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SPECIAL PRINCIPAL IDEAL RINGS 
AND ABSOLUTE SUBRETRACTS 

ERIC JESPERS 

ABSTRACT. A ring R is said to be an absolute subretract if for any ring S in the 
variety generated by R and for any ring monomorphism/ from R into S, there exists 
a ring morphism g from S to R such that gf is the identity mapping. This concept, 
introduced by Gardner and Stewart, is a ring theoretic version of an injective notion in 
certain varieties investigated by Davey and Kovacs. 

Also recall that a special principal ideal ring is a local principal ring with nonzero 
nilpotent maximal ideal. In this paper (finite) special principal ideal rings that are ab­
solute subretracts are studied. 

All rings in this paper are associative and commutative, but do not necessarily contain 
an identity. For a ring R we denote by Var(/£) the variety generated by R (cf. [5]). Recall 
(cf. [4]) that a ring R with identity is called a special principal ideal ring if R is a local 
principal ideal ring with (nonzero) nilpotent maximal ideal M. Obviously M — (3 (/?), the 
prime radical of R. 

In [3] several notions of injectiveness within a variety of rings are studied. Particular 
attention is given to absolute subretracts. A ring R is said to be an absolute subretract if 
for every ring S in Var(#) and for every ring monomorphism/: R—+ S there exists a ring 
morphism g: S —• R such that gf is the identity mapping. Or equivalently, for every such 
morphism/ there exists a two-sided ideal M of S such that S = f(R) 0 M, a direct sum 
as/(#)-modules. 

Gardner and Stewart in [3] characterize directly indecomposable absolute subretracts 
R with R2 = 0. However very little is known for non-semiprime rings with R2 ^ 0. Actu­
ally only one example of a ring R of this kind is included in [3], namely R — Z2 [X]/ (X2). 
Clearly R is a finite special principal ideal ring. 

The aim of this paper is to give necessary and sufficient conditions for a finite special 
principal ideal ring R to be an absolute subretract. In general we obtain necessary con­
ditions; but, if the characteristic of R, char(/?), is not a power of 2, these conditions turn 
out to be sufficient too. This result gives us more examples of non-semiprime absolute 
subretracts with identity. 

PROPOSITION 1. Let Rbea special principal ideal ring. IfR is an absolute subretract, 
then (3 (R)3 = 0. If, moreover, char(/?/ (3 (/?)) ± 2, thenf3(R)2 = 0. 
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PROOF. Suppose (3 (R) — Rx, and let n be the index ofnilpotency ofx. That isx*1 = 0 
while JC"-1 ^ 0. We consider two cases: (i)n > 4, and(ii)n — 3 and char(R/ (3 (R)) ^ 2. 
In each case we construct a ring T in Var(#) such that T = f(R) ÇBf(R)Y, where f: R-^T 
is a ring monomorphism, Y ET\ f(R),f(x)Y = 0, and Y = f(x)n~l. 

First assume n > 4. Let S be the following ring: 

S = {(a,a+j)eR@R\ a e RJ e/3(R)}9 

and let / = S(—xn~l,—xn~l + JC2), a principal two-sided ideal of S. Put X = (JC,JC) 

and Y = (-xn~2,-xn-2 + JC). Obviously XY = ( - J C ^ - J C " " 1 + x2) G /and Y2 = 
(x2n~4,x2n~4 - 2xn_1 + JC2). Since 2« - 4 > « and since (JC, JC"-3) G 5 we obtain that 
(jc,jcn-3)(-jcn-1,-jcn-1 + JC2) = (0 , - JC 2 "- 4 +JC"-1) = (O,^-1) G /.Consequently, 
XT1'1 -Y2 = ( J C ^ V - 1 ) - ( C - i c " - 1 +X2) = ( J C ^ V - 1 - JC2) + (O^jc""1) G /. 

Hence Xn~l equals Y2 modulo /. Furthermore, if (a, a) G I, a G /?, then (a, a) — 
(b, b +j)(-xn-1, -jc*"1 + JC2) for some beRje/3 (R). It follows that a = b(-x"-1) = 
(b +7)(-Jcn~1 +JC2). If b G P (R), then a = 0. In case bg(3(R) we obtain that a G /? (#)w_1 

and a G /?(/?)2 \ (3(R)n~l. This is impossible since n > 4. So we have shown that 
{ ( f l , a ) | a e / ? } n / = 0. It also is clear that Y &I+{ (a, a) \ a e R}. 

Secondly, assume n — 3 and char(/?/ /? (R)) ^ 2. In this case, let S = {(a, a +j) \ a G 
RJ G (3(R)} and / = SC*2, -JC2). Put X = (x,x) and 7 = (JC + JC2, -JC + JC2). It follows 
that XY = (JC2, -JC2) G / and Y2 = (JC2, JC2) = X2. Furthermore, if (a, a)€l,a€R9 then 
(a,a) = (b,b +j){x2,-x2) for some b G RJ G /3(fl). Hence a = frc2 = (fc +7X-JC2). 
Hence Ibx2 = 0. Since 2 is a unit in R, we obtain that bx2 = 0, and therefore a = 0. So 
again we have /D {(a,a) \ a G R} = 0, and clearly Y $• I + {(a,a) \ a € R}. 

