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THE GENERALIZED DIVISOR PROBLEM AND

THE RIEMANN HYPOTHESIS

HIDEKI NAKAYA

Introduction

Let dz(n) be a multiplicative function defined by

where s = σ + it, z is a complex number, and ζ(s) is the Riemann zeta
function. Here ζ*(s) = exp(εlogζ(s)) and let logζ(s) take real values for
real s > 1. We note that if z is a natural number dz(n) coincides with
the divisor function appearing in the Dirichlet-Piltz divisor problem, and
d_x(n) with the Mδbious function.

The generalized divisor problem is concerned with finding an asymp-
totic formula for ^n^xdg(n), which was observed for real z > 0 by A.
Kienast [6] and K. Iseki [4] independently. A. Selberg [8] considered for
all complex z, his result being

(1) D,(x) = Σ d.(n) = χQ°Sχy^_ + O(x(log x)*-2)
n<x 1 (Z)

uniformly for \z\ < A, x > 2, where A is any fixed positive number.
Next, let πk(x) be the number of integers < x which are products of

k distinct primes. For k = 1, πk(x) reduces to π(x), the number of primes
not exceeding x. C. F. Gauss stated empirically that π2(x)~ x(loglog x)/log x,
and, by using the prime number theorem, E. Landau proved that πk(x)~~>
x(loglog;c)k~1/(& — l)!logx. Selberg considered Dz(x) not only for its
own sake but also with an intension to derive

(2) nk(x) =nk(x) +
logx

uniformly for 1 < k < A log log x, where Q(x) is oplynomial of degree
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k-1.

In this paper we shall consider the connections between the asymp-
totic formulas of Dz(x), πk(x) and the location of zeros of the Riemann
zeta function, thereby establishing some necessary and sufficient conditions
for the truth of the Riemann hypothesis.

The main term of (1) and (2) is, however, inconvenient for our aim
so that we introduce the following integrals as the main terms of D2(x)
and πk(x) respectively:

< 8 >— d s= 4^ ί
2πi JL

= ̂  f ί C φ (i + 4)(i - Λ4
ps

where Lε is, for every ε and any r (ε > 0, r > 0, ε + r < 1/2), the path
which begins at 1/2 + ε, moves to 1 — r along the real axis, encircle the
point 1 with radius r in the counterclockwise direction, and returns to
1/2 + ε along the real axis. The path L is Lo.

The error terms are defined by

Δ2(x) = D.(x) - Φ.(x),

R*,*(x) = π*(x) ~ Fk>,(x),

Let θ = sup{σ : ζ{σ + it) = 0}.

Then the following Theorems 1 and 2 follow from more general results

proved in Sections 1 and 2 below.

THEOREM 1. We have

Δz(x) « x exp(- c(log x)3'5(log log z)-1'5)

uniformly for \z\ < A, x > 3.

Further we have

Δ£x) <xΘ + ε

uniformly for \z\ < A, x > 1.

Conversely, if Δz(x) < x8+ε for some zeC — Q+, where Q+ denotes the

set of all non negative rational numbers, then, ζ(s) has no zeros for σ > Ξ.

Remark. 1. If we define az by

az = mΐ{a : Δz(x) < xa)

as in the Dirichlet-Piltz divisor problem, it is well known that the Lindelδf
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hypothesis is equivalent to az < 1/2 for all natural number z. Theorem 1

however in this respect shows that az < 1/2 for all complex z under the

Riemann hypothesis. Conversely, the Riemann hypothesis follows from

az < 1/2 for some ze C — Q+.

2. R. D. Dixon [3] gives an asymptotic expansion of Φz (x) in the form

ΦZ(X) = χ ( i o g x y - > § ^
m=o (log x)mΓ(z — m)

uniformly for \z\ < A. Here N is any fixed integer > 1 and Bm(z) are

regular functions of z, especially B0(z) = 1.

3. R. Balasubramanian and K. Ramachandra [1] have observed an

asymptotic formula for Σnd(n)<x1. by a method similar to that of Selberg

[8] or H. Delange [2].

