)

b.c. φ = −2
√

π

∫
ζr<0

ζrφE dζ + 2Ωζϕ sin θ, ζr > 0 (r = 1, t > 0), (2.1d)

b.c. φ → 0 (r → ∞), (2.1e)

i.c. φ = 0 (t = 0, 1 < r < ∞), (2.1f )

where dζ = dζ1 dζ2 dζ3 and the bracket notation in (2.1c) and in (2.4a–c), below, indicates

〈 f 〉 =
∫

R3

f (ζ )E dζ . (2.2)

The Ω and k in (2.1d) and (2.1a) are the dimensionless angular velocity and the scaled
mean free path, respectively, and are defined by

Ω = Ω∗L
(2RT0)1/2

, k =
√

π

2
�0

L
=

√
π

2
Kn, (2.3a,b)

where �0 is the mean free path of the gas molecules in the equilibrium state at rest
with density ρ0 and temperature T0, and Kn = �0/L is the Knudsen number. For the
BGK model, �0 = (2/

√
π)(2RT0)

1/2/Acρ0 with Ac being a constant such that Acρ0 is
the collision frequency at the reference state. By our assumption, Ω is a small positive
constant, i.e. Ω 	 1.

We refer to § 1.11 of Sone (2007) for the linearized system of the BGK equation (or of
the Boltzmann equation), where the formulation is given in a more general situation.

The (perturbed) pressure, the stress tensor and the heat-flow vector of the gas are defined
as the moments of φ as follows:

P = 2
3 〈ζ 2

j φ〉 = ω + τ, Pij = 2〈ζiζjφ〉, Qi = 〈ζi
(
ζ 2

j − 5
2

)
φ
〉
. (2.4a–c)

2.3. Similarity solution
It is easy to verify that the following similarity solution is compatible with the present
initial and boundary value problem:

φ = ΩζϕφS(r, θζ , ζ, t) sin θ, (2.5)

where ζ = (ζ 2
i )1/2 = |ζ | and

θζ = Arccos(ζr/ζ ) (0 � θζ � π), (2.6)

is the angle of the molecular velocity measured from the radial direction.
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Behaviour of a rarefied gas caused by impulsive rotation 909 A6-5

The initial and boundary value problem for φS is summarized as follows:

∂φS

∂t
+ ζ cos θζ

∂φS

∂r
− ζ sin θζ

r
∂φS

∂θζ

− ζ cos θζ

r
φS = 1

k
L1(φS), (2.7a)

L1(φS) = −φS + 2ũϕ, (2.7b)

ũϕ = π

∫ π

0

∫ ∞

0
ζ 4 sin3 θζφSE dζ dθζ , (2.7c)

b.c. φS(1, θζ , ζ, t) = 2
(

0 � θζ <
π

2
, t > 0

)
, (2.7d)

b.c. φS → 0 (r → ∞), (2.7e)

i.c. φS = 0 (t = 0, 1 < r < ∞). (2.7f )

Under the similarity solution (2.5), the macroscopic variables are expressed as

uϕ = Ω ũϕ sin θ, Prϕ = ΩP̃rϕ sin θ, Qϕ = ΩQ̃ϕ sin θ, (2.8a)

ω = ur = uθ = τ = P = Prr = Prθ = Pθθ = Pθϕ = Pϕϕ = Qr = Qθ = 0, (2.8b)

where ũϕ = ũϕ(r, t) is obtained from (2.7c), while P̃rϕ = P̃rϕ(r, t) and Q̃ϕ = Q̃ϕ(r, t) are
defined by

P̃rϕ = 2π

∫ π

0

∫ ∞

0
ζ 5 cos θζ sin3 θζφSE dζ dθζ , (2.9a)

Q̃ϕ = π

∫ π

0

∫ ∞

0
ζ 6 sin3 θζφSE dζ dθζ − 5

2 ũϕ. (2.9b)

It should be noted that the temperature of the gas is uniform and is equal to the sphere
temperature, that is, τ = 0 everywhere.

Finally, we introduce the torque (the moment of force) acting on the sphere. That is, if
we denote by ( p0L3ΩhM, 0, 0) the moment of force around the origin, hM is expressed in
terms of P̃rϕ(r, t) as follows:

hM = − 8
3πP̃rϕ(1, t). (2.10)

The hM in the steady state (t → ∞) was investigated in Loyalka (1992) and Taguchi et al.
(2019). The time evolution of hM for various k is one of our interests in the present study.

2.4. Conservation equation
If we multiply (2.1a) (or (2.7a)) by ζϕE (or ζ 2

ϕ sin θE) and integrate the result with respect
to the molecular velocity, we obtain

∂ ũϕ

∂t
+ 1

2r3

∂

∂r
(r3P̃rϕ) = 0. (2.11)

In a steady state (∂/∂t = 0), we have r3P̃rϕ = const. and therefore P̃rϕ is inversely
proportional to r3.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.907


909 A6-6 S. Taguchi, T. Tsuji and M. Kotera

ζi

r

xi

θζ

O
1

r̃
θ̃

θ̃

ζ

ζt̃

ζi

xi

ηw
xwi

θζ

r

O
1

r̃

ζ

ζt̃

ζt = cot θζ

θζ /π

ζt

5
10 r = 12

Γ2

Γ1

1.2

Γ2

Γ1

12

10

8

6

4

2

0 0.5 1.0

(a) (b) (c)

FIGURE 2. The backward molecular trajectory for given (r, θζ , ζ, t). Here t̃ is the backward
time and is related to a variable of integration t̄ in (3.3) as t̃ = t − t̄. In panel (a), where
θζ > Arcsin(r−1), the molecular trajectory can be traced back until the initial time without
encountering the sphere. In panel (b), where θζ < Arcsin(r−1), the molecular trajectory can
be traced back until the initial time only when the condition ζ t < ηw is met; otherwise it hits the
sphere surface at time t† = t − ηw/ζ , where 0 < t† < t. (c) The location of the discontinuity (Γ1
and Γ2) of VDF projected on the θζ –ζ t plane for various r. The Γ1 and Γ2 for the same r meet
on a point on the curve ζ t = cot θζ .

3. Propagation of the discontinuity of VDF

Equation (2.1a) describes the variation of φ along the molecular trajectory (i.e. the
characteristics of the equation). At a given point of the time t, let us consider a point
xi in the gas region and trace back the molecular trajectory along the characteristic curve
starting from xi in the backward direction �i = −ζi/ζ (and in the backward direction in
time). Since the characteristic curve is a straight line for a given ζi, it is clear that one can
follow the backward trajectory until the initial time without encountering the sphere in
the case where θζ of (2.6) satisfies the condition θζ > Arcsin(r−1) (see figure 2a). On the
other hand, when θζ < Arcsin(r−1) as shown in figure 2(b), the trajectory can be traced
back until the initial time without encountering the sphere only if the molecular speed ζ is
smaller than a certain value; otherwise, the trajectory encounters the diffusely reflecting
boundary (i.e. the sphere) before reaching the initial time.

To be more precise, in the case of θζ < Arcsin(r−1), let us consider a half-line drawn
from the point xi in the direction �i and let xwi be the nearest point (from xi) that this
half-line intersects with the sphere surface. We further denote the linear distance from xi
to xwi by ηw = ηw(r, θζ ), which is given by

ηw(r, θζ ) = r cos θζ −
√

1 − r2 sin2 θζ , 0 � θζ � Arcsin(r−1). (3.1)

With this definition, we conclude two cases: (i) when ζ t < ηw, the trajectory is traced back
to the initial time without intersecting the boundary; (ii) when ζ t > ηw, it encounters the
boundary before the initial time is reached. In the latter case, the time of intersection of
the trajectory with the sphere surface is given by

t† = t − ηw(r, θζ )

ζ
, (3.2)

for given r, θζ , ζ and t satisfying θζ < Arcsin(r−1).
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Behaviour of a rarefied gas caused by impulsive rotation 909 A6-7

Based on the above consideration, we integrate (2.1a) along the molecular trajectory
(i.e. the characteristics). Applying further the similarity solution, we obtain

φS(r, θζ , ζ, t) = rG0(r, θζ , ζ, t) + r
k

∫ t

t0

1
r̃

L1(φS)(r̃, θ̃ζ , ζ, t̄) dt̄, (3.3)

where the variable of integration t̄ is related to the backward time t̃ in figures 2(a) and 2(b)
as t̃ = t − t̄, and

r̃ = r̃(η̃, r, θζ ) :=
√

r2 + η̃2 − 2rη̃ cos θζ =
√

r2 sin2 θζ + (η̃ − r cos θζ )2, (3.4a)

η̃ = ζ(t − t̄), (3.4b)

θ̃ζ = θ̃ζ (r̃, η̃, r, θζ ) :=
{

Arcsin(r sin θζ /r̃), (η̃ < r cos θζ ),

π − Arcsin(r sin θζ /r̃), (η̃ > r cos θζ ),
(3.4c)

(G0, t0) =

⎧⎪⎨
⎪⎩

(2, t†), (0 ≤ θζ < Arcsin(r−1), ζ t > ηw),

(0, 0), (0 ≤ θζ < Arcsin(r−1), ζ t < ηw),

(0, 0), (Arcsin(r−1) < θζ ≤ π).

