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Circular string matching is a problem which naturally arises in many contexts. It consists in

finding all occurrences of the rotations of a pattern of length m in a text of length n. There

exist optimal worst- and average-case algorithms for circular string matching. Here, we

present a suboptimal average-case algorithm for circular string matching requiring time O(n)

and space O(m). The importance of our contribution is underlined by the fact that the

proposed algorithm can be easily adapted to deal with circular dictionary matching. In

particular, we show how the circular dictionary-matching problem can be solved in

average-case time O(n + M) and space O(M), where M is the total length of the dictionary

patterns, assuming that the shortest pattern is sufficiently long. Moreover, the presented

average-case algorithms and other worst-case approaches were also implemented.

Experimental results, using real and synthetic data, demonstrate that the implementation of

the presented algorithms can accelerate the computations by more than a factor of two

compared to the corresponding implementation of other approaches.

1. Introduction

In order to provide an overview of our results and algorithms, we begin with a few

definitions generally following (Smyth 2003). We think of a string x of length n as an

array x[0 . . n− 1], where every x[i], 0 � i < n, is a letter drawn from some fixed alphabet

Σ of size σ = |Σ|. The empty string of length 0 is denoted by ε. A string x is a factor of

a string y if there exist two strings u and v, such that y = uxv. Let the strings x, y, u,

and v, such that y = uxv. If u = ε, then x is a prefix of y. If v = ε, then x is a suffix of

y. Let x be a non-empty string of length n and y be a string. We say that there exists an

occurrence of x in y, or, more simply, that x occurs in y, when x is a factor of y. Every

occurrence of x can be characterized by a position in y. Thus we say that x occurs at the

starting position i in y when y[i . . i + n− 1] = x. We define the ith prefix to be the prefix

ending at position i i.e. x[0 . . i], 0 � i < n. On the other hand, the ith suffix is the suffix

starting at position i i.e. x[i . . n− 1], 0 � i < n.

A circular string of length m can be viewed as a traditional linear string which has

the left- and right-most symbols wrapped around and stuck together in some way.

Under this notion, the same circular string can be seen as m different linear strings,

which would all be considered equivalent. Given a string x of length m, we denote by
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xi = x[i . . m − 1]x[0 . . i − 1], 0 < i < m, the ith rotation of x and x0 = x. Consider,

for instance, the string x = x0 = abababbc; this string has the following rotations:

x1 = bababbca, x2 = ababbcab, x3 = babbcaba, x4 = abbcabab, x5 = bbcababa,

x6 = bcababab, x7 = cabababb.

Here, we consider the problem of finding occurrences of a pattern x of length m with

circular structure in a text t of length n with linear structure. This is the problem of circular

string matching; it has been considered in Lothaire (2005), where an O(n)-time algorithm

was presented. A naive solution with quadratic complexity consists in applying a classical

algorithm for searching a finite set of strings after having built the trie of rotations of x.

The approach presented in Lothaire (2005) consists in preprocessing x by constructing a

suffix automaton of the string xx, by noting that every rotation of x is a factor of xx.

Then, by feeding t into the automaton, the lengths of the longest factors of xx occurring

in t can be found by the links followed in the automaton in time O(n). In Fredriksson and

Grabowski (2009), the authors presented an optimal average-case algorithm for circular

string matching, by also showing that the average-case lower bound for single string

matching of O(n logσ m/m) also holds for circular string matching. Very recently, in Chen

et al. (2013), the authors presented two fast average-case algorithms based on word-

level parallelism. The first algorithm requires average-case time O(n logσ m/w), where w

is the number of bits in the computer word. The second one is based on a mixture

of word-level parallelism and q-grams. The authors showed that with the addition of

q-grams, and by setting q = O(logσ m), an optimal average-case time of O(n logσ m/m) is

achieved.