THEOREM 2. We have

RkJx) « x e x p ( - cαogx^loglogx)- 1/ 5)

uniformly for k>l, x>3 with some constant c.

Further we have

#*,.(*) « *Θ+ε

uniformly for k>l, x > 1.

Conversely, if Rk>ε(x) < xΞ + ε for some k > 1, ζ(s) has no zeros for σ > Ξ.

Remark. 1. If we define rk by

rk = inf inf{r : Rk,ε(x) < xr]
ε

Theorem 2 shows that rk = Θ for every k > 1. That Θ = 1/2 is equivalent

to the truth of the Riemann hypothesis.

2. H. Delange [2] gives an asymptotic expansion of Fk,ε{x) in the

form

F (x) = _*L_ ψ Qm(log log x) ,
fc'εW l o g x ^ (logx)m(logx)m \ (logx)N+i

for every k !> 1, where N is any fixed integer > 1 and Qm(x) are poly-

nomials of degree not exceeding k — 1.

3. Similar results hold for ωk(x) and Ωk(x). Here ωk(x) (Qk(x)) denotes

the number of integers < x which have k distinct prime factors, (which

have k prime factors, allowing multiplicity.)
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§ 1. The generalized divisor problem

Actually we prove a more general statement than Theorem 1 and

Theorem 2.

Suppose f(s, z) = XXi bz(ή)n~s is absolutely convergent for σ>i

and that f(s, 0) = 1. We define the multiplicative function az(n) is, as in

Selberg [8], by ζz(s)f(s, z) = Σζ^a^rijn'8 for σ > 1. Non negative number

ε0 is 0 or ε according as lims^1/2/(s, z) < oo or not, where ε is arbitrary

small positive number.

LEMMA 1.1. We have

A,(x) = Σ a,(n) = -±r- f ζ2(s)/(s, ^ . ώ

( - c(logx)3/5(loglogx)-1/5))

uniformly for \z\<A, x>3.

Further, if we put ΦZy£Q{x) = {2πiYι ί ζz(s)f(s, z)s~1xs dx, then ΦZ,£Q(X)
J LεQ

has the following asymptotic expansion

m=o (log x)mΓ(z — m)

uniformly for \z\ < A. Here N is any fixed integer > 1, Bm(z) are regular

functions of z to be defined in the proof, especially BQ(z) = /(I, z).

Proof. The proof goes on the similar lines as those of H. Delange [2],

using the zero free region due to Vinogradov-Korobov.

We start from the expression

Γ Az(u)du = limΓ Az(u)du lim Γ ζ ( s ) / ( s , z ) ^ d s .
Jo r-oo 2πi J2-iτ s(s + 1)

By Cauchy integral theorem, the path of integration can be deformed to

Σ L i ^ ί which are defined as follows:

U is the segment [2 - ίT, 1 - η(— T) - ίT],

L2 is the curve s = I — η(t) + it (— T < t < — ί0) and two segments

[57 - i*o, ^ - i(l - 3?)tan<5] + [̂  - i(l - ^)tanδ, 1/2 + ε0 - £(1/2 - εo)tan<5],

L3 is the segment [1/2 + ε0 - £(1/2 - εo)tan<5, 1 + re~Hπ-δ)l

Lk is the arc s = 1 + reiθ ( - (TΓ - δ) < θ < π - δ),

L5 is the segment [1 + re i (π"δ), 1/2 + ε0 + £(1/2 - eo)tanδ],

L6 is two segments [1/2 + ε0 + i(l/2 — εo)tanβ, η + i(l — ^)tan δ] +
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[η + i ( l - 9)tanδ, η + ίt0] and the curve s = 1 - η{t) + it (to<t< T),

L7 is the segment [1 - η(T) + ίT, 2 + iT\.

Here η(t) = c(log|φ-2 / 3(loglog|φ-1 / 3, η = 1 - 3?(*0) and tQ is sufficiently

large number to make 1/2 < 37 < 1. Any positive numbers e, r, and δ are

satisfying 1/2 + ε < η < 1 - r, 0 < (1 - 9)tan δ < t0.

