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Matrix coefficients of cohomologically induced

representations

Binyong Sun

Abstract

We define integral formulas which produce certain matrix coefficients of cohomologically
induced representations of real reductive groups. They are analogous to Harish-Chandra’s
Eisenstein integrals for matrix coefficients of ordinary induced representations, and
generalize Flensted-Jensen’s fundamental functions for discrete series.

1. Introduction

Let G be a connected real Lie group such that:

(i) the Lie algebra g0 of G is reductive;

(ii) the connected Lie subgroup of G with Lie algebra [g0, g0] has a finite center.

Such a G is called a connected real reductive group. Fix a maximal compact subgroup K of G,
which is connected and unique up to conjugation.

An elementary spherical function is a smooth function φ on G/K with the following three
properties: 



(i) φ(1K) = 1;
(ii) φ is left K-invariant;
(iii) φ is a joint eigenfunction of D(G/K), where D(G/K) is

the algebra of G-invariant differential operators on G/K.

(1)

By using the Iwasawa decomposition G = NAK, Harish-Chandra found in [Har58] a pretty integral
formula

φλ(x) =
∫
K
e〈λ+ρ,H(kx)〉 dk, x ∈ G, (2)

which produces elementary spherical functions on G, where H is the map from G onto a0 = Lie(A)
defined by

H(n exp(a)k) = a, n ∈ N, a ∈ a0, k ∈ K,

and ρ ∈ a∗0 is half of the sum of positive roots (the positive system is the one that corresponds
to N). Moreover, he proved that a function on G is elementary spherical if and only if it is of the
form φλ for some λ ∈ a∗0⊗RC. Note that a function on G/K may be identified with a function on G
which is right K-invariant.

In terms of representation theory, elementary spherical functions can be expressed as matrix
coefficients of irreducible spherical representations and its trivial K-type. In general, for an
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admissible continuous representation π of G on a Hilbert space Vπ, and a K-type α, define

φπ,α(g) = pα ◦ π(g) ◦ jα, g ∈ G,

where jα is the embedding of the α-isotypic component Vπ(α) into Vπ, and pα is the continuous
linear projection from Vπ onto Vπ(α) defined by

pα(v) =

{
v, if v ∈ Vπ(α),
0, if v ∈ Vπ(β), for some K-type β �= α.

It is clear that φπ,α is a real analytic function on G with values in EndC(Vπ(α)). When Vπ(α) has
dimension 1, EndC(Vπ(α)) can be canonically identified with C, and therefore φπ,α is actually a
complex valued function. If π is an irreducible spherical representation with the trivial K-type α0,
then Vπ(α0) has dimension 1, and the function φπ,α0 is an elementary spherical function. By the
theory of spherical functions and spherical representations, all elementary spherical functions can
be expressed as φπ,α0 for some irreducible spherical representation π.

In the sense of Vogan, α0 is the unique lowest K-type of every irreducible spherical representa-
tion. Therefore, it is interesting to study φπ,α for a general irreducible admissible representation π
and an arbitrary lowest K-type α of π. In particular, one may consider the following.

General Problem. Find an integral formula similar to (2) for φπ,α, where π is an arbitrary irreducible
admissible representation, and α is an arbitrary lowest K-type of π.

Special cases of this General Problem have been extensively studied over the years. Harish-
Chandra defined in [Har75] (or [Kna86, Wal92]) the Eisenstein integral which represents φπ,α when π
is a parabolically induced representation. In [Fle80a], Flensted-Jensen solved the problem when π is
a discrete series representation. Li and Wallach obtained a formula when π is a lowest weight unitary
representation [Li90]. Harris and Li gave formulas for some very special cases of cohomologically
induced representations [HL98]. Some lower rank group cases have been explicitly calculated by
mathematical physicists.

It is important to point out that Flensted-Jensen also attempted to give a solution of the General
Problem [Fle80b]. His formulas produce functions with good properties. However, he has to consider
the convergence problem since his formulas involve integrations over non-compact groups. In order
to attack the convergence problem, he has to assume that the parameters in his formulas must be
sufficiently regular.

The objective of this paper is to give an integral formula for φπ,α when π is a cohomologically
induced representation and α is in the bottom layer (we describe cohomological inductions and
bottom layers in detail in § 5). One of the good features of our formulas is that the integrations
involved in our formulas are over compact groups. Hence, we do not have to deal with the convergence
issue. In what follows, we explain precisely why our formulas are enough for a solution to the General
Problem.

Let g be the complexification of g0. It is known that the function φπ,α depends only on α and
the underlying (g,K)-module of π. Therefore, it makes sense to write φM,α for a finitely generated
admissible (g,K)-module M (every M has at least one globalization π).

Fix a Cartan involution θ on G such that the fixed point group Gθ = K. Recall that a parabolic
subalgebra q of g is called a θ-stable parabolic if

θ(q) = q,

and

q ∩ q̄ is a Levi factor of q,
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where ‘¯’ is the complex conjugation relative to the real form g0. Assume that α is a lowest K-type
of an irreducible (g,K)-module M . It is automatic that α has multiplicity 1 in M . Vogan associated
to α a θ-stable parabolic q (depending on some fixed positive system). Define

G′ = normalizer of q in G.

Then G′ is a quasisplit connected real reductive group. Write

g′ = Lie(G′) ⊗R C and K ′ = K ∩G′.

Let α′ be the K ′-type which is q-associated to α (Definition 3.1). Then α′ is fine with respect to G′

in the sense of Vogan. By [SV98, Theorem 2.9], or [Vog81, Theorems 6.5.10 and 6.5.12], there is a
(g′,K ′)-module P ′ in the non-unitary principal series such that:

(i) α′ occurs in P ′ (automatically has multiplicity 1);

(ii) α is in the bottom layer of XG, occurring with multiplicity 1, where XG = RS
q (P ′) is a

cohomologically induced standard (g,K)-module (this is automatic from condition (i), see the
comments after Definition 5.4);

(iii) M is isomorphic to the unique irreducible subquotient of XG containing the K-type α.

From the third condition above we know that φM,α can be canonically identified with φXG,α. It is
also known that φP ′,α′ can be expressed in terms of the parameters of principal series by Harish-
Chandra’s Eisenstein integral. Therefore, if we can express φXG,α in terms of φP ′,α′ , we give a
solution to the general problem.

In this paper, we define an integral (Definition 3.2) which is analogous to Harish-Chandra’s
Eisenstein integral and does express φXG,α in terms of φP ′,α′ (Theorem 6.3). It generalizes Flensed-
Jensen’s fundamental functions for discrete series [Fle80a]. The crucial point is that we use the
Langlands decomposition which is more general than the Iwasawa decomposition which was used
by Flensted-Jensen [Fle80b].