Given a set D of d pattern strings, the dictionary-matching problem is to index D such

that for any online query text t, one can quickly find the occurrences of any pattern of

D in t. This problem has been well studied in the literature (Aho and Corasick 1975;

Chan et al. 2007), and an index taking optimal space and simultaneously supporting time-

optimal queries is achieved (Belazzougui 2010; Hon et al. 2010). In some applications in

computational molecular biology, such as, for instance, pattern matching of a collection

of viral sequences, we are interested in searching for, not only the original patterns in D,

but also all of their rotations. This is the problem of circular dictionary matching.

A variant of this problem for an offline query text was first discussed in Iliopoulos and

Rahman (2008). The authors proposed two index data structures, namely CPI-I and CPI-II.

CPI-I can be constructed in time and space O(n log1+ε n), and an online pattern query

can be answered in time O(m log log n + Occ), where Occ is the number of occurrences.

However, CPI-I involves constructing two suffix trees (Weiner 1973) as well as a complex

range-search data structure. Hence, it is suspected that, despite a good theoretical time

bound, the practical performance of CPI-I would not be very good both in terms of time

and space. CPI-II on the other hand uses a suffix array (Manber and Myers 1993), which

is much more space-efficient than a suffix tree and does not require the range-search

data structure. CPI-II is conceptually much simpler and can be built in time O(n) and

requires O(n log n) bits of space; an online pattern query can then be answered in time

O(m log n + Occ).

The problem for any online query text was studied in Hon et al. (2011). The authors

proposed a variant of suffix tree, called circular suffix tree and showed that it can be
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compressed into succinct space. With a tree structure augmented to a circular pattern

matching index called circular suffix array, the circular suffix tree can be used to solve

the circular dictionary-matching problem efficiently. Very recently, in Hon et al. (2013)

the authors proposed the first algorithm for the efficient construction of the circular suffix

tree, which requires time O(M logM) and O(M log σ + d logM) bits of working space,

where M is the total length of the dictionary patterns.

In this article, we revisit the following two problems in the average-case setting.

CircularStringMatching

Input: a pattern x of length m and a text t of length n > m

Output: all factors u of t such that u = xi, 0 � i < m

CircularDictionaryMatching

Input: a set D = {x0, x1 . . . , xd−1} of patterns of total length M and a text t of length

n, such that n > |xj |, 0 � j < d

Output: all factors u of t such that u = xij , 0 � j < d, 0 � i < |xj |

1.1. Our contribution

We present a new suboptimal average-case algorithm for circular string matching requiring

time O(n) and space O(m). We show how it can be extended to solve the circular dictionary-

matching problem in average-case time O(n + M) and space O(M), assuming that the

shortest pattern is sufficiently long. Furthermore, we implement the presented average-case

algorithms and the index data structure CPI-II presented in Iliopoulos and Rahman (2008)

for an offline query text. Experimental results, using real and synthetic data, demonstrate

that the implementation of the algorithms proposed here can accelerate the computations

by more than a factor of two compared to the corresponding implementation of CPI-II.

A preliminary version of this work appeared in Barton et al. (2013).

2. Properties of the partitioning technique

In this section, we give a brief outline of the partitioning technique in general; and then

show some properties of the version of the technique we use for our algorithms. The

partitioning technique, introduced in Wu and Manber (1992), and in some sense earlier

in Rivest (1976), is an algorithm based on filtering out candidate positions that could

never give a solution to speed-up string-matching algorithms. An important point to note

about this technique is that it reduces the search space but does not, by design, verify

potential occurrences. To create a string-matching algorithm filtering must be combined

with some verification technique. The idea behind the partitioning technique was initially

proposed for approximate string matching, but here we show that this can also be used

for exact circular string matching.