(3.4d)

As seen from (3.4d), G0 = G0(r, θζ , ζ, t) is discontinuous on the surfaces Γ1 and Γ2 in the
four-dimensional space (r, θζ , ζ, t) given by

Γ1 = {(r, θζ , ζ, t) | ζ t = ηw(r, θζ ), 0 ≤ θζ < Arcsin(r−1)}, (3.5a)

Γ2 = {(r, θζ , ζ, t) | ζ t > ηw(r, θζ ), θζ = Arcsin(r−1)}. (3.5b)

Thus, φS is discontinuous on Γ1 ∪ Γ2. We depict Γ1 (solid curves) and Γ2 (broken lines)
for several values of r in figure 2(c). For a given r, the surfaces Γ1 and Γ2 meet on ζ t =
ηw|r sin θζ =1 = cot θζ (shown by the symbol ◦ in the figure). The Γ1 shrinks to ζ t = 0 as
r → 1. Note that Γ1 corresponds to the discontinuity due to the initial condition, whereas
Γ2 to the molecules making grazing collisions with the sphere.

The distance ηw = ηw(r, θζ ) is an increasing function of r. Therefore, the discontinuity
corresponding to Γ1 runs off to infinity as t → ∞ for each ζ . Accordingly, only
the discontinuity corresponding to Γ2 remains in the steady state. This discontinuity,
remaining in the steady state, is commonly observed around a convex body (Sone & Takata
1992) and is the reason for a steep variation of uϕ and Qϕ near the boundary. We refer
to Takata & Taguchi (2017) for a general discussion and to Taguchi et al. (2019) for an
illustrative example related to the present problem.

The behaviour of the macroscopic quantities as t → 0+ near the boundary deserves
special attention. As shown above, φS is discontinuous at ζ = ηw(r, θζ )/t for a given
(r, θζ , t) (see (3.5)). If we denote this value of ζ as ζ∗, it is a function of (r, θζ , t), i.e.

ζ∗(r, θζ , t) = ηw(r, θζ )

t
(0 � θζ < θζ∗(r)), (3.6)

where

θζ∗(r) = Arcsin(r−1) (1 < r < ∞). (3.7)
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909 A6-8 S. Taguchi, T. Tsuji and M. Kotera

With this notation, we write a part of the integral in (2.7c) as

I =
∫ π/2

0

∫ ∞

0
ζ 4 sin3 θζφSE dζ dθζ

=
(∫ θζ∗

0

∫ ζ∗

0
+
∫ θζ∗

0

∫ ∞

ζ∗
+
∫ π/2

θζ∗

∫ ∞

0

)
ζ 4 sin3 θζφSE dζ dθζ . (3.8)

Now consider a simultaneous limit t ↘ 0 and r ↘ 1 such that (r − 1)/t = const. Since
θζ∗ ↗ π/2 as r ↘ 1, the third term vanishes, and we are left with the integral I =∫ π/2

0 (
∫ ζ∗

0 + ∫∞
ζ∗

) · · · . On the other hand, ζ∗ is expressed as

ζ∗ = 1
cos θζ

r − 1
t

+ O
(

(r − 1)2

t

)
(3.9)

near the boundary. Therefore, the upper or lower limit ζ∗(= (r − 1)/t cos θζ ) appearing in
the inner integrals depends on the value of (r − 1)/t. Since φS has a jump discontinuity at
ζ = ζ∗, this implies that the whole integral, and thus the circumferential flow velocity uϕ ,
takes different values depending on the ratio (r − 1)/t, namely, the speed of approach to
the point (r, t) = (1, 0). Clearly, the same is true for other macroscopic variables Prϕ and
Qϕ . If we do not take the limit but consider a point close to (r, t) = (1, 0), the macroscopic
variables are uniquely determined but undergo abrupt changes in the r–t plane due to
the variation of ζ∗. In this way, the abrupt change of the macroscopic quantities near the
sphere shortly after the onset of the rotation is closely related to the discontinuity of VDF
propagating in the phase space.

4. Numerical analysis

As we have seen in the previous section, the discontinuity of VDF moves in the phase
space as time goes on. The situation is similar to those in moving boundary problems
if we regard the four-dimensional surface Γ1 ∪ Γ2 as a movable boundary, changing its
location in the phase space. A moving boundary problem for a rarefied gas was treated in
Tsuji & Aoki (2013), where a numerical scheme based on the method of characteristics
has been developed. Therefore, we adopt a similar strategy to solve the integral equation
numerically.

4.1. Preliminary
For convenience, we rewrite (3.3) as follows. We multiply exp(t/k) to (3.3), and integrate
it with respect to the time variable from t0 to t. Then, we divide it by exp(t/k) and
differentiate it with respect to t to obtain

φS(r, θζ , ζ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2r exp
(

−ηw

kζ

)
H(ζ − ζ∗) + 2r

k

∫ tend

0
G(r, θζ , ζ, t, t̃) dt̃ (0 � θζ � θζ∗),

2r
k

∫ t

0
G(r, θζ , ζ, t, t̃) dt̃ (θζ∗ < θζ � π),

(4.1)
where the integrand G(r, θζ , ζ, t, t̃) is given by

G(r, θζ , ζ, t, t̃) = exp(−t̃/k)
r̃(ζ t̃, r, θζ )

ũϕ(r̃(ζ t̃, r, θζ ), t − t̃), (4.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.907


Behaviour of a rarefied gas caused by impulsive rotation 909 A6-9

with r̃ being the one defined in (3.4a). The upper limit tend of the integral is given by

tend = min(ηw/ζ, t), (4.3)

that is, tend is tend = ηw/ζ when the molecule hits the sphere, while tend = t if the molecule
goes back to initial time (see figures 2a and 2b). The H(x) is the Heaviside step function

H(x) =
{

1, x > 0,

0, x < 0,
(4.4)

and ũϕ in (4.2) depends on φS through (2.7c). The distance r̃(ζ t̃, ·, ·) in (4.2) is computed
from (3.4a) with η̃ replaced by ζ t̃. For ζ = 0, consider the limit ζ ↘ 0. The integral on
the right-hand side of the integral equation (4.1) amounts to the integration of ũϕ , which
depends on two variables (r, t). This reduces dramatically the difficulty of the numerical
analysis.