A direct application of the formulas is to show certain positivity properties which are essential in
the study of discrete spectra of theta correspondences [HL98, Li90, Li97]. For example, we find that
φπ,α(x) is a positive definite operator when π is an irreducible unitary representation with non-zero
cohomology, α is the unique lowest K-type, and x ∈ exp(p0), where p0 ⊂ g0 is the −1 eigenspace
of θ.

In the next section, we recall Flensted-Jensen duality which relates functions on G to functions
on a Riemannian symmetric space. In § 3, we introduce the integral and prove that the integral
behaves well under the translations of K. In § 4, we prove that the integral behaves well under
the actions of U(g)K . In § 5, we recall cohomological inductions and bottom layers, and study the
actions of U(g)K on bottom layers. The results of §§ 3, 4, and 5 imply that both our integral and
φM,α have three properties which are similar to those of (1), where M is a cohomologically induced
module and α is in the bottom layer. In § 6, we use the uniqueness of functions with these properties
to get the equality between our integral and φM,α, and give two interesting examples.

2. Flensted-Jensen duality

2.1 Complexifications of groups
We denote by HC the universal complexification of a Lie group H. Let uH : H → HC be the
canonical homomorphism, and ¯ : HC → HC be the anti-holomorphic automorphism on HC
which is identity on uH(H). Recall that the universal complexification map uH is defined by
the following property [Hoc66]: if H ′ is a complex Lie group and φ : H → H ′ is a Lie group
homomorphism, then there is a unique holomorphic homomorphism φ′ : HC → H ′ such that
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the following diagram commutes.

H
uH ��

φ

���
��

��
��

� HC

φ′
��
H ′

When A is a connected real analytic manifold, B is a connected complex manifold, and c : A→ B
is a real analytic map, we call c a complexification map if its differential is a complexification of a
real vector space everywhere. The following are well known:

(i) every Lie group has a unique universal complexification;

(ii) the universal complexification of a connected Lie group is connected;

(iii) if H is a connected real reductive group, then uH is a complexification map and has a finite
kernel;

(iv) if H is compact, then uH is injective and HC is a reductive complex group.

2.2 Flensted-Jensen duality for groups

Recall from § 1 that θ is a Cartan involution on G such that K is its fixed point group. The involution
θ induces a Lie algebra involution θ : g → g. Let

g0 = k0 + p0 and g = k + p

be the usual decompositions corresponding to θ. Write

θ̄ = θ ◦ ¯ = ¯ ◦ θ : g → g.

The involution θ : G→ G also induces a holomorphic involution θ : GC → GC. Still write

θ̄ = θ ◦ ¯ = ¯ ◦ θ : GC → GC.

Let U be the fixed points of θ̄ in GC. Note that U is connected, and it is a maximal compact
subgroup of GC when G has a compact center. We have a commutative diagram

G/K
pK−−−−→ G

vG

� �uG

GC/U
pU−−−−→ GC

(3)

where vG is the map induced by uG, pK is defined by

pK(xK) = xθ(x−1), x ∈ G,

and pU is defined by

pU (xU) = xθ̄(x−1), x ∈ GC.

Note that both uG and pU are complexification maps.
Fix a finite-dimensional continuous representation τ of K ×K on V, and still denote by τ the

holomorphic extension of the representation to KC × KC. We have a smooth representation T of
G×G on C∞(G;V) defined by

(Tg,hφ)(x) = φ(g−1xh)

for all g, h, x ∈ G, φ ∈ C∞(G;V). By taking its differential, we get a representation T of U(g)⊗U(g)
on C∞(G;V). We also have a smooth representation T of GC on C∞(GC/U ;V) by

(Tgψ)(x) = ψ(g−1x)
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for all g ∈ GC, x ∈ GC/U , ψ ∈ C∞(GC/U ;V). Again by taking its differential and using the
complexification

g → g × g,
X �→ (X, θ̄(X)),

we get a representation T of U(g) ⊗ U(g) on C∞(GC/U ;V).
Define three spaces of τ -spherical functions by

C∞(G; τ) = {φ ∈ C∞(G;V) | φ(k1xk
−1
2 ) = τ(k1, k2)φ(x), k1, k2 ∈ K, x ∈ G}; (4)

C∞(GC/U ; τ) = {φ ∈ C∞(GC/U ;V) | φ(kx) = τ(k, k̄)φ(x), k ∈ KC, x ∈ GC/U}; (5)
C∞(G/K; τ) = {φ ∈ C∞(G/K;V) | φ(kx) = τ(k, k)φ(x), k ∈ K,x ∈ G/K}. (6)

The spaces Cω(G; τ), Cω(GC/U ; τ) and Cω(G/K; τ) are defined similarly, here the superscript ‘ω’
stands for real analytic functions. Note that both Cω(G; τ) and Cω(GC/U ; τ) are stable under
TU(g)K⊗U(g)K , where U(g)K is as usual the K-fixed vectors in U(g) under the adjoint action.

The following is essentially [Fle80a, Theorem 7.1]. We omit its proof.

Theorem 2.1. We have the following.

(i) The pull backs of pK and vG in the diagram (3) induce canonical isomorphisms of vector spaces:

C∞(G; τ) ∼= C∞(G/K; τ) ∼= C∞(GC/U ; τ).

(ii) The above identifications induce linear isomorphisms

Cω(G; τ) ∼= Cω(G/K; τ) ∼= Cω(GC/U ; τ).

(iii) The identification

Cω(G; τ) ∼= Cω(GC/U ; τ)

respects the actions of U(g)K ⊗ U(g)K .

3. The integral

3.1 The definition

As in § 1, q is a θ-stable parabolic, G′ is the normalizer of q in G,

g′ = Lie(G′) ⊗R C and K ′ = K ∩G′.

It is known that G′ is a connected real reductive group and K ′ is a maximal compact subgroup of it.
The involution θ stabilizes G′ and induces a holomorphic involution of G′

C
, which is also denoted

by θ. Let

θ̄ = θ ◦ ¯ = ¯ ◦ θ
as before. Denote by U ′ the fixed points of θ̄ in G′

C
. Let n be the nilpotent radical of q∩ [g, g]. Then

q = g′ ⊕ n.

Denote by N the connected complex subgroup of GC with Lie algebra n. Denote by

jC : G′
C → GC

the complexification of the embedding j : G′ → G. The Langlands decomposition

GC = NjC(G′
C)U
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enables us to define a real analytic map

Hq : GC/U → G′
C
/U ′

njC(g)U �→ gU ′ (7)

for all n ∈ N and g ∈ G′
C
.