The idea behind the partitioning technique is to partition the given pattern in such

a way that at least one of the fragments must occur exactly in any valid approximate

occurrence of the pattern. It is then possible to search for these fragments exactly to give
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2m − 20

(a) String x = x[0 . . m − 1]x[0 . . m − 2]
2m − 20

(b) Partition x in 4 fragments of length f = (2m − 1)/4
2m − 20

m − 10

(c) m > 2 f ; any factor of length m of x contains at least one of the 4 fragments

Fig. 1. Illustration of Lemma 2.1. (a) String x′ = x[0 . . m− 1]x[0 . . m− 2]. (b) Partition x′ in four

fragments of length �f = (2m− 1)/4. (c) m > 2�f; any factor of length m of x′ contains at least one

of the four fragments.

a set of candidate occurrences of the pattern. It is then left to the verification portion of

the algorithm to check if these are valid approximate occurrences of the pattern. It has

been experimentally shown that this approach yields very good practical performance on

large-scale datasets (Frousios et al. 2010), even if it is not theoretically optimal.

For exact circular string matching, for an efficient solution, we cannot simply apply

well-known exact string-matching algorithms, as we must also take into account the

rotations of the pattern. We can, however, make use of the partitioning technique and,

by choosing an appropriate number of fragments, ensure that at least one fragment must

occur in any valid exact occurrence of a rotation. Lemma 2.1 together with the following

fact provide this number.

Fact 1. Let x be a string of length m. Any rotation of x is a factor of x′ = x[0 . . m −
1]x[0 . . m− 2]; and any factor of length m of x′ is a rotation of x.

Lemma 2.1. Let x be a string of length m. If we partition x′ = x[0 . . m− 1]x[0 . . m− 2] in

four fragments of length �(2m−1)/4� and �(2m−1)/4�, at least one of the four fragments

is a factor of any factor of length m of x′.

Proof. Let �f denote the length of the fragment. If we partition x′ in at least four

fragments of length �(2m− 1)/4� and �(2m− 1)/4�, we have that

�f � (2m− 1)/4,

which gives 2m > 4�f and m > 2�f . Therefore, any factor of length m of x′, and, by Fact 1,

any rotation of x, must contain at least one of the fragments. For a graphical illustration

of this proof inspect Figure 1.
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3. Circular string matching via filtering

In this section, we present CSMF, a new suboptimal average-case algorithm for exact

circular string matching via filtering. It is based on the partitioning technique and a series

of practical and well-established data structures.

3.1. Longest common extension

First, we describe how to compute the longest common extension, denoted by lce, of two

suffixes of a string in constant time. lce queries are an important part of the algorithms

presented later on.

Let SA denote the array of positions of the sorted suffixes of string x of length n, i.e. for

all 1 � r < n, we have x[SA[r − 1] . . n − 1] < x[SA[r] . . n − 1]. The inverse iSA of the

array SA is defined by iSA[SA[r]] = r, for all 0 � r < n. Let lcp(r, s) denote the length

of the longest common prefix of the strings x[SA[r] . . n − 1] and x[SA[s] . . n − 1], for all

0 � r, s < n, and 0 otherwise. Let LCP denote the array defined by LCP[r] = lcp(r − 1, r),

for all 1 < r < n, and LCP[0] = 0. We perform the following linear-time and linear-space

preprocessing:

— Compute arrays SA and iSA of x (Nong et al. 2009).

— Compute array LCP of x (Fischer 2011).

— Preprocess array LCP for range minimum queries, we denote this by RMQLCP (Fischer

and Heun 2011).

With the preprocessing complete, the lce of two suffixes of x starting at positions p and

q can be computed in constant time in the following way (Ilie et al. 2010):

LCE(x, p, q) = LCP[RMQLCP(iSA[p] + 1, iSA[q])]. (1)

Example 3.1. Let the string x = abbababba. The following table illustrates the arrays SA,

iSA, and LCP for x.

i 0 1 2 3 4 5 6 7 8

x[i] a b b a b a b b a

SA[i] 8 3 5 0 7 2 4 6 1

iSA[i] 3 8 5 1 6 2 7 4 0

LCP[i] 0 1 2 4 0 2 3 1 3

We have LCE(x, 1, 2) = LCP[RMQLCP(iSA[2] + 1, iSA[1])] = LCP[RMQLCP(6, 8)] = 1,

implying that the lce of bbababba and bababba is 1.