4.2. Some remarks on the numerical method
In the numerical analysis, the range of r and that of ζ are restricted to finite intervals,
that is, r ∈ [1, rmax ] and ζ ∈ [0, ζmax ], where rmax and ζmax are sufficiently large positive
numbers. The appropriateness of the values rmax and ζmax is judged from the numerical
results. The range of the time variable t is also restricted to a finite range as t ∈ [0, tmax ].
We introduce lattice points for (r, θζ , ζ, t) as follows:

r(i) = gr(i), (i = 0, 1, 2, . . . , Nr), (4.5a)

t(n) = gt(n), (n = 0, 1, 2, . . . , Nt), (4.5b)

θ
( j)
ζ =

{
g−

θζ
( j), ( j = 0, 1, 2, . . . , j(i)∗ ),

g+
θζ
( j), ( j = j(i)∗ + 1, . . . , Nθζ

),
(4.5c)

ζ (m) =
{

g−
ζ (m), (m = 0, 1, 2, . . . , m(i,j,n)

∗ ),

g+
ζ (m), (m = m(i,j,n)

∗ + 1, . . . , Nζ ),
(4.5d)

where gr(x), gt(x), g∓
θζ
(x) and g∓

ζ (x) are monotonically increasing functions which define
our lattice system. Denoting θ

(i)
ζ∗ = θζ∗(r(i)) and ζ (i,j,n)

∗ = ζ∗(r(i), θ
( j)
ζ , t(n)) (see (3.6) and

(3.7)), the functions in (4.5) are chosen in such a way that they satisfy

1 = gr(0) < gr(1) < · · · < gr(Nr) = rmax , (4.6a)

0 = gt(0) < gt(1) < · · · < gt(Nt) = tmax , (4.6b)

0 = g−
θζ
(0) < g−

θζ
(1) < · · · < g−

θζ
( j(i)∗ ) = θ

(i)
ζ∗ = g+

θζ
( j(i)∗ + 1) < · · · < g+

θζ
(Nθζ

) = π,

(4.6c)

0 = g−
ζ (0) < · · · < g−

ζ (m(i,j,n)
∗ ) = ζ (i,j,n)

∗ = g+
ζ (m(i,j,n)

∗ + 1) < · · · < g+
ζ (Nζ ) = ζmax .

(4.6d)

It should be noted that VDF is discontinuous at θζ = θ
(i)
ζ∗ and at ζ = ζ (i,j,n)

∗ . This is the
reason why the whole intervals for θζ and ζ are divided at θζ = θ

(i)
ζ∗ and ζ = ζ (i,j,n)

∗ ,
respectively (see (4.5c) and (4.5d)); they represent the location of our ‘moving boundary’.
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909 A6-10 S. Taguchi, T. Tsuji and M. Kotera

The lattice system {θ( j)
ζ } depends on {r(i)} through j(i)∗ (or θ

(i)
ζ∗ ). Similarly, the lattice system

{ζ (m)} depends on {r(i), θ
( j)
ζ , t(n)} through m(i,j,n)

∗ (or ζ (i,j,n)
∗ ). These dependencies are not

shown explicitly in (4.5c) and (4.5d) to shorten the notation.
We introduce discretized variables for φS and ũϕ as follows:

φ
(i,j,m,n)

S = φS(r(i), θ
( j)
ζ , ζ (m), t(n)), ũ(i,n)

ϕ = ũϕ(r(i), t(n)). (4.7a,b)

For a given n(�1), let us suppose that the circumferential flow velocity ũ(i,n′)
ϕ is known for

all n′ = 0, . . . , n − 1 and i = 0, . . . , Nr. Then, we determine φ
(i,j,m,n)

S at time t = t(n) for
all i, j and m by the following scheme:

φ
(i,j,m,n)

S = 2r(i) exp
(

− η(i,j)
w

kζ (m)

)
H(ζ − ζ∗) + 2r(i)

k

∫ t(i,j,m,n)

end

0
G(i,j,m,n)(t̃) dt̃, (4.8)

where

η(i,j)
w = ηw(r(i), θ

( j)
ζ ), (4.9a)

G(i,j,m,n)(t̃) = G(r(i), θ
( j)
ζ , ζ (m), t(n), t̃), (4.9b)

t(i,j,m,n)

end = tend(r(i), θ
( j)
ζ , ζ (m), t(n)), (4.9c)

and ηw, G and tend are given by (3.1), (4.2) and (4.3), respectively. Note that the two
cases 0 � θζ � θζ∗ and θζ∗ < θζ � π in (4.1) are unified in the above formula under the
convention η(i,j)

w = ∞ (and ζ∗ = ∞) for the latter case. For the integration with respect to
t̃ in (4.8), we further introduce discrete points for t̃ as follows:

t̃(l) = gt̃(l), l = 0, 1, 2, . . . , Nt̃, (4.10a)

0 = gt̃(0) < gt̃(1) < · · · < gt̃(Nt̃) = t(i,j,m,n)

end , (4.10b)

where gt̃(x) is a monotonically increasing function that defines lattice points for t̃. We then
used the four-point Gauss–Legendre quadrature to evaluate the integral in (4.8), applying
a suitable interpolation for ũϕ(r̃, t − t̃) in the integrand (essentially the second-order
Lagrange interpolation, applied first to the r variable and then to the t variable). In the
case of t̃(l) ∈ [0, t(n) − t(n−1)], we predict the values of u(i,n) (i ∈ {0, . . . , Nr}) using the data
at a few preceding time steps by extrapolation (basically using the second-order Lagrange
polynomials), and then apply the same interpolation in the r–t plane.

In the above procedure, we obtain φ
(i,j,m,n)

S . The last step is to carry out the numerical
integration with respect to ζ and θζ in (2.7c) to obtain ũϕ . Again, the four-point
Gauss–Legendre quadrature is applied for both ζ and θζ variables. Other macroscopic
quantities P̃rϕ and Q̃ϕ in (2.9) are also updated in this step using the same quadrature.
Then, we proceed to the next time step.

We have chosen our lattice system carefully, inspecting the behaviour of the integrand.
We give further information on the numerical analysis in appendix A.

5. Analytical results for k → ∞ and for k 	 1

Prior to presenting the numerical result, we show some analytical results obtained for
the cases of k → ∞ and for k 	 1.
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Behaviour of a rarefied gas caused by impulsive rotation 909 A6-11

5.1. Free molecular gas
First, we consider the case of the free molecular (or collisionless) gas, i.e. k → ∞. Letting
k → ∞ in (4.1), we have

φS(r, θζ , ζ, t) =
{

2rH(ζ − ζ∗), 0 � θζ � θζ∗,

0, θζ∗ < θζ � π,
(5.1)

where ζ∗ and θζ∗ are given by (3.6) and (3.7). Substituting (5.1) into (2.7c) and (2.9), the
macroscopic quantities are obtained as follows:

uϕ

Ω sin θ
= r

2
erfc

(
r − 1

t

)
− 1

4

√
1 − 1

r2

(
1
r

+ 2r
)

erfc

(√
r2 − 1

t

)

− t
(−2r2 + t2 − 2

)
4
√

πr2
exp
(

−r2 − 1
t2

)
+ t
(−2r2 − 2r + t2

)
4
√

πr2
exp
(

−(r − 1)2

t2

)
,

(5.2a)

Prϕ

Ω sin θ
= 1

4
√

πr3

[(
2r2 − 3t4 + 6t2 − 2

)
exp
(

−r2 − 1
t2

)

+ (4r2 − 6rt2 + 3t4) exp
(

−(r − 1)2

t2

)]
, (5.2b)

Qϕ

Ω sin θ
= 1

8
√

πr2t

[(
2r2 − 3t4 + 4t2 − 2

)
exp
(

−r2 − 1
t2

)

+ (4r2 − 6rt2 − 4r + 3t4 + 2t2) exp
(

−(r − 1)2

t2

)]
, (5.2c)

where erfc(x) is the complementary error function defined by

erfc(x) = 1 − erf(x) = 1 − 2√
π

∫ x

0
e−t2

dt. (5.3)

On the sphere, the macroscopic variables take the following values:

uϕ

Ω sin θ
= 1

2 ,
Prϕ

Ω sin θ
= 1√

π
, Qϕ = 0 (r = 1), (5.4)

which are time independent. Thus, the torque on the sphere is given by

hM = − 8
3

√
π(∼= −4.727). (5.5)

In other words, the torque on the sphere is constant in time in the free molecular gas.
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For a large t such that r/t 	 1, the following expression can be derived:

uϕ

Ω sin θ
= r

2

[
1 −

√
1 − 1

r2

(
1 + 1

2r2

)]
+ O(1)

r3

(r
t

)5
, (5.6a)

Prϕ

Ω sin θ
= 1√

πr3

(
1 + O(1)

(r
t

)6
)

, (5.6b)

Qϕ

Ω sin θ
= 1

4
√

πr3

(
1 + 1

3r

)(
1 − 1

r

)3 (r
t

)5
(

1 + O(1)
(r

t

)2
)

, (5.6c)

from which we conclude that,

uϕ

Ω sin θ
→ r

2

[
1 −

√
1 − 1

r2

(
1 + 1

2r2

)]
,

Prϕ

Ω sin θ
→ 1√

πr3
, Qϕ → 0, (5.7a–c)

as t → ∞, corresponding to the steady solution (Taguchi et al. 2019). Note that for large r
the steady flow velocity is further simplified to

uϕ

Ω sin θ
≈ 3

16
r−3, r � 1. (5.8)

5.2. Asymptotic behaviour for k 	 1 and t = O(k−1)

Now we turn our attention to the case where k 	 1 and t = O(k−1). The discussion in this
section is based on Sone (2007) and Takata & Hattori (2012), and is not restricted to the
BGK model.