The following conventions will be used freely: if H is a Lie group, c is a complex subspace of a
complex Lie algebra, and H acts on c by certain adjoint action, then δc is the non-unitary character
on H defined by

δc(x) = Det(Ad(x)|c).
If σ is a continuous finite-dimensional representation of a Lie group H, then its differential and its
holomorphic extension to HC are still denoted by σ. Note that

δc(X) = Tr(ad(X)|c), X ∈ Lie(H) ⊗R C. (8)

Define

δ+n (xU ′) = δn(xθ̄(x−1)), xU ′ ∈ G′
C/U

′. (9)

It is not difficult to see that δ+n has positive values everywhere. However, this fact plays no roll in
this paper.

Definition 3.1. (i) If σ is a finite-dimensional continuous representation of K on W , define a
representation σ′ of K ′ on

W ′ = {v ∈W | σ(n ∩ k)v = 0} (10)

by

σ′(k)v = δn̄∩p(k)σ(k)v, k ∈ K ′, v ∈W ′. (11)

Then σ′ is called the representation q-associated to σ.
(ii) If τ is a finite-dimensional continuous representation of K×K on V, define a representation

τ ′ of K ′ ×K ′ on

V′ = {v ∈ V | τ(X,Y )v = 0 for all X ∈ n ∩ k, Y ∈ n̄ ∩ k}. (12)

by

τ ′(k, l)v = δn̄∩p(k)δn∩p(l)τ(k, l)v, k, l ∈ K ′, v ∈ V′. (13)

Then τ ′ is called the representation q × q̄-associated to τ .

Now let τ ′ be the representation q × q̄-associated to τ as in the second part of the definition.
We define C∞(G′

C
/U ′; τ ′) in the same way as that of C∞(GC/U ; τ) in (5). We also use similar

notation for other spaces. Now we have enough preparations to define our integral.

Definition 3.2. For any

φ ∈ C∞(G′
C/U

′; τ ′),
define the integral

Eq(φ : x) =
∫
K
τ(k−1, k−1)(δ+n φ)(Hq(kx)) dk, x ∈ GC/U. (14)

As usual, we use normalized Haar measures on compact groups for integration. Our integral is
very similar to Harish-Chandra’s Eisenstein integral for a real parabolic subgroup. The remainder
of this section is used to establish one of the main results in this paper.

Theorem 3.3. We have Eq(φ) ∈ C∞(GC/U ; τ) for all φ ∈ C∞(G′
C
/U ′; τ ′).
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3.2 An integral formula
In this subsection, we establish an integral formula which is crucial for the proof of Theorem 3.3.
The formula is a stronger version of [KV95, Corollary 11.40]. We formulate it in full generality,
although we only need to apply it to the complex group KC, since the proof of the general case in
no more difficult than that of the special case. The notation of this subsection is not used in other
parts of this paper.

Let G be a real reductive Lie group (which the reader may assume to be connected), and θ
be a Cartan involution on G. Let q0 be a parabolic subalgebra of g0 = Lie(G). We introduce the
following notation:

• K is the maximal compact subgroup of G corresponding to θ;

• g0 = k0 + p0 is the Cartan decomposition corresponding to θ;

• Q is the normalizer of q0 in G;

• L = Q ∩ θ(Q);

• Q = LN is the Levi decomposition;

• q0 = l0 + n0 is the corresponding Levi decomposition at the Lie algebra level;

• l′0 = l0 ∩ p0;

• δ : L → R
× is the homomorphism defined by the absolute value of the determinant of the

adjoint representation of L on n0.

By Langlands decomposition, the map

N × l′0 ×K → G,
(n,X, k) �→ n exp(X)k

(15)

is a real analytic diffeomorphism. We define two maps κ : G→ K and I : G→ L by

κ(nak) = k, I(nak) = a

for all n ∈ N , a ∈ exp(l′0), k ∈ K. If a ∈ G, we define a map κa : K → K by

κa(k) = κ(ka).

Proposition 3.4. If f is a continuous function on K, a ∈ G, then∫
K
f(κa(k)) dk =

∫
K
f(k)δ(I(ka−1)) dk.

The proof of Proposition 3.4 follows from Lemma 3.5–3.8 given in the remainder of this
subsection.

Lemma 3.5. The maps κa and κa
−1

are inverse to each other. Hence, κa is an analytic
diffeomorphism.

Proof. Let k ∈ K and ka = n1s1k1, where n1 ∈ N, s1 ∈ exp(l′0), and k1 ∈ K. Then we have

k1a
−1 = s−1

1 n−1
1 k = (s−1

1 n−1
1 s1)s−1

1 k.

Hence,

κa
−1
κa(k) = κa

−1
(k1) = κ(k1a

−1) = k.

Change a to a−1, we get κaκa
−1

(k) = k.

If a ∈ G, we denote by Ta the right translation of a on Q\G. We give Q\G the uniqueK-invariant
measure with total mass 1.
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Lemma 3.6. If k ∈ K, then the Jacobian of Ta at Qk is

JTa(Qk) = δ(I(ka)).

This should be known. We give a proof for the sake of completeness.

Proof. Let ka = nsκ(ka), where n ∈ N and s = I(ka). We have the following commutative diagram.

Q\G Ta−−−−→ Q\G
Tk−1

� �Tκ(ka)−1

Q\G Tns−−−−→ Q\G
Since Tk−1 and Tκ(ka)−1 preserve the measure,

JTa(Qk) = JTns(Q1).

The right-hand side is the absolute value of the determinant of the tangent map dTns|Q at the
point Q. We have another commutative diagram.

G
Ad(ns)−1−−−−−−→ G� �

Q\G Tns−−−−→ Q\G
By taking the tangent map at the identity, we get the following diagram.

g0

Ad(ns)−1−−−−−−→ g0� �
g0/q0

dTns|Q1−−−−−→ g0/q0

Hence,

JTa(Qk) = JTns(Q1) = |Det(dTns|Q1)|

=
|Det(Ad(ns)−1)|

|Det(Ad(ns)−1 |q0)|
=

1
δ(s−1)

= δ(s).

For any a ∈ G, let Ja be the Jacobian of κa.

Lemma 3.7. The Jacobian Ja is left K ∩Q invariant.

Proof. For any k ∈ K, we use Lk to denote the left translation on K by k. The lemma comes from
the fact that if k ∈ K ∩Q, then the following diagram commutes.

K
κa−−−−→ K

Lk

� �Lk

K
κa−−−−→ K

We omit the easy proof of this fact.