The contributions from the integral along Lx + L2 + L6 + L7 are seen

to give the error term, while the integral along Lz + L±-\- L5 gives the

main term since that path becomes Lεo allowing δ \, 0.

Regular functions Bm(z) are defined as Taylor coefficients

{(β - ϊ)ζ(s)Yf(s, 2)8-' = i f Bm(z)(s - IT + RΛs, z) •
m = 0

LEMMA 1.2. We have

uniformly for Θ < σ0 < σ < 1, \t\ > 2.

Proof. This is only a slight generalization of Theorem 14.2 in Titch-

marsh [9].

We define the error term Jz,εo(x) = Ag(x) — Φ2fεo(x), and let

az = inf mf{a : dz,εQ(x) < xa}.
εo

THEOREM 1.3. We have

az < Θ

for any zeC.

Proof. We have az(n) <tnί + ε. Hence, by Lemma 3.12 in Titchmarsh [9],

Az(x) has the expression,

A.(x) = - J ^ ζ2(s)/(5, ̂ )^~d S + O( * —
2πι J*-iτ s \ T

uniformly for T > 1.

Let Ύ] be a constant such that θ < η < 1, and e, r and <5 are any

positive numbers such that 1/2 + ε < 37 < 1 — r, 0 < (1 — ̂ )tan δ < 1. Then

the path of integration can be replaced by Σ L i ^ which are defined as

follows:

Lx is the segment [2 — iT, η — iT],
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L2 consists of two segments [η — ίT, η — ί(l —

+ [ΎJ - ί(l - 5?)tan<5, 1/2 + ε0 - £(1/2 - εo)tan<5],

L3, L4 and L5 are the same as in Lemma 1.1,

L6 consists of two segments

[1/2 + ε0 + £(1/2 - εo)tan<5, η + i(l - 37)tan 5]

+ fe+ £(1 - 9 ) t a n i , ? + £T],

L7 is the segment fy + £T, 2 + ιT].

As in Lemma 1.1, L6 + Li + L5 becomes Lεo by allowing as ̂  | 0.

From Lemma 1.2, we have

ζ'(8)f(8,z)<\t\

for s e Lu L2, L6, L7. Therefore,

ί + ί <{2Tε4rd°<Tε~lχ2>

[ + f < Γ t'-^—~dt + P x'dσ < Tεx' .
JL2 Jlβ Jθ ί+1 Jl/2 + ε0

Hence

A,(x) = Φz,εo(x) + O(Γ-V)

By taking T = x2, η = Θ + ε we have

This proves the theorem.

THEOREM 1.4. We have

Θ < az

for any ze C — Q+.

Proof. First, we suppose that σ > 2. Then,

Γ A f M rfx = s Γ ( l f ζ^(ω)/(ω, z)*Ldω)-±-dx
Jί x s + 1 Ji\2π ί Ji«0 ω / Xs*1

= -Λ- ί Cz(ω)/(α>, 2)α>-'( Γ Λ —'dx)dω
2πί Ji«o \Ji /

= - / ^ f C(ω)f(ω, z){ω(s - ω)γidω

= -±r f ζ*(ω)f(ω, z)ω-ίdω + - L - ί ζ>(ω)f(ω, z)(s - ωj-'dω .
Iπi JL'o 2πi J £«0
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The interchange of the order of integration is justified because of

the absolute convergence. Hence

ζ'(8)f(8, Z) = 8 Γ - ^

( 3 )
^ f ζz(ω)f(ω,z)ω-1dω

2πi

+ _A_ f ζ (α,)/(α>, *)(* - ω)-ιdω + β Γ AiM-dx .
2τri J i o Jo χ s + 1

We put

L σ Q = {s : σQ < σ} - {s :\s - l\ < r} - {s : t = 0, σ < 1}

for 1/2 < (To < 2. Then on the right hand side of (3), the first and the

second term can be continued analytically for s e L1/2 as a function of s,

while the third term can be continued for s e Laz since the involved

integral converge uniformly for a > az. On the other hand the left hand

side of (3) has singularities at the zeros of ζ(s) when s e C — Q+. We

therefore conclude that Θ < az for any ze C — Q+.

