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so that g, and g, are respectively the accelerations at the outer
surface of the outer shell due to the attraction of the inner shell
and its own gravitation. Then to a first approximation the com-
plete values for the strains and stresses in the outer shell are
as follows :—
ufr =8aja= - }(g:+ 20,)P,0(1 - 7)/E, )
B — 8hjh = 3(g+ 29 psan/E,

~__ éygpgag%_b—g)_, L. (95).

S=-90= 9+ 2gq)r0
J

The intensity of the actual bodily force in the outer shell varies
regularly from g, at the inner to g, +g¢, at the outer surface. Thus
the above results show that to a first approximation the strains and
the transverse stress in the shell are the same as if the bodily forces
had at every point of the thickness a constant value equal to the
mean of the actual values. The value of the radial stress depends
even to a first approximation on the law of distribution of the
bodily forces, but this stress is negligible compared to the transverse
stress. So far as concerns the results (95) the inner shell may be a
solid core or a shell of any thickness. The only limitation is that
the two shells must not be in contact.

The Elements of Quaternions Second Paper).
Di1scUssION OF THE PROOFS OF THE LAWS OF THE QUATERNIONIC ALGEBRA.
[Abstract.]

By Dr WiLLian PEDDIE.

Three main .aws regulate the treatment of ordinary algebraic
quantities. These are the Associative Law, the Distributive Law,
and the Commutative Law. If a, b, ¢, ..., represent quantities
dealt with in the algebra, the associative law of multiplication
asserts that a(bc)=(ab)c, where the brackets have the usual
meaning that the quantity within them is to be regarded as a
single quantity:- the distributive law of multiplication asserts
that (a+d)c+d)=ac+bc+ad+bd: and the commutative law
gives ab=ba. With regard to addition, the associative law
asgerts that (a+b)+c=a+(b+c): and the commutative law
gives a+b=b+a.
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In ordinary algebra, all the quantities are scalars. In a vector
algebra, the further idea of direction is ntroduced, and so we
cannot assert @ priori that the quantities dealt with in that
algebra will satisfy the laws of ordinary algebra. The matter is
one for investigation. With certain fundamental assumptions,
some of the ordinary laws may hold and others may not; and the
particular set which holds, and that which does not, will depend
on the nature of these assumptions.

In framing a new algebra, the first care should be to make its
laws agree as far as possible with the laws of the old; former
assumptions are only to be discarded when they stand in the way
of farther development. The adoption of certain assumptions may
make the algebra more readily applicable in some directions than
in others; in which case the maximum of general applicability,
consistent with ease of application in the most important directions,
is to be aimed at. And, in dealing solely with the new quantities
introduced in the new algebra, we may assume characteristics
totally different from those which typify the old quantities if such
assumptions enable us to follow out the above rules, while all others
prevent us from doing so. Indeed, such a choice of characteristics
might be most advantageous even in circumstances in which the old
characteristics would also enable us to observe these rules,

‘When one vector o is changed into another 3, the change may
be represented as due to the addition of a third vector y to the
former: so that a+y=p08. And, since the notion of a vector
quantity involves only the ideas of magnitude and direction—not
the idea of position—we see that a geometrical interpretation of
this equation is that the relative position of two points in a plane -
is fully given either by means of the straight line joining the two
or by means of the two sides of any triangle described with that
line as base : and, similarly, it may be given by the remaining sides
of any polygon of which the line joining the two points forms the
other side. From this we at once see that the associative and
commutative laws must apply to the addition (and subtraction)
of vectors.

Again when a is changed into 8, we may represent the result
as due, not to some addition to o but, to some operation performed
upon a. This is represented by the equation go=pf, where ¢ is the
required operator. Such a method is as natural, as important, and,
in many cases, more appropriate than the former, The Calculus of
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Quaternions, regarded as a vector algebra, recognises and employs
both methods.

The operator ¢ turns a, in a plane parallel to the directions
of a and B, through an angle equal to that contained between two
lines drawn in these directions respectively through a fixed point;
and it also changes its length if necessary until it becomes equal
to that of B. Now, to determine the plane, two numbers (such
as (1) the azimuth, in a fixed plane, of the line of intersection of
the fixed plane with the required one, and (2) the obliquity of the
planes) are needed. Then another number is needed to determine
the amount of rotation in the plane; after which yet another is
needed to determine the amount of lengthening (or shortening).
In all four numbers are required; and hence ¢ is conveniently
called a quaternion.