3.2. Algorithm CSMF

Given a pattern x of length m and a text t of length n > m, an outline of algorithm CSMF

for solving the CircularStringMatching problem is as follows.
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1. Construct the string x′ = x[0 . . m − 1]x[0 . . m − 2] of length 2m − 1. By Fact 1, any

rotation of x is a factor of x′.

2. The pattern x′ is partitioned in four fragments of length �(2m−1)/4� and �(2m−1)/4�.
By Lemma 2.1, at least one of the four fragments is a factor of any rotation of x.

3. Match the four fragments against the text t using an Aho–Corasick automaton (Dori

and Landau 2006). Let L be a list of size Occ of tuples, where < px′ , �, pt >∈ L is a

three-tuple such that 0 � px′ < 2m− 1 is the position where the fragment occurs in x′,

� is the length of the corresponding fragment, and 0 � pt < n is the position where the

fragment occurs in t.

4. Compute SA, iSA, LCP, and RMQLCP of T = x′t. Compute SA, iSA, LCP, and RMQLCP

of Tr = rev(tx′), that is the reverse string of tx′.

5. For each tuple < px′ , �, pt >∈ L, we try to extend to the right via computing

Er ← LCE(t, px′ + �, 2m− 1 + pt + �);

in other words, we compute the length Er of the longest common prefix of x′[px′ +

� . . 2m− 1] and t[pt + � . . n− 1], both being suffixes of T . Similarly, we try to extend to

the left via computing El using lce queries on the suffixes of Tr .

6. For each El , Er computed for tuple < px′ , �, pt >∈ L, we report all the valid starting

positions in t by first checking if the total length El + � + Er � m; that is the length of

the full extension of the fragment is greater than or equal to m, matching at least one

rotation of x. If that is the case, then we report positions

max{pt − E�, pt + �− m}, . . . ,min{pt + �− m + Er, pt}.

Example 3.2. Let the pattern x = GGGTCTA of length m = 7, and the text

t = GATACGATACCTAGGGTGATAGAATAG. Then x′ = GGGTCTAGGGTCT (Step 1). x′ is

partitioned in GGGT, CTA, GGG, and TCT (Step 2). Consider < 4, 3, 10 >∈ L, that

is, fragment x′[4 . . 6] = CTA, of length � = 3, occurs at starting position pt = 10

in t (Step 3). Then T = GGGTCTAGGGTCTGATACGATACCTAGGGTGATAGAATAG and Tr =

TCTGGGATCTGGGGATAAGATAGTGGGATCCATAGCATAG (Step 4). Extending to the left gives

El = 0, since Tr[9] 
= Tr[30]; and extending to the right gives Er = 4, since

T [7 . . 10] = T [26 . . 29] and T [11] 
= T [30] (Step 5). We check that El + � + Er = 7 = m,

and therefore we report position 10 (Step 6):

pt − E� = 10− 0 = 10, . . . , pt + �− m + Er = 10 + 3− 7 + 4 = 10;

that is, x4 = CTAGGGT occurs at starting position 10 in t.

Theorem 3.1. Given a pattern x of length m drawn from alphabet Σ, σ = |Σ|, and a text t

of length n > m drawn from Σ, algorithm CSMF requires average-case time O(n) to solve

the CircularStringMatching problem.

Proof. Constructing and partitioning the string x′ from x can trivially be done in

time O(m) (Steps 1–2). Building the Aho–Corasick automaton of the four fragments

requires time O(m); and the search time is O(n + Occ) (Step 3) (Dori and Landau 2006).