According to Sone (2007) and Takata & Hattori (2012), the macroscopic quantities of
interest h (h = uϕ , Prϕ , Qϕ) can be sought in the form

h = hH + hK, (5.9)

where hH is the overall solution (i.e. the Hilbert solution) subject to the conditions
∂hH/∂xi = O(hH) and ∂hH/∂t = O(khH) on the spatial and temporal variations, and hK
is the so-called Knudsen-layer correction which is appreciable only in a thin layer (the
Knudsen layer) adjacent to the boundary, whose thickness is of the order of the mean free
path. The Knudsen-layer correction is required to satisfy the condition ∂hK/∂r = O(hK/k)
and ∂hK/∂t = O(khK). In other words, we seek the solution whose temporal variation is
slow (i.e. the diffusion time scale), disregarding the abrupt temporal variation which takes
place in the early stage of the evolution (the initial and subsequent acoustic layers).

If we further expand hH and hK (h = uϕ, Prϕ, Qϕ) in k as

hH = hH0 + khH1 + k2hH2 + · · · , (5.10)

hK = khK1 + k2hK2 + · · · , (5.11)

the circumferential flow velocity uϕHm is seen to be described by the following partial
differential equation (the Stokes equation):

∂uϕHm

∂s
− γ1

2

(
ΔuϕHm − uϕHm

r2 sin2 θ

)
= 0, m = 0, 1, . . . , (5.12)
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Behaviour of a rarefied gas caused by impulsive rotation 909 A6-13

HS BGK Notation in Sone (2002, 2007) Note

γ1 1.270042427 1 γ1 Viscosity

γ3 1.947906335 1 γ3

b(1)
1 1.25395 1.01619 −k0 Shear slip

TABLE 1. The values of γ1, γ3, and b(1)
1 for a hard-sphere gas (HS) and for the BGK model.

Data taken from Sone (2002, 2007).

where

s = kt, ΔuϕHm = 1
r2

∂

∂r

(
r2 ∂uϕHm

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂uϕHm

∂θ

)
, (5.13a,b)

and γ1 is a constant (transport coefficient) whose numerical value depends on the
particular molecular model under consideration, see table 1. Physically, γ1 is the
dimensionless viscosity; the viscosity μ0 at the reference equilibrium state is given by
μ0 = (

√
π/2)γ1p0(2RT0)

−1/2�0. Note also that variable s is used to describe the slow
temporal variation and uHm is regarded as uHm = uHm(xi, s). In the derivation of (5.12),
we have used the fact that the pressure is uniform (P = 0).

In this study, we obtain the asymptotic expression of the flow velocity up to the order k.
Then the appropriate boundary conditions for the flow velocity are

uϕH0 = Ω sin θ, uϕH1 = b(1)

1
∂

∂r

(uϕH0

r

)
, r = 1, s > 0, (5.14a)

uϕHm → 0 as r → ∞, (5.14b)

where b(1)

1 is the shear-slip coefficient, whose numerical value (under the diffuse reflection
condition) is listed in table 1.

The (5.12) for m = 0 and 1 with the above boundary conditions should be solved under
the following natural initial condition:

uϕHm = 0, s → 0+, 1 < r < ∞. (5.15)

The solution to (5.12) with m = 0 or 1 subject to the initial and boundary conditions,
(5.15) and (5.14), is obtained by introducing a vector potential (Landau & Lifshitz 1987)
and applying the Laplace transform. We thus obtain uϕH0 and uϕH1 and, consequently,
uϕ(= uϕH0 + k(uϕH1 + uϕK1)) for k 	 1 is written as

uϕ

Ω sin θ
= 1

r2

[
(1 − 3kb(1)

1 ) erfc

(
r − 1

2

√
2

γ1kt

)

+
[
(r − 1)(1 + k2b(1)

1 γ1t) + kb(1)

1 (r2 − 3r + 3)
]

exp
(

r − 1 + γ1kt
2

)

× erfc

(
r − 1

2

√
2

γ1kt
+
√

γ1kt
2

)
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−kb(1)

1√
π

(
2(r − 1)

√
γ1kt

2
+ r

√
2

γ1kt

)
exp
(

−(r − 1)2

2γ1kt

)]

− kY (1)

1

(
r − 1

k

)(
3 +

√
2

πγ1kt
− exp

(
γ1kt

2

)
erfc

(√
γ1kt

2

))
, (5.16)

where s has been changed back to kt and the function Y (1)

1 (x) is explained later in this
section. The solution is expected to describe the slow evolution of the gas for k 	 1
over the time t � O(1/k), which comes after more abrupt changes with time scales
t ∼ O(k) and t ∼ O(1). The lower-order formula or the formula without the Knudsen-layer
correction can be derived from (5.16) by discarding some of the terms as listed in table 2.

The corresponding formulae for the shear stress and the circumferential component of
the heat-flow vector in the gas, as well as that for the torque on the sphere, are obtained as

Prϕ

Ω sin θ
= 3γ1k

r3

{
(1 − 3kb(1)

1 ) erfc

(
r − 1

2

√
2

γ1kt

)

+ r2

3

[
1 − kb(1)

1

(
1 + 3

r
+ r − 1

γ1kt
− r2 − 3r + 3

r2
γ1kt

)]

×
√

2
πγ1kt

exp
(

−(r − 1)2

2γ1kt

)

− r2 − 3r + 3
3

[
1 + kb(1)

1

(
r3 − 4r2 + 9r − 9

r2 − 3r + 3
+ γ1kt

)]

× exp
(

r − 1 + γ1kt
2

)
erfc

(
r − 1

2

√
2

γ1kt
+
√

γ1kt
2

)}
, (5.17)

Qϕ

Ω sin θ
= k2 γ3

2
r − 1

r2

[
−
(

1 − r
γ1kt

)√
2

πγ1kt
exp
(

−(r − 1)2

2γ1kt

)

+ exp
(

r − 1 + γ1kt
2

)
erfc

(
r − 1

2

√
2

γ1kt
+
√

γ1kt
2

)]

− k
(

H(1)

1

(
r − 1

k

)
− kH(1)

(
r − 1

k

))

×
(

3 +
√

2
πγ1kt

− exp
(

γ1kt
2

)
erfc

(√
γ1kt

2

))

+ k2b(1)

1 H(1)

1

(
r − 1

k

)(√
2

πγ1kt
− 2√

π

√
γ1kt

2

+ γ1kt exp
(

γ1kt
2

)
erfc

(√
γ1kt

2

))
, (5.18)
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Behaviour of a rarefied gas caused by impulsive rotation 909 A6-15

Var. Expansion Formula Note

uϕ uϕH0 + k(uϕH1 + uϕK1) (5.16) First-order slip

uϕ uϕH0 + kuϕH1 (5.16) with Y(1)
1 = 0 Hilbert part

uϕ uϕH0 (5.16) with b(1)
1 = Y(1)

1 = 0 Leading order

Prϕ kPrϕH1 + k2PrϕH2 (5.17)

Prϕ kPrϕH1 (5.17) with b(1)
1 = 0 Leading order

Qϕ kQϕK1 + k2(QϕH2 + QϕK2) (5.18)

Qϕ kQϕK1 + k2QϕH2 (5.18) with H(1) = b(1)
1 = 0 QϕK2 is not included

Qϕ kQϕK1 (5.18) with γ3 = H(1) = b(1)
1 = 0 Leading order

TABLE 2. The correspondence of the asymptotic formulae (5.16)–(5.18) for k 	 1 and the
expansions of uϕ , Prϕ and Qϕ in k. Note that PrϕH0, PrϕK1, PrϕK2, QϕH0 and QϕH1 are identically
zero and they do not appear in the second column.