An algebra which deals with such operators is, ipso facto, an
algebra of vectors plus quaternions, and so may be more complex
than another in which the subject is not regarded from this opera-
tional point of view. On the other hand, since we have ga=a+y,
it is evident that we can, by means of suitable definitions, express
a quaternion in terms of vectors; and it may be possible to do this
so simply that special symbols for quaternions need never be
introduced, while, on the one hand, the greater complexity spoken
of becomes vanishingly small, and, on the other, greater freedom
aof treatment is attained. In accordance with the usages of ordinary
algebra, we may regard qa as the product of ¢ into a. That is to
say, ga is the product of two vector quantities; or, more strictly, of
a vector and a function of vectors. Now, in physical enquiries, we
have constantly to deal with products of vector quantities—which
products may be either scalar or vector. Hence a vector algebra,
which recognises the quaternion, may be made to deal naturally
(and, it may be, very simply) with such physical investigations.
On the contrary, the algebra which does not recognise the quater-
nion must have introduced into it new fundamental definitions,
totally unconnected with anything else, if it is to deal with scalar
or vector products of directed quantities. And the introduction of
these new definitions into the algebra will make possible the
quaternionic treatment of Vectors by its means; so that it would
be quite correct to call it a calculus of quaternions whether developed
or not. Indeed the cry that vectors should be treated vectorially
is merely a play upon words. A vector calculus deals with vectors
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and functions of vectors; and, as we have seen, in any quaternion
calculus, & quaternion can be represented as a function of vectors;
so that the quaternion calculus is, in a sense, purely a calculus of
vectors. This is preeminently the case with Hamilton’s system.

We know of only two fundamental classes of vectors—vectors
having reference to translation along a line, and vectors having
reference to rotation around an axis. Hamilton’s system takes
account of both ideas without introducing separate symbols: the
same vector acts translationally, or rotationally, according as it is
added to another, or is multiplied into another: and there is no
possible confusion of meaning. And, further, provision is made,
simply, for the treatment of scalar products of vectors. But, before
considering the assumptions by means of which these advantages
are attained, it is necessary to consider the laws of multiplication
of quaternions: and, in doing so, it is not necessary to consider the
stretching part (or Tensor) of the quaternion—for that part is a
mere number and so obeys all the laws of ordinary algebra.

We may represent quaternions by plane angles or by arcs of
great circles on a unit sphere. Thus, if PQR be a spherical triangle
whose sides p, g, 7 are portions of great circles on the unit sphere,
the quantities p, ¢, » may represent the corresponding quaternions.
Let o be the vector from the origin to the point Q. Then pa is
the vector to the point R, and ¢'pe is the vector to P. But this
is also ra, if r is measured from Q to P while p and ¢ are measured
from Q to R, and from R to P, respectively. And we are at liberty
to define r =g¢p, so that ¢'pa=gpa. This makes the associative law
hold when «, po, and gpa are vectors—a fact which is pointed
out by Hamilton, Lectures, § 310, and by Tait, Elements, § 54. It
defines quaternion multiplication.

Various proofs that the associative law holds in the multiplica-
tion of quaternions have been given, Of these, Hamilton’s proof
(Lectures, § 296 ; Elements, § 270; and Tait’s Elements, §§ 57-60)
by spherical arcs and elementary properties of spherical conics
involves, by definition, the particular assumption of association
just alluded to. His alternative proof, by more elementary geo-
metry (Lectures, §§ 298-801), makes use of the same definition;
and the same remark applies to the proof given in §§ 358, 359
of the Lectures. On the other hand, the geometrical proof given
in Hamilton’s Elements, §§ 266, 267, 272, is based upon the defini-
tion of the reciprocal of a quaternion, which makes the product of
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a quaternion and its reciprocal unity, and leads to the result that
the versor of a product of quaternions is equal to the product of
their versors. It involves the definition, above alluded to, of a
quaternion in terms of vectors: which, in turn, partially assumes
the associative law for vectors (Ba~.a = S.a™a).

The complete proof of the law, by this method, is given in § 272
of the Zlements. Other possible proofs ave indicated in the
Elements. In the proof, by spherical conics, given in the Lectures,
§ 302, and the Elements, §§ 265, 271, a quaternion is represented
by a spherical angle.

Hamilton also gives proofs (Lectures, § 489 ; Elements, § 223)
of the associative law for quaternions when the distributive law
for vector multiplication is granted or proved. This proof is also
given by Tait, Elements, § 85. It involves the representation of a
quaternion as the sum of a scalar and a vector. The proof that
this representation is possible and definite (Zectures, § 406 ; Ele-
ments, §§ 201, 202; Tait’s Quaternions, § 77) necessitates the
association of vectors, as above, to the extent Sa~l.a=B.ala, (and
the distributive law to the extent (a + ya)a™ = aa~* + yaa™). Indeed
all the laws of combination of rectangular vectors are taken for
granted in this proof of the associative law.

The addition of quaternions is defined by the equation (g+7)a
=ga+7a where o is a vector. ¥rom this (Lectures, § 449) it at once
follows that the associative law holds in such addition. This
definition of course is virtually an assumption of the distributive
law in the particular case when «, ga, 7o, are vectors.