The preprocessing step for the lce queries on the suffixes of T and Tr can be done in
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time O(n) (Step 4). Computing El and Er for each occurrence of a fragment requires

time O(Occ) (Step 5). For each extended occurrence of a fragment, we report O(m)

valid starting positions, thus O(mOcc) in total (Step 6). Since, the expected number Occ

of occurrences of the four fragments in t is 4n/σ(2m−1)/4 = O( n

σ
2m−1

4
), algorithm CSMF

requires average-case time O((1 + m

σ
2m−1

4
)n). It achieves average-case time O(n) iff

f =
4m

σ
2m−1

4

n � cn

for some fixed constant c. For σ = 2, the maximum value of f is attained at

m = 2/ ln 2 ≈ 2.8853

and so for σ > 1 we get

4m

σ
2m−1

4

n � 5.05n.

3.3. Algorithm CSMF-Simple

In this section, we present algorithm CSMF-Simple, a more space-efficient version of

algorithm CSMF. Algorithm CSMF-Simple is very similar to algorithm CSMF. The only

differences are:

— Algorithm CSMF-Simple does not perform Step 4 of algorithm CSMF;

— For each tuple 〈px′ , �, pt〉 ∈ L, Step 5 of algorithm CSMF is performed without the

use of the pre-computed indexes. In other words, we compute Er and E� by simply

performing letter comparisons and counting the number of mismatches occurred. The

extension stops right before the first mismatch.

Fact 2. The expected number of letter comparisons required for each extension in

algorithm CSMF-Simple is less than three.

Proof. Recall that on an alphabet of size σ, the probability that two random strings of

length � are equal is (1/σ)�. Thus, given two long strings, and setting r = 1/σ, such that

r < 1, there is probability r that the initial letters are equal, r2 that the prefixes of length

two are equal, and so on. Thus, the expected number of positions to be matched before

inequality occurs can be described by the summation of infinite terms

S = r + 2r2 + · · · =
∞∑
k=1

krk

which is bounded by r/(1− r)2 < 2 for r < 1.

Thus S , the expected number of matching positions, is less than two, and hence,

the expected number of letter comparisons required for each extension in algorithm

CSMF-Simple is less than three.

https://doi.org/10.1017/S0960129515000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000134


T. Athar, C. Barton, W. Bland, J. Gao, C. S. Iliopoulos, C. Liu and S. P. Pissis 150

Theorem 3.2. Given a pattern x of length m drawn from alphabet Σ, σ = |Σ|, and a text t

of length n > m drawn from Σ, algorithm CSMF-Simple requires average-case time O(n)

and space O(m) to solve the CircularStringMatching problem.

Proof. By Fact 2, computing E� and Er for each occurrence of a fragment requires

expected time O(Occ). Therefore, algorithm CSMF-Simple requires average-case time

O(n). The required space is reduced to O(m) since Step 4 of algorithm CSMF is not

performed.

4. Circular dictionary matching via filtering

In this section, we give a generalization of our algorithm for circular string matching and

show that it can easily be modified to solve the problem of circular dictionary matching.

We denote this new algorithm by CDMF. Algorithm CDMF follows the same approach

as before but with a few key differences. In circular dictionary matching we are given a

set D = {x0, x1, . . . , xd−1} of patterns of total length M and we must find all occurrences

of the patterns in D or any of their rotations. To modify algorithm CSMF to solve

this problem we perform Steps 1 and 2 for every pattern in D, constructing the strings

x′0, x
′
1, . . . , x

′
d−1 and breaking them each into four fragments in the same way specified in

Lemma 2.1. From this point the algorithm remains largely the same (Steps 3–4); we build

the automaton for the fragments from every pattern and then proceed in the same way

as algorithm CSMF. The only extra consideration is that we must be able to identify, for

every fragment, the pattern from which it was extracted. To do this we alter the definition

of L such that it now consists of tuples of the form 〈px′j , �, j, pt〉, where j identifies the

pattern the fragment was extracted from; px′j and � are defined identically with respect

to the pattern xj , and pt remains the same. This then allows us to identify the pattern for

which we must perform verification (Steps 5–6) if a fragment is matched. The verification

steps are then the same as in algorithm CSMF with the respective pattern.

