AN ARCHIVAL STUDY OF HST OBSERVATIONS OF HER X-1/HZ HER

F. H. CHENG¹, S. D. VRTILEK^{1,2}, J. C. RAYMOND²

- 1. University of Maryland, USA
- 2. Harvard-Smithsonian Center for Astrophysics, USA

1. Introduction

Her X-1 is an X-ray pulsar with a rotation period of 1.24s and a binary period of 1.7d (Tananbaum et al. 1972). The 1.7 d variations in optical and ultraviolet flux are attributed to X-ray heating of the companion star and disk (e.g. Howarth & Wilson 1983, hereafter HW83). The system displays a 35d period, attributed to the effects of a tilted, precessing, accretion disk. Optical and ultraviolet flux variations continue *unchanged* throughout. This work is motivated by the following reasons:

• The observed IUE spectra have significantly flatter slopes than those predicted by previous models (e.g. HW83).

• The observed strength of the Balmer jump is anomalously low compared to that expected for a normal B star (Anderson et al. 1994).

• HST observations obtained by Anderson et al. (1994) in order to study emission lines have yielded high quality spectra of the *continuum* emission from HZ Her, enabling for the first time detailed model fitting efforts.

2. Model

• Adopt the system geometry of HW83 and X-ray heating code described in Vrtilek et al. (1990, 1991).

- Assume both disk and star have an albedo of 50%.
- Estimate E(B-V) < 0.05 from the lack of a 2200 Å absorption feature.
- Use $L_x = 0.5 G M \dot{M} / r_1$, where r_1 is the radius of the neutron star.

• Calculate the temperature at star and disk surfaces due to X-ray heating. Use IUE and Kitt Peak stellar fluxes (referred to as *star-type spectra*) for that temperature to determine UV/optical continuum flux (HW83 used model stellar atmospheres).

381

A. Evans and J. H. Wood (eds.), Cataclysmic Variables and Related Objects, 381-382.

© 1996 Kluwer Academic Publishers. Printed in the Netherlands.

• Include blackbody component. Introduce two critical temperatures: $T_{\rm sc}$ and $T_{\rm dc}$. For a given area element in the disk and star, if the temperatures $T_{\rm d}$ and $T_{\rm s}$ are higher than $T_{\rm dc}$ or $T_{\rm sc}$, compute the flux using a blackbody, otherwise use *star-type* spectrum.

• Free parameters are \dot{M} , $T_{\rm dc}$ and $T_{\rm sc}$, $\phi_{\rm orb}$, ϕ_{35} . Fixed parameters are q, β , $\theta_{\rm d}$, $\alpha_{\rm d}$, $\Delta\psi$, i, a, d, r_1 and r_2 (a detailed description of the model can be seen in Cheng, Vrtilek & Raymond 1995).

3. Results

• At $\phi_{\rm orb} \sim 0.0$, we obtain the average temperature of the unheated star surface $T_{\rm s0} = 8\,100 \pm 240$ K (Fig. 1).

• At $\phi_{\rm orb} \sim 0.5$, we obtain $T_{\rm dc} \sim 10\,000\,{\rm K}$, $T_{\rm sc} \sim 18\,900\,{\rm K}$, and $\dot{M} = (6.5 \pm 0.9)\,10^{-9}\,{\rm M_{\odot}\,yr^{-1}}$ (Fig. 2).

• Balmer Jump: see Table 1.

$\phi_{ m orb}$	Observed BJ	Model BJ
0.0	3.0	2.8
0.53	1.3	1.8 (no blackbody)
0.53	1.3	1.4 (with blackbody)

TABLE 1. Comparison of the Balmer Jump

References

Anderson, S.F., Wachter, S., Margon, B., et al., 1994, Ap. J., **436**, 319 Cheng, F.H., Vrtilek, S.D., Raymond, J.C., 1995, Ap. J., **452**, 825 Howarth, I.D., Wilson, B., 1983, MNRAS, **204**, 347 (HW83) Tananbaum, H., Gursky, H., Kellogg, E.M., et al., 1972, Ap. J., **174**, L143 Vrtilek, S.D., Penninx, W., Raymond, J.C., et al., 1991, Ap. J., **376**, 278 Vrtilek, S.D., Raymond, J. C., Garcia, M.R., et al., 1990, A&A, **235**, 162