Lemma 3.8. We have Ja(k) = δ(I(ka)) for all k ∈ K.
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Proof. Let π be the map K → Q\G, k �→ Qk. By the above lemma, there is a function J ′
a on Q\G

such that J ′
a ◦ π = Ja. For all continuous function f on Q\G, we have∫

Q\G
f(Ta(x))J ′

a(x) dx =
∫
K
f(Ta(π(k)))J ′

a(π(k)) dk

=
∫
K
f((π(κa(k))))Ja(k) dk (Ta ◦ π = π ◦ κa)

=
∫
K
f(π(k)) dk

=
∫
Q\G

f(x) dx

=
∫
Q\G

f(Ta(x))JTa(x) dx.

Hence, J ′
a = JTa . We conclude the proof by Lemma 3.6.

Proof of Proposition 3.4. We have∫
K
f(κa(k)) dk =

∫
K
f(κa(κa

−1
(k)))Ja−1(k) dk

=
∫
K
f(k)δ(I(ka−1)) dk.

3.3 A proof of Theorem 3.3
We now return to the notation of § 3.1. We apply the results obtained in the last subsection to
the group KC. Let k′0 be the Lie algebra of K ′. Let Nc be the connected subgroup of KC with Lie
algebra n ∩ k. Now the parabolic subgroup is NcK

′
C
. The map (15) in this case is

Nc ×
√−1k′0 ×K → KC,

(n,X, k) �→ n exp(X)k.

Define κ : KC → K, I : KC → K ′
C
, κa : K → K, a ∈ KC, and δ : K ′

C
→ R

× as in the last subsection.

Lemma 3.9. We have

Hq(kax) = (I(κa(k)a−1))−1Hq(κa(k)x)

for all k ∈ K,a ∈ KC and x ∈ GC/U .

Proof. Write ka = n′a′k′, where n′ ∈ Nc, a′ ∈ exp(
√−1k′0), k

′ ∈ K ′. Then

κa(k)a−1 = k′a−1 = a′−1n′−1k = (a′−1n′−1a′)a′−1k.

Therefore,

I(κa(k)a−1) = a′−1.

As Hq is G′
C
-equivariant and N -invariant, we have

(I(κa(k)a−1))−1Hq(κa(k)x) = a′Hq(κa(k)x) = Hq(a′κa(k)x)

= Hq(a′k′x) = Hq(n′−1kax) = Hq(kax).

Define a representation τ |KC of KC on V by

τ |KC(k) = τ(k, k̄),
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and a representation τ |K of K on V by

τ |K(k) = τ(k, k).

Lemma 3.10. We have

(δ+n φ)(kx) = δn∩k(k)δn̄∩k(k̄)τ |KC(k)(δ+n φ)(x)

for all k ∈ K ′
C
, x ∈ G′

C
/U ′, and φ ∈ C∞(G′

C
/U ′; τ ′).

Proof.

δ+n φ(kx) = δ+n (kx)φ(kx)

= δn(k)δn(k̄−1)δ+n (x)τ ′(k, k̄)φ(x) by (9)

= δn(k)δn(k̄−1)δn̄∩p(k)δn∩p(k̄)δ+n (x)τ(k, k̄)φ(x) by (13)
= δn∩k(k)δn̄∩k(k̄)τ |KC(k)(δ+n φ)(x).

We omit the proof of the following elementary lemma.

Lemma 3.11. We have

δ(k−1)δn∩k(k)δn̄∩k(k̄) = 1

for all k ∈ K ′
C
.

Proof of Theorem 3.3. Let a ∈ KC and x ∈ GC/U . Write k′ = κa(k). Then Lemma 3.9 implies

Eq(φ : ax) =
∫
K
τ |K(k−1)(δ+n φ)(Hq(kax)) dk

=
∫
K
τ |K((κa

−1
(k′))−1)(δ+n φ)((I(k′a−1))−1(Hq(k′x))) dk.

Now by using Proposition 3.4, we have

Eq(φ : ax) =
∫
K
δ(I(ka−1))τ |K((κa

−1
(k))−1)(δ+n φ)((I(ka−1))−1Hq(kx)) dk.

Write I ′ = (I(ka−1))−1 and k′′ = (κa
−1

(k))−1 for simplicity. By Lemma 3.10, we have

Eq(φ : ax) =
∫
K
δ(I ′−1)τ |K(k′′)δn∩k(I ′)δn̄∩k(Ī ′)τ |KC(I ′)(δ+n φ)(Hq(kx)) dk

=
∫
K

(δ(I ′−1)δn∩k(I ′)δn̄∩k(Ī ′))τ |KC(k′′I ′)(δ+n φ)(Hq(kx)) dk.

Note that k′′I ′ = ak−1n for some n ∈ Nc, and Nc fix the values of φ under the action τ |KC .
Therefore, Lemma 3.11 implies

Eq(φ : ax) =
∫
K
τ |KC(ak−1)(δ+n φ)(Hq(kx)) dk = τ |KC(a)Eq(φ : x).

4. Differential equations satisfied by the integral
4.1 The differential equations
We recall the generalized Harish-Chandra homomorphism

ξ : U(g)K → U(g′)K
′

from [Vog79, § 3].
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By the Poincaré–Birkhoff–Witt theorem,

U(g) = U(g′) ⊕ (nU(g) + U(g)n̄).

It is known that
U(g)K ⊂ U(g′)K

′ ⊕ (nU(g) ∩ U(g)n̄).

Denote the projection to the first factor by

ξ̃ : U(g)K → U(g′)K
′
.

It is also known that ξ̃ is an algebra homomorphism. Let

ηq : U(g′) → U(g′)

be the algebra homomorphism such that

ηq(X) = X + δn(X) (16)

for all X ∈ g′. Note that
δn(X) = Tr(ad(X)|n),

which is twice the shift in the definition of Harish-Chandra homomorphism. It is easy to see that
ηq maps U(g′)K ′

onto itself. The map ξ is now defined by

ξ = ηq ◦ ξ̃ : U(g)K → U(g′)K
′
.

Recall that there is an anti-automorphism ∨ : U(g) → U(g) which maps X to −X for all
X ∈ g. It preserves both U(g)K and U(g′)K ′

. If A, B are two subalgebras of U(g) which are stable
under ∨, and if η : A → B is any algebra homomorphism, then denote by η∨ : A → B the algebra
homomorphism such that the diagram

A
η−−−−→ B

∨
� �∨

A
η∨−−−−→ B

commutes.
Let V, τ , V′ and τ ′ be as in § 3.1. Recall that we have an action T of U(g) ⊗ U(g) on

C∞(GC/U ;V) and C∞(G;V). Denote by T ′ the analogous action of U(g′)⊗U(g′) on C∞(G′
C
/U ′;V′)

and C∞(G′;V′). Recall that

TU(g)K⊗U(g)K stabilizes C∞(GC/U ; τ),

and, similarly,

T ′
U(g′)K′⊗U(g′)K′ stabilizes C∞(G′

C/U
′; τ ′).