Theorem 4.1. Given a set D = {x0, x1, . . . , xd−1} of patterns of total length M drawn

from alphabet Σ, σ = |Σ|, and a text t of length n > |xj |, where 0 � j < d, drawn

from Σ, algorithm CDMF requires average-case time O((1 + d|xmax|

σ
2|xmin |−1

4

)n + M) to solve the

CircularDictionaryMatching problem, where xmin and xmax are the minimum- and

maximum-length patterns in D, respectively.

Proof. Constructing and partitioning the strings x′0, x
′
1, . . . , x

′
d−1 from D can trivially be

done in time O(M) (Steps 1–2). Building the Aho–Corasick automaton of the 4d fragments

requires time O(M); and the search time is O(n+Occ) (Step 3). The preprocessing step for

the lce queries on the suffixes of T and Tr can be done in time O(n) (Step 4). Computing

El and Er for each occurrence of a fragment requires time O(Occ) (Step 5). For each

extended occurrence of some fragment 〈px′j , �, j, pt〉, we may report O(|xj |) valid starting

positions. The expected number of occurrences for any fragment of some pattern xj is

n/σ(2|xj |−1)/4 thus 4n/σ(2|xj |−1)/4 for all four fragments. So the total expected number Occ

of occurrences is
∑d−1

j=0
4n

σ
2|xj |−1

4

= O( dn

σ
2|xmin |−1

4

), where xmin is the minimum-length string

in D (Step 6). Since the expected number Occ of occurrences of the fragments in t is
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O( dn

σ
2|xmin |−1

4

), algorithm CDMF requires average-case time O((1 + d|xmax|

σ
2|xmin |−1

4

)n + M), where

xmax is the maximum-length string in D.

In a similar way as in algorithm CSMF-Simple, we can apply Fact 2 to obtain algorithm

CDMF-Simple and achieve the following result.

Theorem 4.2. Given a set D = {x0, x1, . . . , xd−1} of patterns of total length M drawn from

alphabet Σ, σ = |Σ|, and a text t of length n > |xj |, where 0 � j < d, drawn from

Σ, algorithm CDMF-Simple requires average-case time O((1 + d|xmax|

σ
2|xmin |−1

4

)n + M) and space

O(M) to solve the CircularDictionaryMatching problem, where xmin and xmax are the

minimum- and maximum-length patterns in D, respectively.

Algorithm CDMF achieves average-case time O(n + M) iff

4d|xmax|
σ

2|xmin |−1

4

n � cn

for some fixed constant c. So we have

4d|xmax|
σ

2|xmin |−1

4

� c

logσ

(
4d|xmax|

c

)
�

2|xmin| − 1

4

4(logσ 4 + logσ d + logσ |xmax| − logσ c) � 2|xmin| − 1

Rearranging and setting c such that logσ c � 1/4 + logσ 4 gives a sufficient condition for

our algorithm to achieve average-case time O(n + M):

|xmin| � 2(logσ d + logσ |xmax|).

Corollary 4.1. Given a set D = {x0, x1, . . . , xd−1} of patterns of total length M drawn

from alphabet Σ, σ = |Σ|, and a text t of length n > |xj |, where 0 � j < d, drawn

from Σ, algorithm CDMF-Simple solves the CircularDictionaryMatching problem in

average-case time O(n + M) iff |xmin| � 2(logσ d + logσ |xmax|), where xmin and xmax are

the minimum- and maximum-length patterns in D, respectively.