hM = −8πγ1k

(
1 − 3kb(1)

1 + 1
3

(
1 − kb(1)

1 (4 − γ1kt)
)√ 2

πγ1kt

− 1
3

(
1 − kb(1)

1 (3 − γ1kt)
)

exp
(

γ1kt
2

)
erfc

(√
γ1kt

2

))
, (5.19)

where γ3 is a constant (transport coefficient, see table 1), H(1) is defined by

H(1)(x) = 3b(1)

1 H(1)

1 (x) + 3H(1)

4 (x) − H(1)

5 (x) − H(1)

6 (x), (5.20)

and H(1)

i (x), i = 1, 4, 5, 6, are explained below.
The functions H(1)

1 (x), H(1)

4 (x), H(1)

5 (x), H(1)

6 (x) and their combination H(1)(x), describe
the local structure of the heat flow in the Knudsen layer, whereas Y (1)

1 (x) in (5.16) that of
the tangential flow velocity. They are called the Knudsen-layer functions, and H(1)

1 and
Y (1)

1 are tabulated in table 3.2 of Sone (2007) ((H(1)

1 , Y (1)

1 )(x) is denoted by (HA,−Y0)(η)

there). On the other hand, the numerical values of H(1)

i (x) (i = 4, 5, 6) can be found in
Takata & Hattori (2015). The Y (1)

1 , H(1)

1 , etc. are universal functions in the sense that they
are not problem dependent but are determined once the set of molecular model and kinetic
boundary condition is specified. Therefore, we can exploit the numerical data already
known in the literature for the present study. We show the Knudsen-layer functions in
figure 3 for the convenience of readers.

The leading-order formula for uϕ(=uϕH0) for k 	 1, which corresponds to the solution
of the Stokes equation with a no-slip boundary condition, is given by (5.16) with b(1)

1 =
Y (1)

1 = 0 (see table 2). The corresponding leading-order formulae for Prϕ(=kPrϕH1) and
Qϕ(=kQϕK1) are derived from (5.17) and (5.18), respectively, by setting γ3 = H(1) =
b(1)

1 = 0 (table 2). It should be noted that the leading-order heat flow, kQϕK1, is of the form
−kH(1)

1 ((r − 1)/k)(3 + · · · ), where the part ‘· · · ’ is strictly positive and tends to zero as
t → ∞. As seen from figure 3, H(1)

1 is non-negative (for a hard-sphere gas as well as for
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FIGURE 3. Knudsen-layer functions Y(1)
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6 (x) and H(1)(x)

under the diffuse reflection condition: (a) a hard-sphere gas; (b) BGK model. Data reconstructed
from Takata & Hattori (2015).

the BGK model), and hence, the leading-order heat flow is negative as a whole. In this
way, the asymptotic theory predicts the occurrence of a heat flow, which is in the opposite
direction to the overall flow velocity. We will give a further discussion on the behaviour
of the heat flow for small k later in § 7, where we compare the formula (5.18) with the
numerical solutions.

For a sufficiently large t such that (γ1kt)1/2/(r − 1) � 1, equations (5.16)–(5.19) with
b(1)

1 = Y (1)

1 = γ3 = H(1) = 0 (the leading terms) can be expanded to give

uϕ

Ω sin θ
= 1

r2

(
1 − (r − 1)(r2 + r + 1)

6
√

π

(
2

γ1kt

)3/2

+ · · ·
)

, (5.21a)

Prϕ

Ω sin θ
= 3γ1k

r3

(
1 + 1

6
√

π

(
2

γ1kt

)3/2

+ · · ·
)

, (5.21b)

Qϕ

Ω sin θ
= −3kH(1)

1

(
r − 1

k

)(
1 + 1

6
√

π

(
2

γ1kt

)3/2

+ · · ·
)

, (5.21c)

hM = −8πγ1k

(
1 + 1

6
√

π

(
2

γ1kt

)3/2

+ · · ·
)

. (5.21d)

Thus, the approach to the steady state is proportional to t−3/2 in the continuum flow both
in the flow velocity and the shear stress as well as in the heat-flow vector.

6. Numerical results

6.1. Transient behaviour
We first look at the transient behaviour of VDF. In figure 4(a–c), we show the profiles of
φS = φS(r, θζ , ζ, t) along various lines θζ = const. as a function of ζ for given (r, t) in the
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FIGURE 4. Time evolution of the VDF in the case of k = 1. Panels (a–c) show the profiles of
φS(r, θζ , ζ, t) as a function of ζ along θζ = const. for r = 1.1 and for various t: (a) t = 0.2;
(b) t = 0.5; (c) t = 3. The curves (i–iv) show the profiles along: (i) θζ = 0.0408; (ii) θζ =
1.1403(<θζ∗); (iii) θζ = 1.1561(>θζ∗); and (iv) θζ = 1.6085, where θζ∗ = Arcsin(r−1) ≈
1.1411 for r = 1.1 (see (3.7)). Panel (d) shows the locations of the discontinuity Γ1 and Γ2
for (r, t) = (1.1, 0.2), (1.1,0.5) and (1.1,3) in the θζ –ζ plane as well as the lines θζ = const.
considered in panels (a–c). The line θζ = 1.1403 (case (ii) in panels (a–c)) almost overlaps with
the line θζ = θζ∗, which is shown by the vertical dashed line in panel (d). The φS is discontinuous
on Γ1 ∪ Γ2. The limiting values of φS as ζ → ζ∗ ± 0 are indicated by the symbols for cases (i)
and (ii) in panels (a–c).

case of k = 1: (a) (r, t) = (1.1, 0.2); (b) (r, t) = (1.1, 0.5); and (c) (r, t) = (1.1, 3). The
values of θζ are (i) θζ = 0.0408, (ii) θζ = 1.1403, (iii) θζ = 1.1561 and (iv) θζ = 1.6085.
Note that the value of θζ∗ of (3.7) is θζ∗ ≈ 1.1411 for r = 1.1. Therefore, the backward
characteristics hit the sphere for cases (i) and (ii) (θζ < θζ∗) and never cross the sphere for
cases (iii) and (iv) (θζ > θζ∗). For t = 0.2 (figure 4a), VDF is relatively close to that of the
free molecular solution (see (5.1)), although some deviations due to molecular collisions
are observed. It is clearly seen from the figure that the profile of φS along θζ = const.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.907


909 A6-18 S. Taguchi, T. Tsuji and M. Kotera

has a jump discontinuity at ζ = ζ∗ in cases (i) and (ii), whereas no such a discontinuity is
observed in cases (iii) and (iv). In cases (i) and (ii), the observed discontinuity corresponds
to that on Γ1, and the locations of the discontinuity are shown in figure 4(d) in the
θζ –ζ plane by symbols. We also note a large difference in the profiles of φS between (ii)
θζ = 1.1403 and (iii) θζ = 1.1561 in the region ζ � 2.2. This reflects the Γ2-discontinuity
located at θ = θζ∗ ≈ 1.1411 and ζ > ηw/t.

As the time elapses ((a) t = 0.2 → (b) t = 0.5 → (c) t = 3), the Γ1-discontinuity
changes its location in the phase space and approaches ζ = 0. At the same time, the
discontinuity decays with time owing to molecular collision. In the steady state (t → ∞),
the Γ1-discontinuity shrinks to ζ = 0 and only Γ2-discontinuity survives at θζ = θζ∗ and
ζ > 0.

We now present the numerical results for the macroscopic quantities. Figures 5–7
show the behaviour of the macroscopic quantities for three different values of k, i.e.
k = 10, 1 and 0.1; figure 5 shows the circumferential flow velocity, figure 6 the shear
(tangential) stress, and figure 7 the circumferential component of the heat-flow vector.
In these figures, panels (a,b) show the results for k = 10, panels (c,d) those for k = 1
and panels (e, f ) those for k = 0.1. Panels (a,c,e) show the spatial profiles at several
values of t, while panels (b,d, f ) the temporal profiles at several values of r. Note that
uϕ/Ω sin θ(= ũϕ), Prϕ/Ω sin θ(= P̃rϕ) and Qϕ/Ω sin θ(= Q̃ϕ) depend on r and t when k is
specified.