The main result of this section is the following theorem.

Theorem 4.1. For all X ⊗ Y ∈ U(g)K ⊗ U(g)K and φ ∈ C∞(G′
C
/U ′; τ ′),

TX⊗YEq(φ) = Eq(T ′
ξ∨(X)⊗ξ(Y )φ).

4.2 Proof of Theorem 4.1
Note that we also have

U(g)K ⊂ U(g′)K
′ ⊕ (n̄U(g) ∩ U(g)n).

The projection to the first factor is just the algebra homomorphism

ξ̃∨ : U(g)K → U(g′)K
′
.
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Lemma 4.2. Let X ⊗ Y ∈ U(g)K ⊗ U(g)K and f ∈ C∞(GC/U ;V). If f is N -invariant, then

TX⊗Y f = Tξ̃∨(X)⊗ξ̃(Y )f.

Proof. Let X = X ′ +X ′′, Y = Y ′ + Y ′′, where X ′ = ξ̃∨(X), X ′′ ∈ U(g)n, Y ′ = ξ̃(Y ), Y ′′ ∈ U(g)n̄.
Note that under the complexification

1 × θ̄ : g → g × g,
v �→ (v, θ̄(v)),

the Lie algebra of N has a complexification n×n̄. Therefore, theN invariance of f implies Tn×n̄f = 0,
i.e. Tn⊗1+1⊗n̄f = 0 . So we have

TX⊗Y f = TX′⊗Y ′f = Tξ̃∨(X)⊗ξ̃(Y )f.

Lemma 4.3. Let X ⊗ Y ∈ U(g)K ⊗ U(g)K and φ ∈ C∞(G′
C
/U ′;V′). Then

T ′
ξ̃∨(X)⊗ξ̃(Y )

(δ+n φ) = δ+n T
′
ξ∨(X)⊗ξ(Y )(φ).

Proof. Let
ηq̄ : U(g′) → U(g′)

be the algebra homomorphism such that ηq̄(X) = X + δn̄(X) for all X ∈ g′. It is easy to see that
ηq̄ = ηq

∨ and, hence,
ξ∨ = (ηq ◦ ξ̃)∨ = ηq̄ ◦ ξ̃∨.

Define an algebra homomorphism

η0 : U(g′ × g′) = U(g′) ⊗ U(g′) → U(g′ × g′) = U(g′) ⊗ U(g′),
X ′ ⊗ Y ′ �→ ηq̄(X ′) ⊗ ηq(Y ′).

We only need to show that
T ′
Z(δ+n φ) = δ+n T

′
η0(Z)(φ)

for all Z ∈ U(g′ × g′). As U(g′ × g′) is generated by g′ × g′, it is sufficient to show that the above
equality holds for Z ∈ g′ × g′. Now assume Z = (X ′, Y ′) ∈ g′ × g′. Then T ′

Z is an action defined by
a vector field on G′

C
/U ′. Hence,

T ′
Z(δ+n φ) = T ′

Z(δ+n )φ+ δ+n T
′
Z(φ).

We easily find that
T ′
Z(δ+n ) = (δn̄(X ′) + δn(Y ′))δ+n .

Therefore,

T ′
Z(δ+n φ) = T ′

Z(δ+n )φ+ δ+n T
′
Z(φ)

= δ+n ((δn̄(X ′) + δn(Y ′))φ+ T ′
Zφ)

= δ+n T
′
η0(Z)(φ).

Proof of Theorem 4.1. Denote by Tk : GC/U → GC/U the translation by k for all k ∈ K.
Let εV be the embedding of V′ into V. Write

f = εV ◦ (δ+n φ) ◦Hq ∈ C∞(GC/U ;V).

Then

Eq(φ) =
∫
K
τ |K(k−1) ◦ f ◦ Tk dk.

Note that
TX⊗Y : C∞(GC/U ;V) → C∞(GC/U ;V)
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is a differential operator. Therefore, we have

TX⊗YEq(φ) =
∫
K
TX⊗Y (τ |K(k−1) ◦ f ◦ Tk) dk

=
∫
K
τ |K(k−1) ◦ TX⊗Y (f ◦ Tk) dk.

Since X ⊗ Y ∈ U(g)K ⊗ U(g)K , we have

TX⊗Y (f ◦ Tk) = TX⊗Y (f) ◦ Tk.
Hence,

TX⊗YEq(φ) =
∫
K
τ |K(k−1) ◦ TX⊗Y (f) ◦ Tk dk.

Note that the map
C∞(G′

C
/U ′;V′) → C∞(GC/U ;V),

ψ �→ εV ◦ ψ ◦Hq
is G′

C
-equivariant. Therefore,

TX′⊗Y ′(εV ◦ ψ ◦Hq) = εV ◦ T ′
X′⊗Y ′ψ ◦Hq (17)

for all X ′ ⊗ Y ′ ∈ U(g′) ⊗ U(g′), ψ ∈ C∞(G′
C
/U ′;V′).

Now we have

TX⊗Y (f) = Tξ̃∨(X)⊗ξ̃(Y )f by Lemma 4.2

= Tξ̃∨(X)⊗ξ̃(Y )(εV ◦ (δ+n φ) ◦Hq)
= εV ◦ (T ′

ξ̃∨(X)⊗ξ̃(Y )
(δ+n φ)) ◦Hq by (17)

= εV ◦ (δ+n T
′
ξ∨(X)⊗ξ(Y )φ) ◦Hq by Lemma 4.3.

In conclusion,

TX⊗YEq(φ) =
∫
K
τ |K(k−1) ◦ TX⊗Y (f) ◦ Tk dk

=
∫
K
τ |K(k−1) ◦ εV ◦ (δ+n T

′
ξ∨(X)⊗ξ(Y )φ) ◦Hq ◦ Tk dk

= Eq(T ′
ξ∨(X)⊗ξ(Y )φ).

5. Cohomological inductions and bottom layers

We call a vector space a weak (U(g)K ,K)-module if it is a locally finiteK-module as well as a U(g)K -
module such that the K-action and the U(g)K-action commute. Note that the α-isotypic component
M(α) is a weak (U(g)K ,K)-module for every (g,K)-module M and every K-type α. In this section,
we determine the weak (U(g)K ,K)-module structure of a bottom layer of a cohomologically induced
representation.

5.1 Zuckerman functors

Let us recall cohomological inductions and bottom layer maps from [KV95]. We continue to use the
notation of § 3.1.
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Let Γ0 be the Zuckerman functor from the category of (g,K ′)-modules to the category of
(g,K)-modules. It is given by

Γ0(M) = sum of all finite-dimensional k invariant subspaces of M
for which the actions of k globalize to K.