5. Detailed description of CPI-II

The index data structure CPI-II essentially consists of the suffix array SA and the inverse

suffix array iSA of t. The result of a query for a pattern x of length m on the suffix array

SA of t of length n can be represented in the form of an interval [s, e], such that the

starting positions of x in t are given by the set {SA[s],SA[s+ 1], . . . ,SA[e]} of cardinality

Occ. The query algorithm on CPI-II relies on the following two lemmas. We denote this

interval by Inttx.
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Lemma 5.1 (Gusfield (1997)). Given a text t of length n, its suffix array SA, and an

interval Inttx of a query for a pattern x, the interval Inttxc for any character c can be

computed in time O(log n).

Lemma 5.2 (Huynh et al. (2006)). Given a text t of length n, its suffix array SA, its

inverse suffix array iSA, and two intervals Inttx1
and Inttx2

of queries for patterns x1 and

x2, respectively, the interval Inttx1x2
can be computed in time O(log n).

In order to find all the rotations of a string x, we can first find the intervals for all

prefixes and suffixes of x. Let Pref[i] = Inttx[0. .i] and Suff[i] = Inttx[i. .m−1].

Consider the prefixes in ascending order by length. The interval Pref[0] for prefix x[0]

can be found in time O(log n) by a binary search on SA. Each subsequent interval Pref[i]

for prefix x[0 . . i] can be found in time O(log n) by Lemma 5.1. Hence, the intervals for

all prefixes can be found in time O(m log n).

The intervals for the suffixes can be found in time O(m log n) in a similar way. The

interval Suff[m − 1] for suffix x[m − 1] can be found in time O(log n). Each subsequent

interval Suff[i] can also be found in time O(log n) by first finding Inttc, where c = x[i], in

time O(log n), then applying Lemma 5.2 with Inttx1
= Inttc and Inttx2

= Suff[i + 1].

Having found the intervals Pref[i] and Suff[i] for all i ∈ [0, . . . , m−1], we next find the set

of intervals for all the rotations of x. The interval for the first rotation of x is Suff[m− 1].

For j ∈ [0, . . . , m− 1], the interval for the j-th rotation of x can be found in time O(log n)

using Lemma 5.2 with Inttx1
= Suff[j] and Inttx2

= Pref[(j + m− 2) mod (m− 1)]. Thus all

intervals for all the rotations of x can be found in time O(m log n). Finally, we use SA to

convert this set of intervals into a set of occurrences in t of cardinality Occ. In all, this

query algorithm requires time O(n + m log n + Occ).

6. Experimental results

We implemented algorithms CDMF-Simple and the index data structure CPI-II as library

functions to perform circular string matching for a set of patterns. The functions

were implemented in the C programming language and developed under GNU/Linux

operating system. They take as input arguments a set D = {x0, x1, . . . , xd−1} of patterns

and a text t; and then return the list of starting positions of the occurrences

of the rotations of x0, x1, . . . , xd−1 in t as output. The library implementation of

CDMF-Simple is distributed under the GNU General Public License (GPL), and

it is available at http://www.inf.kcl.ac.uk/research/projects/asmf/, which is

set up for maintaining the source code and the man-page documentation. The

library implementation of CPI-II is distributed under the GPL, and it is available at

http://github.com/blandw/cpm. The experiments were conducted on a Desktop PC

using one core of Intel i7 2600 CPU at 3.4 GHz under GNU/Linux. The programmes

were compiled with gcc version 4.6.3 at optimization level 3 (-O3). Time and memory

measurements were taken using the GNU/Linux time command.

To evaluate the efficiency of CDMF-Simple, we compared its performance against CPI-II

using real data. As input datasets we used: for the set of patterns, a set of d = 22, 918

Sugarcane white streak virus short reads, produced by Illumina platform, of total length
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Table 1. Elapsed-time and speed-up comparisons of algorithms CPI-II and CDMF-Simple

using synthetic DNA data (σ = 4) for n = 100 MB.