The disturbance caused by the sphere rotation propagates into the gas as time goes
on. The flow velocity on the sphere (r = 1) is exactly 0.5 for the free molecular gas,
1 for the continuum flow (the Stokes equation with no-slip boundary condition) and is
between 0.5 and 1 for 0 < k < ∞. The flow velocity gradually increases with time in
the whole gas region. The disturbance propagates into the gas more slowly when k is
smaller (see panels b,d, f ). However, the influence of the sphere rotation penetrates deeper
into the gas when k is smaller and the gas attains a larger rotational speed overall for
smaller k.

The value of the shear stress P̃rϕ is larger for large k. It increases abruptly after the
onset of the self-rotation near the sphere and then decreases gradually with time. The
disturbance propagates into the gas more slowly when k is smaller, as in the case of ũϕ

(see panels b,d, f ).
The heat flux is localized in the vicinity of the sphere immediately after the onset of the

self-rotation; it flows in the same direction as the sphere rotation and forms a peak-like
profile near the boundary. The region of positive heat flow gradually propagates into the
gas and spreads out. At the same time, Q̃ϕ decreases near the boundary and changes its sign
to negative values, implying that the heat flow changes its flow direction in the opposite
sense as the sphere rotation. The negative heat flow is more prominent for k = 1 than for
k = 10 and gradually develops in the whole region as time goes on. It should be noted
that no negative heat flow occurs for the free molecular gas, as can be verified from
(5.2c). When k = 0.1, the negative heat flow is even greater, and is more confined near
the boundary. It may be noted that the heat flux is negative in the whole gas region in the
steady state for 0 < k < ∞ (Taguchi et al. 2019).

These features, particularly those in the initial stage near the boundary, are summarized
in figure 8, where the isolines of (a) ũϕ , (b) P̃rϕ and (c) Q̃ϕ are plotted in the r–t
plane for k = 0.1. We clearly see that the contour lines accumulate near the origin,
indicating that the steep spatial and temporal variations take place in the vicinity of
(r, t) = (1, 0). The reason of this abrupt change was discussed in the last paragraph
of § 3.
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FIGURE 5. The profiles of the circumferential velocity for various k: (a,b) k = 10; (c,d) k = 1;
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t for various r. The insets in panels (a,c,e) show a close-up near the sphere, and the symbol ◦ in
panels (b,d, f ) indicates the limiting value at t → 0+ along r = 1.
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after the onset of the rotation: (a) ũϕ ; (b) P̃rϕ ; (c) Q̃ϕ . The dashed line is used to indicate the
values at 10−2, 10−3, . . . , 10−6 in panels (a,b). The solid (or dashed) line is used for positive (or
negative) contour values in panel (c).

6.2. Long-time behaviour
In this section, we discuss the long-time behaviour of the macroscopic quantities. In
figure 9 the behaviours of the macroscopic quantities are shown until relatively large time
(t ≈ 2500) for k = 1. More specifically, figure 9(a–c) show the circumferential component
of the flow velocity ũϕ , the shear stress P̃rϕ , and the circumferential component of the
heat-flow vector Q̃ϕ as functions of r for various times. The steady solution obtained by a
hybrid method combining the finite-difference method and the method of characteristics
(Taguchi et al. 2019) is also included in each panel. We can observe that the profile of each
macroscopic variable approaches the corresponding steady solution as time is increased.

In figure 9(c), where the semilogarithmic plot of |Q̃ϕ| versus r is shown, the positive and
negative parts of Q̃ϕ are represented by the solid and broken curves, respectively. Note that,
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FIGURE 9. The profiles of the macroscopic quantities for various time t in the case of k = 1:
(a) ũϕ ; (b) P̃rϕ ; (c) Q̃ϕ . The steady solution (t = ∞) is represented by the thick solid curve in
panels (a,b) and by the thin broken curve in panel (c). In panel (c), the solid curve represents the
part Q̃ϕ > 0, while the broken curve the part Q̃ϕ < 0.

in the steady state, Q̃ϕ is everywhere negative. At t = 2500, the curve almost overlaps with
the steady solution in the part r � 20. The positive part of Q̃ϕ keeps travelling in the r
direction as time goes on, while decreasing its height and increasing the width (see also
figure 7a,c,e).

To obtain further information on the long-time behaviour, we show in figure 10 the
time derivative of each macroscopic variable as a function of t for various r: (a) ∂ ũϕ/∂t;
(b) ∂P̃rϕ/∂t; and (c) ∂Q̃ϕ/∂t. From panels (a,b), it is clearly seen that ∂ ũϕ/∂t and ∂P̃rϕ/∂t
tend to decay in proportion to t−5/2 for large t. The time derivative of the heat flow ∂Q̃ϕ/∂t
is also likely to decay in proportion to t−5/2 for t � 1, although it is more difficult to see the
tendency. Thus, the rate of approach of the macroscopic quantities to the steady profiles is
t−3/2.

Figure 11 contains further information on the approach of the macroscopic quantities
to the steady state for different k. Here, we show the slope of the double-logarithmic plot
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ũ ϕ

/
∂
t

|∂P̃
rϕ

/
∂

t|

|∂Q̃
ϕ
/
∂

t|

r r

r

(a) (b)

(c)

FIGURE 10. The time derivative of the macroscopic quantities ∂h/∂t versus t for various r
(k = 1): (a) h = ũϕ ; (b) h = P̃rϕ ; (c) h = Q̃ϕ .

of ∂h/∂t versus t at r = 1 for various k, where h = ũϕ or Q̃ϕ . We computed the slope α
by applying a standard finite difference. If we do so, however, we observed a fluctuation
developed after some moment, which is attributed to rounding errors. The fluctuated raw
data are shown for k = 0.1 in each panel by grey lines. Note that the slope for Q̃ϕ is more
fluctuated than that of ũϕ because the magnitude of ∂Q̃ϕ/∂t is much smaller. To smooth out
the data, we took a moving average over 100 dimensionless times. The data thus obtained
are shown by the symbols in the figures. The figure for h = P̃rϕ , which is similar to that of
ũϕ , is omitted here. It is seen from the figure that the slope tends to approach α = −5/2 as
the time proceeds, irrespective of k. This confirms the exponent of t−3/2 in the long-time
behaviour.

6.3. Torque acting on the sphere
In this section, we discuss the transient behaviour of the torque acting on the rotating
sphere. Figure 12(a) shows the time evolution of −hM for various k (−hM is shown instead
of hM). The (dimensionless) torque −hM is constant in time for the free molecular gas,
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FIGURE 11. The temporal variation of the slope α of ln |∂h/∂t| ∼ αt + const., where h = ũϕ or
Q̃ϕ at r = 1 for various k: (a) h = ũϕ ; (b) h = Q̃ϕ . The moving averages over 100 dimensionless
times are shown by the symbols, which are connected by the solid lines. The fluctuated raw data
are shown for k = 0.1 by grey lines.
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FIGURE 12. The (dimensionless) torque acting on the sphere. (a) The −hM versus t is shown
for various k. Here, k = ∞ indicates the result for the free molecular gas. (b) A comparison
between the numerical (solid) and the asymptotic (dash-dotted and dashed) solutions for k = 0.1
and 0.01 over a wide range of t. Equation (5.19) is shown by the dash-dotted curve and (5.19) with
b(1)

1 = 0, which corresponds to the continuum flow (i.e. the Stokes equation with no-slip
boundary condition), is shown by the dashed curve. The asymptotic formula for the steady
solution ((4.4b) in Taguchi et al. (2019)), which includes second-order slip corrections, is shown
by the horizontal long-dashed line. Note that the asymptotic formula (5.19) is valid only for
t � k−1.

and is monotonically decreasing in t for k < ∞. It attains its supremum at t = 0+, which
coincides with the value for the free molecular gas. In case of k < ∞, after the onset of
the rotation, −hM undergoes a rapid decrease in proportion to t followed by a subsequent
slower decay in proportion to t−3/2 approaching the final steady state.
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In figure 12(b), we compare the numerical solution and the asymptotic formula (5.19)
for small k for a wider range of t (k = 0.1 and 0.01). Here, the solid curves represent
our numerical results, while the dash-dotted curves the asymptotic formula (5.19).
A favourable agreement is observed for k = 0.01 except for small values of t(�1). In
the case of k = 0.1, the discrepancy is noticeable but the shape of the curve is well
represented by the asymptotic expression. For comparison, we also show the result
based on (5.19) with b(1)

1 = 0 by the dashed curve, which corresponds to the continuum
flow (i.e. the Stokes equation with no-slip boundary condition). The deviation is more
prominent, particularly for k = 0.1. Note that the asymptotic formula is valid for t � k−1.
Nevertheless, a reasonable agreement between the numerical and asymptotic results is
observed even for smaller values of t.