Remark. If we suppose that all the zeros of ζ(s) are simple, Theorem

1.4 holds for all zeC - N.

Now Theorem 1 follows by taking f(s, z) = 1.

§ 2. The asymptotic formula for πk(x)

Throughout this section, we suppose that az(ή) is regular for \z\ < A,

and has a Taylor expansion at 2 = 0 such that az(ή) = Σΐ=Qck(ri)zk for

\z\ < A with A > 1.

LEMMA 2.1. We have

n<x 2πi J u ι = i 2:κ + 1

+ O(xexp(-

uniformly for k>l, x > 3.

Further, if we put Fki£o(x) = (2πi)"1 ί Φ^.oW
J ι « ι = i

ί/ie following asymptotic expansion
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F (x) = x Ψ Qm(log log x) +fc'εo logxi^o (logx)m

for every k>l, where Qm(x) are polynomials of degree not exceeding k — 1.

Proof. Since Az(x) is regular for | z | < A as a function of z, and

Cfc(x) is the coefficient of zk, it follows by using Lemma 1.1 that

2πi J I I-I 2 t + 1

=i zk + 1 2πί

where

< x exp(— c(log x)3/5(log log x)~1/5)

which proves the first half. The proof of the second half can be found in

H. Delange [2].

Remark. For k = 1, we can express the main term in terms of the

logarithmic integral. Namely, starting from the expression

and proceeding as in the proof of H. Delange [2] we obtain

I ̂  du

J2log u

so that

d(x) = — - — h O(xexp(— c(logx)3/5(loglogx)~1/5)).

This satisfies the assertion.

We define the error term Rk,εo(x) = Ck(x) — Fky£o(x), and let

THEOREM 2.2. We have

for any k>l.
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Proof. From Theorem 1.3, we have

2τrt J ι « ι = i 2 f c + 1

Hence rk < Θ.

Conversely,

ck(x) = J L f AΆdz

= -^ ί ( ^ Γ+<" ζ'(s)/(

2πi J ι « ι = i \ 2 j r t J2-«~

2πi J2-ico\ 2πi

= - ^ Gk(s)^-ds, say.

Here we have

where fw(s, z) means the ra-th derivative of f(s, z) with respect to z. It

follows that Gk(s) is regular for 5 e Lθ) and has the expression Gk(s) =

Σ:=ιCu(n)n-s for α > 1.

Thus

Ffciii(*) = - A - f Gt(s)-*-d8.
2πi J L*Q s

If we suppose σ > 2, then

(ω) )
Ji x*+1 Ji \2τri Jz.

2τri Ji«o

= -L- f GMω-'dω + --L- f
2πi J i o 2 π i J L*0

Hence

Gi(S) = β r ^ ^ - d x = s r i-d^dx+s r Ru*) dx
V J i X s + 1 Ji Xs + * J i ί C s + 1

( 4) = - L - f G^ωjω^dω + - Λ Γ ί Gk(ω)(s - o))-'dcu
2πι J£«o 2 « Ji o
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Now on the right hand side of (4), the first and the second term can

be continued analytically for s e L1/2 as a function of s, while the third

term can be continued for s e Lrk, since the involved integral converges

uniformly for Lr]c.

But Gfc(s) has singularities at zeros p = β + ίγ, say, of ζ(s). In fact,

if we consider the limit Gk(σ + ίϊ) as σ | β, under the assumption that p

is a zero of order M9

GΛσ + ir)~Σ 7 , , , 1

 Λ,(iogC(g + ir))ιr-ι\σ + ίr, o)
i-o l\{k — 1)1

ι\(k -Σ
k 1

δ ι\{k-i)\m

Mktk (t —> oo) ,

, 0) (σ-β = e-')

for f(k~l)(p, 0) is bounded and f(s, 0) = 1. Hence we conclude that Θ < rk

for any A > 1.

Now Theorem 2 follows by taking

«,,,) = π ( 1 + 4)(i-JΓY
P \ p / \ p /

= Πfl + Z— V l - — ) for

for

4X 4) for

which satisfy the assumptions on f(s, z) at the top of Sections 1 and 2.
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