Hamilton’s proof (Lectures, §§ 451-455; Elements, §§ 210-212;
Tait’s Quaternions, § 81) of the distributive law in the multiplication
of quaternions employs this definition of the additien of quaternions
together with the partial assumption of the associative law of vectors
involved in the definition of a quaternion in terms of vectors. It
also assumes the possibility of representing a quaternion as the sum of
a scalar and a vector. The law may be proved, as Tait indicates (§ 62),
by means of this definition and the assumption of the laws of com-
bination of vectors. Tait’s other proof (§ 62) by means of the
properties of spherical conics involves, in its complete generality,
the proof of the commutativeness of quaternion addition,

‘When the partial assumption of association of vectors, used in
Hamilton’s fundamental expression for a quaternion in terms of
vectors, is made along with the partial assumption of distribution

https://doi.org/10.1017/50013091500031291 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500031291

135

used in the definition of quaternion addition, the commutativeness
of quaternion addition follows at once (Lectures, §§ 448, 449;
Elements, §§ 195-207 ; Tait’s Elements, § 61) from the obvious
commutativeness of vector addition. ‘

The results obtained up to this point are the following: (1) The
addition of vectors is commutative and associative. (2) A quater-
nion may be represented as a function of vectors. In Hamilton’s
gystem the quaternion ¢ in the equation go=p is defined to be
Ba='; and so go=Bata=B.ata=p, for a~'a is defined to be unity ;
and the steps of the process are consistent with association in vector
multiplication. (3) A definition of quaternion addition, which does
not conflict with the distributive law of multiplication, and which
subjects the process to the associative law, is given. (4) With no
further definitions, it is found that the associative and distributive
laws hold in the multiplication of quaternions. Thus all the results
yet obtained are consistent with the rules which must be observed
in the formation of a new calculus.

The graphical representation of quaternion (or versor) multi-
plication shows at once (Elements, § 168, Tait’s Quaternions, § 54)
that quaternion multiplication is not in general commutative. And
another peculiarity is that, if ¢ be a versor which turns any vector
in a given plane through a right angle, the double application of the
operation g reverses any vector in that plane. If a be such a vector,
we get ¢.qa=¢% = - a; so that we may put ¢*= — 1 in the case of
any quadrantal versor. And if p, g, r be rectangular quadrantal
versors we get

P=q'=r'=-1; pg= —qp=r,qr=-r¢=p, TP= —pr=gq.

Now consider three rectangular unit vectors ¢, j, & ; and let them
be perpendicular respectively to the planes of rotation of p, ¢, 7, so
that we may say that 4 is parallel to the axis of p, etc. We get at
oncepj=k,pg=r; qi= ~k,qp= —r; r*=—1. Whence if we write
p=1,q=j, r=k, we shall have the immense simplification that no
special symbols are needed for versors—a vector acting transla-
tionally in addition (or subtraction), rotationally in multiplication
(or division).

With this assumption, vector multiplication is associative, and
distributive; but is not commutative; and the square of a unit
vector is negative unity ; the laws for unit rectangular vectors being
4= —Ji, and = -1, ete.
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Now the idea of a vector is one entirely foreign to ordinary
algebra, in which the square of any unit is positive unity. Hence
the fact that the square of a unit vector is negative unity has no
disadvantage. It makes the scalar part of the product of §into a
equal to the product of the lengths of these vectors into the cosine
of the supplement of the angle between their positive directions ;
and it makes the reciprocal of a vector have a direction opposite to
that of the vector itself ; all of which conditions are as natural and
simple as their opposites.

Finally, it is shown by Hamilton, by strict reasoning (Lectures,
§§ 49-56), that these laws for the multiplication of unit rectangular
vectors must hold if no one direction in space is to be regarded as
eminent above another and if the ordinary rules of algebra are to
apply in so far that, (1) to multiply either factor by any number
positive or negative, multiplies the product by the same, (2) the
product of two determined factors is itself determined, (8) the
distributive and associative principles hold. ~We see then that
Hamilton’s system is one which preeminently satisfies the conditions
of correspondence to ordinary algebra as far as possible.

Note on a Problem in Analytical Geometry.
By A. J. Pressnaxp, M.A.
[Adbstract.]

The theorem, ““I1f upon the sides of a triangle as diagonals
parallelograms be described, whose sides are parallel to two given
lines, then the other three diagonals will intersect in the same
point,” occurs in Hutton’s Course of Mathematics, 12th ed., vol. II.,
p- 191

For a proof, see Smith’s Conic Sections, p. 40.

If we are given the point of intersection of the diagonals, and
wish to find the directions of the sides of the parallelograms, the
discussion resolves itself into describing a conic through three points
to have its centre at a given point. The asymptotes of this conic
are the directions required. For a solution, see Eagles’ Constructive
Geometry of Plane Curves, pp. 124, 173, and notice Taylor, Ancient
and Modern Geometry of Conics, p. 164, Ex. 454,

If A, B, C be the three points, D, E, F the mid points of BC, CA,
AB then if the centre lies inside DEF the asymptotes are imaginary,
but they are real if the centre lies inside AEF, etc.
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