The approach to the steady torque is algebraic and is proportional to t−3/2 for t � 1.
Thus, the tangential stress on the sphere P̃rϕ for t � 1 can be approximated by a function

P̃rϕ = P0 + P1t−3/2 + o(t−3/2), r = 1, (6.1)

where P0 and P1 are constants which depend on k. The P0 and P1 can be obtained by
fitting the first two terms of the above expression with the numerical data of P̃rϕ(1, t) for
large t. It turned out that adding a third term, P2t−5/2, gives a better fitting result. Then, the
coefficients (P0,P1,P2) were obtained by the least squares method, where the numerical
data for t � 102 were used for k � 0.1 and those for t � 8 × 102 for k < 0.1. Note that
the presence of the t−5/2-term can be verified in the case of the continuum flow from
(5.17). The results thus obtained are summarized in figure 13 and in table 3 for P0 and
P1. It should be noted that P0 corresponds to limt→∞ P̃rϕ|r=1 which can also be obtained
from the steady solution (Taguchi et al. 2019). The latter, obtained by a numerical method
different from the present approach, is also included in table 3 for comparison. As seen
from the table, P0 obtained by the fitting agrees well with the stationary result. The solid
curve in figure 13(a) is the asymptotic formula for k 	 1 for the steady solution ((4.4b) in
Taguchi et al. (2019)). The P1 is decreasing in k and, thus, decays faster for larger k. The
coefficient P1 is likely to behave as P1 ∝ k−5/2 for k � 1 (see figure 13b). On the other
hand, P1 for small k is approximated by

P1 =
(

2
πγ1k

)1/2

, k 	 1, (6.2)

(see (5.21d)), where γ1 = 1 for the BGK model. Equation (6.2) is shown in figure 13(b)
by the dashed line.

7. Discussion

We have seen that the circumferential heat flow is induced by the rotation of the sphere.
Let us first discuss its initial peak-like behaviour localized near the boundary. We know
that the heat flow is given by (5.2c) in the case of a free molecular gas. If we consider the
limit t → 0 such that (r − 1)/t = const., this reduces to

Q̃ϕ = 1
2
√

π

r − 1
t

exp
(

−(r − 1)2

t2

)
. (7.1)

Note that the above expression describes the heat flow induced by an impulsive onset
of a uniform tangential motion of a flat plate in a collisionless gas (i.e. one-dimensional
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FIGURE 13. The coefficients P0 and P1 in (6.1): (a) P0 versus k; (b) P1 versus k. The symbol ◦
shows the numerical result. In panel (a), the dashed line indicates the value at k → ∞ (the free
molecular flow), while the solid curve the asymptotic formula for k 	 1 for the steady solution
((4.4b) in Taguchi et al. (2019)). In panel (b), the solid line indicates (6.2), while the broken line
the slope corresponding to P1 ∝ k−5/2.

k P0 P1 k P0 P1

0.01 0.02911 (0.02909)a 6.54 0.6 0.47416 (0.47415) 7.15 × 10−2

0.02 0.05642 (0.05641)a 4.72 0.8 0.49658 (0.49657) 3.82 × 10−2

0.03 0.08204 (0.08202)a 3.71 1 0.51031 (0.51030) 2.31 × 10−2

0.05 0.12844 (0.12829)a 2.58 1.5 0.52870 — 8.99 × 10−3

0.08 0.18719 (0.18622)a 1.70 2 0.53783 (0.53784) 4.56 × 10−3

0.1 0.22013 (0.22009) 1.33 3 0.54685 (0.54685) 1.71 × 10−3

0.15 0.28536 — 8.20 × 10−1 4 0.55129 (0.55129) 8.53 × 10−4

0.2 0.33260 (0.33256) 5.45 × 10−1 5 0.55392 (0.55391) 4.95 × 10−4

0.3 0.39449 (0.39446) 2.79 × 10−1 6 0.55566 (0.55566) 3.20 × 10−4

0.4 0.43208 (0.43206) 1.63 × 10−1 8 0.55783 (0.55783) 1.68 × 10−4

0.5 0.45683 (0.45682) 1.04 × 10−1 10 0.55911 (0.55911) 8.82 × 10−5

TABLE 3. The values of P0 and P1 in (6.1) (see also figure 13). The values in parentheses are
those obtained from the steady solution (Taguchi et al. 2019).

aThe results obtained by the asymptotic formula (4.4b) in Taguchi et al. (2019).

linearized Rayleigh problem for a free molecular gas), if r − 1 is interpreted as the distance
from the plate. On the other hand, in the case of a finite k < ∞, it can be shown that the
heat flow is also described by (7.1) as the same limit t → 0+ is approached. To see this, let
us consider the following change of variables:

y = r − 1
ε

, ζy = ζr, ζx = ζϕ, ζz = ζθ , τ̂ = t
ε
, (7.2a)

φ1( y, ζy, ζ, τ̂ ) = φS(1 + εy, ζy, ζ, ετ̂ ), (7.2b)
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where ε is a small positive number that has been introduced to make y and τ̂ of the order
of unity. The φ1 satisfies the equation

∂φ1

∂τ̂
+ ζy

∂φ1

∂y
+ ε(ζ 2 − ζ 2

y )

1 + εy

∂φ1

∂ζy
− εζy

1 + εy
φ1 = ε

k
L1(φ1), (7.3a)

L1(φ1) = −φ1 + 2ux , (7.3b)

ux = 1
2 〈(ζ 2 − ζ 2

y )φ1〉, (7.3c)

where ζ = (ζ 2
x + ζ 2

y + ζ 2
z )1/2. Applying the same coordinate transformation to the

boundary condition at r = 1 as well as to the initial condition, we see that the problem
is reduced to a one-dimensional Rayleigh problem for a collisionless gas so far as the
leading-order terms in ε are concerned. In this way, the initial behaviour of the heat flow
in the vicinity of the sphere is reduced to (7.1), irrespective of the values of k < ∞.

We note that Q̃ϕ of (7.1) is self-similar in (r − 1)/t (or y/τ̂ ), non-negative and
approaches zero as r → 1 or r → ∞ when t > 0 is fixed. Consequently, the maximum
value does not change in time, which is 1/2

√
2eπ, while the profile becomes wider as t

is increased. In this manner, the initially localized peak near the sphere spreads into the
gas. As t (and r) is increased, ε becomes no longer small, and the curvature effect as well
as molecular collision begins to play a role. As a result, Q̃ϕ starts to behave differently
from that of the one-dimensional free molecular solution. This behaviour near the origin
(r, t) = (1+, 0+) is also consistent with the discussion given at the end of § 3.

Next, we discuss the behaviour of the heat flow Qϕ at relatively large t by restricting
ourselves to the case of small k. Figure 14(a) shows a comparison of the numerical result
with the asymptotic formula (5.18) for k = 0.05 and 0.01 in the region close to r = 1 at t =
100. The agreement between the numerical solution and the asymptotic solution is good,
motivating us to discuss the behaviour of Qϕ for small k based on the asymptotic theory. In
the present problem, the most significant term in the asymptotic expansion Qϕ = QϕH0 +
k(QϕH1 + QϕK1) + k2(QϕH2 + QϕK2) + · · · is kQϕK1, since QϕH0 and QϕH1 are identically
zero (see the caption of table 2). The heat conduction due to Fourier’s law is irrelevant
since the temperature is uniform. The contribution of kQϕK1, describing the Knudsen layer
adjacent to the boundary, is shown by the dashed curves in the figure. This heat flow in
the Knudsen layer does not vanish as t → ∞ and contributes to the negative heat flows in
the long-time limit, as mentioned in § 5.2. Note also that the magnitude of the heat flow is
proportional to k. Therefore, it is of the same order as the shear stress, although there is an
essential difference in that the heat flow is confined in the Knudsen layer while the shear
stress extends over the gas region.