Number of Length of Speed-up of

patterns each pattern CPI-II (s) CDMF-Simple (s) CDMF-Simple

10 25 8.5 4.9 1.73

100 25 8.6 5.1 1.68

1000 25 8.6 5.6 1.53

10,000 25 9.0 6.2 1.45

10 50 8.4 4.3 1.95

100 50 8.6 5.1 1.68

1000 50 8.6 5.7 1.50

10,000 50 9.4 6.2 1.51

10 100 8.6 4.3 2

100 100 8.6 4.9 1.75

1000 100 8.7 5.8 1.50

10,000 100 9.6 7.2 1.33

M = 516, 076 base pairs; and, for the text, the Homo sapiens chromosome 1 sequence

of length n = 248, 956, 422 base pairs. CPI-II finished the assignment in 25.1 seconds;

CDMF-Simple finished in 17.7 seconds. The maximum allocated memory was 2436 MB

for CPI-II and 691 MB for CDMF-Simple. As input datasets we also used: for the set of

patterns, a set of d = 14, 880 Human immunodeficiency virus (HIV-1) short reads, produced

by 454 Life Sciences platform, of total length M = 3, 040, 354 base pairs; and, for the

text, the Homo sapiens chromosome 1 sequence of length n = 248, 956, 422 base pairs.

CPI-II finished the assignment in 30.1 seconds; CDMF-Simple finished in 25.5 seconds. The

maximum allocated memory was 2436 MB for CPI-II and 675 MB for CDMF-Simple.

To further evaluate the efficiency of CDMF-Simple, we compared its performance

against CPI-II using synthetic data. The data were generated using a randomized script;

and the parameters for this script were chosen based on the properties (length) of real

data. Tables 1 and 2 illustrate elapsed-time and speed-up comparisons for different

combinations of input parameters. As it is demonstrated by the experimental results,

algorithm CDMF-Simple is in all cases the fastest with a speed-up improvement between

1.3 and 2.3 over CPI-II. The maximum allocated memory (per task) for the experiments in

Table 1 was 998 MB for CPI-II and 337 MB for CDMF-Simple. The maximum allocated

memory (per task) for the experiments in Table 2 was 1940 MB for CPI-II and 525 MB

for CDMF-Simple. Notice that, this occurs for the largest number of patterns, and CDMF-

Simple has a lower memory footprint for less patterns, whilst CPI-II remains static. This

confirms our theoretical findings in terms of space complexity.

Here, it becomes evident what is generally expected in practical terms: there is a

certain point, as the value of M grows and n remains static, that CDMF-Simple will

become slower than CPI-II; however, for smaller M, CDMF-Simple is expected to retain a

significant speed-up, in particular when one has multiple online query texts.
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Table 2. Elapsed-time and speed-up comparisons of algorithms CPI-II and CDMF-Simple

using synthetic DNA data (σ = 4) for n = 200 MB.

Number of Length of CPI-II (s) CDMF-Simple (s) Speed-up of

patterns each pattern CDMF-Simple

10 25 21.1 10.4 2.02

100 25 21.3 10.8 1.97

1000 25 21.4 11.9 1.79

10,000 25 21.5 13.3 1.61

10 50 21.2 9.2 2.3

100 50 21.5 10.8 1.99

1000 50 21.5 12.3 1.74

10,000 50 22.3 13.4 1.66

10 100 21.3 9.1 2.34

100 100 21.6 10.4 2.07

1000 100 22 12.4 1.77

10,000 100 22.3 15.3 1.45

7. Final remarks

In this article, we presented a suboptimal average-case algorithm for circular string

matching requiring time O(n) and space O(m). We showed how it can be extended

to solve the circular dictionary-matching problem in average-case time O(n + M) and

space O(M), assuming that the shortest pattern is sufficiently long. Experimental results,

using real and synthetic data, demonstrate that the implementation of the presented

algorithms can accelerate the computations by more than a factor of two compared to

the corresponding implementation of other approaches. For future work, we will try to

improve our algorithms in order to achieve average-case optimality; and to extend our

approaches to the edit distance model (Barton et al. 2014, 2015).
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