This is a left exact covariant functor. Denote by Γi its ith right derived functor, i = 0, 1, 2, . . . .
Let Γ0

K be the Zuckerman functor from the category of (k,K ′)-modules to the category of
(k,K)-modules. Denote by ΓiK its ith right derived functor, i = 0, 1, 2, . . . .

Let prog,K
′

q,K ′ be the exact covariant functor from the category of (q,K ′)-modules to the category
of (g,K ′)-modules given by

prog,K
′

q,K ′(M) = HomU(q)(U(g),M)K ′ ,

where the U(g)-action on HomU(q)(U(g),M) is given by

(Xφ)(u) = φ(uX), X, u ∈ U(g), φ ∈ HomU(q)(U(g),M),

the K ′-action on HomU(q)(U(g),M) is given by

(kφ)(u) = k(φ(Adk−1 u)), k ∈ K ′, u ∈ U(g), φ ∈ HomU(q)(U(g),M),

and

HomU(q)(U(g),M)K ′ is the K ′-finite vectors of HomU(g′)(U(g),M).

Let prok,K
′

q∩k,K ′ be the analogous exact covariant functor from the category of (q∩k,K ′)-modules to the
category of (k,K ′)-modules. Let F denote the forgetful functors in various contexts.
For example, Fq,K ′

g′,K ′ is the forgetful functor from the category of (g′,K ′)-modules to the category of
(q,K ′)-modules via trivial n-action.

Let M ′ be a (g′,K ′)-module and define another (g′,K ′)-module

M ′# = M ′ ⊗ ∧topn.

Define

Ri(M ′) = (Γi ◦ prog,K
′

q,K ′ ◦Fq,K
′

g′,K ′)(M ′#).

Then Ri is the cohomological induction functor from the category of (g′,K ′)-modules to the category
of (g,K)-modules.

Define

Ri
◦(M

′) = (ΓiK ◦ F k,K ′
g,K ′ ◦ prog,K

′
q,K ′ ◦Fq,K ′

g′,K ′)(M ′#).

Note that

U(g)K acts on (F k,K ′
g,K ′ ◦ prog,K

′
q,K ′ ◦Fq,K

′
g′,K ′)(M ′#)

by (k,K ′)-module endomorphisms. By using the functor ΓiK , we get a U(g)K -action on Ri◦(M ′) by
(k,K)-module endomorphisms.

Note that

k′ = Lie(K ′) ⊗R C = g′ ∩ k and q ∩ k = k′ ⊕ (n ∩ k).

Define

Ri
K(M ′) = (ΓiK ◦ prok,K

′
q∩k,K ′ ◦Fq∩k,K

′
g′,K ′ )(M ′#),

where

Fq∩k,K ′
g′,K ′ = Fq∩k,K ′

k′,K ′ ◦ F k′,K ′
g′,K ′ ,
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and Fq∩k,K ′
k′,K ′ is defined via the trivial n ∩ k-action. We have a U(g′)K ′

-action on Fq∩k,K ′
g′,K ′ (M ′#)

by (q ∩ k,K ′)-module endomorphisms. By applying the functor prok,K
′

q∩k,K ′, we get a U(g′)K ′
-action

on (prok,K
′

q∩k,K ′ ◦Fq∩k,K ′
g′,K ′ )(M ′#) by (k,K ′)-module endomorphisms. Then, by applying ΓiK , we get a

U(g′)K ′
-action on Ri

K(M ′) by (k,K)-module endomorphisms.

Lemma 5.1. For any (g′,K ′)-module M ′, Ri(M ′) is canonically isomorphic to Ri◦(M ′) as a weak
(U(g)K ,K)-module.

Proof. Write M ′′ = (prog,K
′

q,K ′ ◦Fq,K ′
g′,K ′)(M ′#) and let

0 →M ′′ → J0 → J1 → J2 → · · ·
be an injective resolution of M ′′ in the category of (g,K ′)-modules. By [KV95, Proposition 2.57],
the exact functor F k,K ′

g,K ′ sends injectives to injectives. Therefore,

0 → F k,K ′
g,K ′(M ′′) → F k,K ′

g,K ′(J0) → F k,K ′
g,K ′(J1) → F k,K ′

g,K ′(J2) → · · ·

is an injective resolution of F k,K ′
g,K ′(M ′′) in the category of (k,K ′)-modules.

Note that

0 → Γ0(J0) → Γ0(J1) → Γ0(J2) → · · ·
and

0 → Γ0
K(F k,K ′

g,K ′(J0)) → Γ0
K(F k,K ′

g,K ′(J1)) → Γ0
K(F k,K ′

g,K ′(J2)) → · · ·
are exactly the same as sequences of weak (U(g)K ,K)-modules. Taking the ith cohomology of both
sequences, we get Ri(M ′) = Ri◦(M ′) as a weak (U(g)K ,K)-module.

5.2 Bottom layer maps

Let M ′ be a (g′,K ′)-module. Define a (k,K ′)-module homomorphism

βM ′ : (F k,K ′
g,K ′ ◦ prog,K

′
q,K ′ ◦Fq,K ′

g′,K ′)(M ′#) → (prok,K
′

q∩k,K ′ ◦Fq∩k,K ′
g′,K ′ )(M ′#)

by

(βM ′(φ))(r) = φ(r), φ ∈ (F k,K ′
g,K ′ ◦ prog,K

′
q,K ′ ◦Fq,K

′
g′,K ′)(M ′#), r ∈ U(k).

Lemma 5.2. For all X ∈ U(g)K , the following diagram commutes.

(F k,K ′
g,K ′ ◦ prog,K

′
q,K ′ ◦Fq,K ′

g′,K ′)(M ′#)
βM′−−−−→ (prok,K

′
q∩k,K ′ ◦Fq∩k,K ′

g′,K ′ )(M ′#)

X

� ξ̃(X)

�
(F k,K ′
g,K ′ ◦ prog,K

′
q,K ′ ◦Fq,K

′
g′,K ′)(M ′#)

βM′−−−−→ (prok,K
′

q∩k,K ′ ◦Fq∩k,K
′

g′,K ′ )(M ′#)

Proof. Let

X = aX1 +X2,

where a ∈ n, X1 ∈ U(g), and

X2 = ξ̃(X) ∈ U(g′)K
′
.

Let

φ ∈ (F k,K ′
g,K ′ ◦ prog,K

′
q,K ′ ◦Fq,K ′

g′,K ′)(M ′#) ⊂ HomU(q)(U(g),M ′#),
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and r ∈ U(k). We have

(βM ′(Xφ))(r) = (Xφ)(r) = φ(rX) = φ(Xr)
= φ(aX1r) + φ(X2r)
= a(φ(X1)) +X2(φ(r))
= X2(βM ′(φ)(r))

= ξ̃(X)(βM ′ (φ))(r).