The second-order Hilbert part k2QϕH2 in the heat flow merits some attention. The
origin of this term is the Laplacian of the flow velocity (see (16b) in Takata & Hattori
(2012)), which reduces to QϕH2 = 1

2(γ3/γ1)∂uϕH0/∂s, s = kt, by the use of (5.12) in the
present case. Hence, this second-order gas-rarefaction effect is related to the transient
behaviour (and therefore vanishes in the steady state, i.e. t → ∞). The term is included in
the asymptotic solution shown in figure 14(a) (dash-dotted curve). However, its modulus
is much smaller than the typical magnitude of kQϕK1 at t = 100, and it cannot be
distinguished in the figure. To see the contribution of the Hilbert part more clearly, the
narrow region around Q̃ϕ = 0 in figure 14(a) is stretched in figure 14(b) for k = 0.01,
where the solutions for other t are also plotted until t = 1000. Note the difference between
the scales of figures 14(a) and 14(b) in the ordinate. Although very small, the spreading
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FIGURE 14. The behaviour of the heat flow Qϕ for small k. (a) Profiles of Q̃ϕ(=Qϕ/Ω sin θ)

for k = 0.01 and 0.05 at t = 100 in the vicinity of r = 1. (b) Profiles of Q̃ϕ(=Qϕ/Ω sin θ) for
k = 0.01 at various t ranging from t = 100 to 1000. Note the difference between the scales of
panels (a,b) in the ordinate. In panels (a,b), the solid curve represents the numerical solution of
the BGK equations, the dash-dotted curve the asymptotic formula (5.18) and the dashed curve
the leading-order term kQϕK1 in the asymptotic solution (see table 2). The inset in panel (a) is
a close-up of the case k = 0.01 near r = 1. In panel (b) the profiles of kQϕK1 + k2QϕH2 (with
no second-order Knudsen-layer correction included) are also shown by the (green) long-dashed
curves, which overlap with the dash-dotted curves representing (5.18).

and decreasing tendency of the circumferential heat flow outside the Knudsen layer is well
described by the time derivative of the overall circumferential flow velocity uϕH0.

We close this section by presenting the leading-order heat flow kQϕK1, (5.18) with γ3 =
H(1) = b(1)

1 = 0 (see table 2), in a dimensional form for a steady state (t → ∞). Let us
denote the (dimensional) heat-flow vector by q. Noting the relation between k and the
viscosity μ0 (see the sentence after (5.12)), q in the steady state is expressed as

q = −3μ0(2RT0)
1/2

(
Ω∗ × x∗

|x∗|
)

1
γ1

H(1)

1

(
γ1p0

μ0(2RT0)1/2
(|x∗| − L)

)
, (7.4)

where Ω∗ and x∗ are the angular velocity of the sphere and the position vector,
respectively. From this formula, we clearly see that the magnitude of the (steady) heat
flow is proportional to the viscosity.

8. Concluding remarks

In this paper, we investigated the transient behaviour of a rarefied gas caused by an
impulsive onset of the rotating motion of a sphere based on the linearized BGK equation
and the diffuse reflection boundary condition. This problem can be viewed as an extension
of the one-dimensional linearized Rayleigh problem to a three-dimensional axisymmetric
flow. Special attention was paid to the propagation of the discontinuity of VDF in the
phase space. For this purpose, we carried out a numerical analysis based on the integral
form of the BGK equation. Our findings are summarized as follows.
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(i) The behaviours of the macroscopic quantities have been clarified for a wide range
of the Knudsen number including the free molecular flow and the continuum flow.

(ii) The heat flow, which is initially localized near the boundary and flows in the same
direction as the sphere rotation, spreads into the gas as time goes on. As the final
steady state is approached, the region with negative heat flow, flowing in the opposite
direction as the sphere rotation, is established.

(iii) (The long-time behaviour.) The rate of approach of the macroscopic quantities to the
steady state is in proportion to t−3/2 for t � 1. In other words, the gas-rarefaction
effect does not change the decaying rate and the degree of gas rarefaction (the
Knudsen number) affects merely the proportionality constant. The free molecular
flow is an exception.

(iv) The transient behaviour of the torque on the sphere is clarified. For large t � 1, the
magnitude of the term proportional to t−3/2 becomes small in proportion to k−5/2 for
k � 1, indicating the faster approach to the steady torque for larger k.
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Appendix A. Lattice systems and accuracy of numerical computations

In this appendix, we give explicit formulae for the lattice system used in the present
computations, and comment on the accuracy.

The grid points for r and t variables are defined by the formulae (see (4.5))

gγ (x) =
{

δγ r + aγ (exp(bγ x2) − 1), 0 � x � Ňγ ,

δγ r + cγ x + dγ , Ňγ < x � Nγ ,
(A 1)

where γ = r or t,

δγ r =
{

1, γ = r,

0, γ = t,
(A 2)

bγ = ln(Δmin,γ /aγ + 1), with (Δmin,r,Δmin,t) = (10−8, 10−10), (A 3)

Ňγ = �b−1
γ ln(γ̌ /aγ + 1)� with (ř, ť) = (40, 1), (A 4)

cγ = 2aγ bγ Ňγ exp(bγ Ň2
γ ), dγ = aγ (exp(bγ Ň2

γ ) − 1) − cγ Ňγ , (A 5)

and Nγ and aγ are positive constants which are suitably chosen depending on k. Note
that gγ (1) − gγ (0) = Δmin,γ and that the two functions appearing in gγ (x) are smoothly
connected at x = γ̌ , where gγ (Ňγ ) ≈ γ̌ . Typical choices of aγ and Nγ are summarized in
table 4 along with the values of (rmax , tmax) = (gr(Nr), gt(Nt)) and (cr, ct).

The grid points for θζ , ζ and t̃ are regenerated at every time step in an adaptive manner.
We omit details on the grids for these variables.

We have checked the accuracy of our numerical computations in various ways, for
instance, by changing the number of grid points, grid parameters, etc. Here, we provide
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Lattice name for gr(x) ar Nr rmax cr k

L3 1.18 × 10−3 1280 169.3 0.752 1 < k
L4 5.28 × 10−3 2560 168.8 0.329 0.1 < k � 1
L5 2.35 × 10−2 10 240 903.9 0.142 0.01 � k � 0.1

Lattice name for gt(x) at Nt tmax ct k
T1 5.50 × 10−8 800 246.4 0.349 1 � k
T2 2.20 × 10−7 16 000 2641 0.167 0.2 < k < 1
T3 8.40 × 10−7 64 000 5197 0.082 0.1 � k � 0.2
T5 1.20 × 10−5 64 000 1222 0.019 0.01 � k < 0.1

TABLE 4. Typical lattice systems for the space variable r as well as for the time variable t.

some numerical data to assess the present computations based on the conservation law. As
shown in (2.11), the quantity on the left-hand side should be identically zero, while it is
not in an actual numerical computation due to numerical errors. Thus, the deviation from
zero is a measure of computational accuracy. Let us introduce

I(r, t) =

∣∣∣∣∂u
∂t

+ 1
2r3

∂

∂r
(r3P̃rϕ)

∣∣∣∣√(
∂u
∂t

)2

+
(

1
2r3

∂

∂r
(r3P̃rϕ)

)2
, (A 6)

and

Ī = 1
tmax

∫ tmax

0

⎛
⎜⎝ 1

4
3
πr3

max

∫ rmax

1
I(r1, t1)(4πr2

1) dr1

⎞
⎟⎠ dt1. (A 7)

Then, for some typical values of k, we have

Ī �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.3 × 10−5 (k = 0.1),

7.6 × 10−6 (k = 0.2),

4.6 × 10−6 (k = 0.6),

5.2 × 10−3 (k = 1),

6.1 × 10−3 (k = 10),

(A 8)

for our numerical results.
We mention that a comparison of the values of P0 listed in table 3 with those of Taguchi

et al. (2019) (time-independent problem) gives also a measure of accuracy.
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