Therefore,
βM ′(Xφ) = ξ̃(X)(βM ′ (φ)).

By applying the functor ΓiK to βM ′ , we define the bottom layer map

BM ′ = ΓiK(βM ′) : Ri
◦(M

′) → Ri
K(M ′)

which is a (k,K)-module homomorphism. Applying ΓiK to the commutative diagram of the above
lemma, we obtain the following.

Proposition 5.3. For all X ∈ U(g)K , the following diagram commutes.

Ri◦(M ′)
BM′−−−−→ Ri

K(M ′)

X

� ξ̃(X)

�
Ri◦(M ′)

BM′−−−−→ Ri
K(M ′)

5.3 Bottom layers
From now on we fix a K-type α. We also fix an irreducible representation σ0 of K of type α
on a vector space Wα. Let σ′0 be the representation of K ′ on Wα′ which is q-associated to σ0

(Definition 3.1). The representation σ′0 is also irreducible by the highest weight theory. We call the
K ′-type α′ of σ′0 the K ′-type q-associated to α.

Set S = dim(n ∩ k) as usual. The most interesting case of cohomological induction is that when
i = S. Write

M = RS(M ′) and L = HomK ′(Wα′ ,M ′).
Then L is a U(g′)K ′

-module by the action on M ′. We make L a U(g)K -module by the formula

Xv = ξ(X)v, X ∈ U(g)K , v ∈ L. (18)

Now L⊗Wα is a weak (U(g)K ,K)-module by the action of U(g)K on the first factor, and the action
of K on the second factor.

Definition 5.4. Let M ′ be a (g′,K ′)-module, M = RS(M ′). The K-type α is said to be in the
bottom layer of M if the map induced by BM ′ ,

BM ′(α) : M(α) = RS
◦ (M ′)(α) → RS

K(M ′)(α)

is bijective and nonzero.

We know that under a weak condition on M ′, α is in the bottom layer of M if and only if
M ′(α′) �= 0. The condition holds when M ′ has an infinitesimal character [KV95, Theorem 5.80,
Corollary 5.72]. The main result of this section is the following theorem.

Theorem 5.5. With the notation as above, if α is in the bottom layer ofM , thenM(α) is isomorphic
to L⊗Wα as a weak (U(g)K ,K)-module.
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Proof. We easily check that the diagram

M ′# M ′ ⊗∧topn

X

� ηq(X)⊗1

�
M ′# M ′ ⊗∧topn

commutes for every X ∈ U(g′), where ηq is defined in (16). This implies the diagram

HomK ′(Wα′ ⊗∧topn,M ′#) HomK ′(Wα′ ⊗ ∧topn,M ′ ⊗ ∧topn)

X

� ηq(X)⊗1

�
HomK ′(Wα′ ⊗∧topn,M ′#) HomK ′(Wα′ ⊗ ∧topn,M ′ ⊗ ∧topn)

commutes for every X ∈ U(g′)K ′
. It is obvious that the diagram

HomK ′(Wα′ ⊗ ∧topn,M ′ ⊗ ∧topn) HomK ′(Wα′ ,M ′)

ηq(X)⊗1

� ηq(X)

�
HomK ′(Wα′ ⊗ ∧topn,M ′ ⊗ ∧topn) HomK ′(Wα′ ,M ′)

commutes for every X ∈ U(g′)K ′
. By combining these two diagrams, and replacing X by ξ̃(X),

we get a commutative diagram

HomK ′(Wα′ ⊗ ∧topn,M ′#) HomK ′(Wα′ ,M ′)

ξ̃(X)

� ξ(X)

�
HomK ′(Wα′ ⊗ ∧topn,M ′#) HomK ′(Wα′ ,M ′)

for every X ∈ U(g)K .
Now (11) implies

H0(n ∩ k,Wα) ⊗ ∧top(n ∩ k) ∼= Wα′ ⊗ ∧topn (19)
as a K ′-module. Theorem 4.155 of [KV95] states that there is a natural isomorphism

HomK(Wα,RS
K(M ′)) ∼= HomK ′(H0(n ∩ k,Wα) ⊗ ∧top(n ∩ k),M ′#). (20)

The isomorphism (19) and the naturalness of (20) imply that we actually have a U(g′)K ′
-module

isomorphism
HomK(Wα,RS

K(M ′)) ∼= HomK ′(Wα′ ⊗ ∧topn,M ′#). (21)

Lemma 5.1 and Proposition 5.3 give a commutative diagram

HomK(Wα,RS(M ′)) −−−−→ HomK(Wα,RS
K(M ′))

X

� ξ̃(X)

�
HomK(Wα,RS(M ′)) −−−−→ HomK(Wα,RS

K(M ′))

for every X ∈ U(g)K , where each row is the map induced by BM ′ , which is an isomorphism as α is
in the bottom layer. We put the last two commutative diagrams and the isomorphism (21) together,
and obtain a commutative diagram

HomK(Wα,RS(M ′)) −−−−→ L = HomK ′(Wα′ ,M ′)

X

� ξ(X)

�
HomK(Wα,RS(M ′)) −−−−→ L = HomK ′(Wα′ ,M ′)

for every X ∈ U(g)K , with bijective horizontal maps. This finishes the proof.
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6. Matrix coefficients of cohomologically induced representations

In this section, we use the results of the previous sections to find integral representations of matrix
coefficients of bottom layers of cohomologically induced representations.

6.1 Matrix coefficient of a K-type
Let α be a K-type as before. Assume that M is a general finitely generated admissible (g,K)-
module, with the actions π of U(g) and K on it. Write W = M(α). Then W is a finite-dimensional
weak (U(g)K ,K)-module. We easily check that the function φM,α ∈ Cω(G; EndC(W )) defined in
the introduction satisfies


(i) φM,α(1) = identity map of W ;

(ii) φM,α(kxl) = π(k) ◦ φM,α(x) ◦ π(l), x ∈ G, k, l ∈ K;
(iii) TX⊗Y φM,α(x) = π(X∨) ◦ φM,α(x) ◦ π(Y ), x ∈ G, X ⊗ Y ∈ U(g)K ⊗ U(g)K .

(22)

These conditions are generalizations of those of (1) for elementary spherical functions.

Proposition 6.1. Let W be a weak (U(g)K ,K)-module which is isomorphic to M(α) for some
finitely generated admissible (g,K)-module M . Then there is a unique function in Cω(G; EndC(W ))
which satisfies the three conditions of (22).

The existence is clear. We omit the standard proof of uniqueness (as indicated in the proof of
[Fle80a, Lemma 7.6]). Write φW for this unique function. Of course,

φM(α) = φM,α,

and the diagram

G
φW ��

φM(α) ������������� EndC(W )

��
EndC(M(α))

commutes, where the vertical arrow is the linear isomorphism which is induced by an arbitrary
(U(g)K ,K)-isomorphism of W and M(α). Note that if M is irreducible, then M(α) is irreducible
as a weak (U(g)K ,K)-module, and the vertical arrow is uniquely determined.

Write ψW , ψM,α ∈ Cω(GC/U ; EndC(W )) for the functions corresponding to φW and φM,α,
respectively, in Theorem 2.1. The function ψW is characterized by


(i) ψW (1U) = identity map of W ;

(ii) φW (kx) = σ(k) ◦ φM,α(x) ◦ σ(k̄−1), x ∈ GC/U, k ∈ KC;
(iii) TX⊗Y φW (x) = σ(X∨) ◦ φW (x) ◦ σ(Y ), x ∈ GC/U, X ⊗ Y ∈ U(g)K ⊗ U(g)K ;

(23)

where we write σ for the actions of U(g)K and KC on W . Similarly, we have

ψM(α) = ψM,α,

and the diagram

GC/U
ψW ��

ψM(α) �������������
EndC(W )

��
EndC(M(α))

commutes.
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6.2 Matrix coefficient of a bottom layer
Let us return to the situation of § 5.3. Assume that M ′ is admissible, then M = RS(M ′) is also
admissible. Assume that α is in the bottom layer of M . Write

W ′ = M ′(α′) ∼= L⊗Wα′

as weak (U(g′)K ′
,K ′)-modules. Set

W = L⊗Wα

and view it as a weak (U(g)K ,K)-module. Theorem 5.5 states that W ∼= M(α) as weak (U(g)K ,K)-
modules. Denote by σ the actions of U(g)K and K on W and by σ′ the actions of U(g′)K ′

and K ′

on W ′.
Define a representation τ of K ×K on EndC(W ) by

τ(k, l)(f) = σ(k) ◦ f ◦ σ(l−1), k, l ∈ K, f ∈ EndC(W ),

and a representation τ ′ of K ′ ×K ′ on EndC(W ′) by

τ ′(k, l)(f) = σ′(k) ◦ f ◦ σ′(l−1), k, l ∈ K ′, f ∈ EndC(W ′).

We have a decomposition

W = W ′ ⊕ σ(n̄ ∩ k)W.

Therefore, we may view an element of EndC(W ′) as an element of EndC(W ) which vanishes on
σ(n̄ ∩ k)W . Denote by

jq : EndC(W ′) → EndC(W )

the corresponding embedding. A routine verification of Definition 3.1 gives the following lemma.

Lemma 6.2. An isomorphism is induced by jq from τ ′ to the representation which is q× q̄-associated
to τ .

The second condition of (23) for W ′ states that

ψW ′ ∈ Cω(G′
C/U

′; τ ′).

Therefore, the above lemma enables us to define the integral Eq(jq ◦ ψW ′). Write

E =
deg(α)
deg(α′)

Eq(jq ◦ ψW ′).

An easy calculation shows that the function E satisfies the first condition of (23). Theorem 3.3
states that E satisfies the second condition of (23). It is a consequence of Theorem 4.1 and the
U(g)K -action on W of (18) that E satisfies the third condition of (23). We leave the routine details
to the reader. We finally get the main theorem of this paper by Proposition 6.1, as follows.

Theorem 6.3. We have

ψW =
deg(α)
deg(α′)

Eq(jq ◦ ψW ′). (24)

6.3 Two examples
The first example we discuss is the case when dim(M ′) = 1, i.e. Aq(λ) modules. Let

λ : G′ → C
×

be a continuous character, unitary or not. Still denote by λ its holomorphic extension to G′
C

and
its differential. Recall that Aq(λ) is just the cohomologically induced module RS(λ).
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Fix a maximal torus Tmax of K ′ with complexified Lie algebra t. Then Tmax is also a maximal
torus of K. Let

Λ = λ|t + δn∩p|t.
Assume that Λ is dominant with respect to n ∩ k, and α is the K-type with an extremal weight Λ.
Then λ|K ′ is the K ′-type q-associated to α, α is the unique K-type which is in the bottom layer of
Aq(λ), and α has multiplicity 1 in Aq(λ).

Let σ0 be an irreducible unitary representation ofK on Wα, of type α, as before. Fix a unit vector
v0 in Wα, of weight Λ. Let PΛ ∈ EndC(Wα) be the orthogonal projection onto Cv0. Define a map

H̃q : G→ G′
C,

x �→ yθ(y−1), (25)

where y ∈ G′
C

is an element so that Hq(xU) = yU ′. Fix an identification of Aq(λ)(α) and Wα as
K-modules. Now Theorem 6.3 easily implies

φAq(λ),α(kx2) = deg(α)
∫
K

(δnλ)(H̃q(lx))σ0(kl−1) ◦ PΛ ◦ σ0(l) dl (26)

for all k ∈ K, x ∈ exp(p0). Write

φ̃q,λ(x) =
1

deg(α)
Tr(φAq(λ),α(x)), x ∈ G.

It is a direct consequence of (26) that

φ̃q,λ(kx2) =
∫
K
〈σ0(lkl−1)v0, v0〉(δnλ)(H̃q(lx)) dl, k ∈ K,x ∈ exp(p0).

An example of the above formula confirms Li’s assumption in [Li97, Theorem 4.3], which enables
us to get more information on Gross’ conjecture on the discrete spectrum of (G2, PGSp6).

The second example we will discuss is the lowest weight modules. Assume that g is simple, G is
of Hermitian type and

p = p+ ⊕ p−,
where both p+ and p− are K invariant abelian subspaces of p, and

p+ = p−.

Assume
q = k ⊕ p+.

Fix an irreducible continuous unitary representation σ0 of K on Wα, of type α, as before. Define a
(g,K)-module

M = U(g) ⊗U(q̄) Wα,

where we view Wα as a q̄-module via the trivial p−-action. The U(g)-action on M is defined via left
multiplication, and the K-action on M is defined via the tensor product. It is clear that

M(α) = Wα.

Note that M is contragredient to a certain cohomologically induced module, with α the unique
K-type in the bottom layer. By Theorem 6.3, or just check the three conditions of (23), we have

φM,α(kx2) =
∫
K
σ0(kl−1H̃q(lx)l) dl, k ∈ K,x ∈ exp(p0),

where
H̃q : G→ KC = G′

C

is defined in (25). This formula looks prettier than that given by Li and Wallach in [Li90].
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