In both cases let T = 5 / / . Clearly 7 belongs to Var(#). Further, let/: R—>T:r\-+ 
r = (r,r) +1 be the natural homomorphism, and put X = f(x) and Y = Y + I. Then / 
is a monomorphism,/(#) C T = f(R) +f(R)Y, X Y = 0 and Y = T~\ We claim that 
Ttnf(R) ^ { 0} , for every t G T\f(R). Indeed, since / £ / (#) , we have that t = â+fcF, 
with & a unit in f(R) and â G f(R). If a $ (3 (/"(/?)), then fis a unit since it is a sum of a 
unit and a nilpotent. This yields/(/?) C Tt. However, if â G (3 (R), then â = a'X for some 
â7 6/(/?). Hence, fF = al + ÏY1 = ^(XTj + bY2 = bT~l ^ 0. Thus Ttnf(R) ^ 0. 
This proves the claim. Consequently T ^ f(R) © M for every ideal M of T\ and thus R is 
not an absolute subretract. The result follows. • 

PROPOSITION 2. Let Rbea finite special principal ideal ring. If [3 (R)2 = 0, then R 
is an absolute subretract. 

PROOF. Let S be in Var(R) and/: R —• 5 a ring monomorphism. We have to prove 
that 5 = f(R) © Af for some ideal M of S. For this we may identify R with/(/?). Further­
more, since 1 G R it follows that 

# Ç S l ® < ! > - s l | 5 G 5} = 5, 

a direct sum of ideals of S. Hence we may assume SI = S, that is 1 is also the identity of 
S. Let M be an ideal of S maximal with respect to M fï R = { 0} . It is sufficient to prove 
that S = R + M. 
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Let T = S/ M and identify R with its natural image in T. Because of this identification 
1 G T H R. We have to show that T = R. Clearly every nonzero ideal of T intersects R 
non-trivially. Hence, since R has a minimal nonzero ideal, we obtain that T has a minimal 
nonzero ideal, say H(T). 

We now show that 7, and thus also T/ (3(T), has only trivial idempotents. Indeed, 
suppose e is a non-trivial idempotent of T. Then there exists t G T with te — t^ 0. Hence 
H(T) Ç Te and H(T) Ç T(te - t). However this implies that H(T) = 0, a contradiction. 

Clearly /£/ /3 (/?) is a finite field, say of order pk, p a prime number and k > 1. Since, 
moreover, (3 (R)2 = 0 and T G Var(#), both rings R and T satisfy the identity (X? -X)2 = 
0. Consequently Tj (3 (T) satisfies the identity XP — X = 0. In particular, for every 
0 ^ x £ T/P(T) the set {^ | i > 1} is finite. So Theorem 1.9 in [1] implies that x" 
is an idempotent for some n > 1. But since T/ (3(T) has only trivial idempotents, we 
obtain that x? = 1. Consequently, T/ /3 (T) is a field satisfying the equation XP — X — 0 
and containing the finite field R+(3(T)/ (3 (T) (a copy of the field R/ (3 (R)) satisfying the 
same equation. Therefore R + f3 (T)/ j3(T)=Tj f3 (T), yielding T= [3(T) + R. 

We claim that (3 (T)2 = 0. Indeed, since R, and therefore also T, satisfies the equations 

for all m > 1 and k as above, it follows immediately that xy = 0 for all x,y G (3 (T). 

Assume now the result is false, that is R is strictly contained in T = f3(T) + R. Then 
there exists t e/3(T)\R. Because f3 (T)2 = 0 it follows that 

Tt = (3(T)t + Rt = Rt= U(R)tU {0} , 

where U(R) is the set of all invertible elements ofR. However since 1 G TO R, we obtain 
that U(R)tn R = { 0} and thus TtH R = { 0} , in contradiction with the construction of 
T. This finishes the proof. • 

An immediate consequence of Propositions 1 and 2 is the following. 

COROLLARY 3. Let R be a finite special principal ideal ring with char \R/ (3 (R)) ^ 2. 
Then R is an absolute subretract if and only if/3 (R)2 = 0. • 

The example of Gardner and Stewart, namely R = Z2[X]/ (X2), is a contracted 
monoid algebra (cf. [4]). That is R = ko[S] = k[S]/ k9, where S is a monoid with 
identity e and zero element 0 ^ e, k is a field and k[S] is the monoid algebra over S. 
In the example S = { e,X, 6 } with X2 = 6. Note also that any group algebra k[G] of a 
group G is a contracted monoid algebra &o[71 where T is the monoid obtained from G 
by adjoining a zero element. 

Using a result in [2] we are able to characterize the contracted monoid algebras over a 
finite field, with characteristic different from 2, that are both special principal ideal rings 
and absolute subretracts. 
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COROLLARY 4. Let k be a finite field with char(&) = p and S a commutative monoid 
with identity e and zero element 0 ^ e. Then, the contracted monoid algebra ko[S] is 
both a special principal ideal ring with /3 (ko[S])2 = 0 and an absolute sub retract if and 
only if one of the following conditions is satisfied 

1. S= {e,s,0}, s^0 ands1 = 0, in particular ko[S] ^ k[X]/(X2). 
2. p = 2, S = { e, s, 0 } , s ^ e ands2 = e, in particular ko[S] = k[Z2] a group ring 

of the cyclic group of order 2. 

PROOF. It is shown in [2] that ko[S] is a special principal ideal ring if and only if one 
of the following conditions is satisfied: (i) S is a cyclic monoid of finite order m generated 
by one element, say s, with s ^ 0 and s" = 0, or (ii) S = G U { 0 } , where G is a cyclic 
group of order p = char(&). Now one easily verifies that then (3(ko[S]) is of nilpotency 
index 2 if and only if n = 2 in case (i), and p = 2 in case (ii). The result now follows 
from Proposition 2. • 

COROLLARY 5. Let k and S be as in Corollary 4. Assume, moreover that p ^ 2. 
Then, ko[S] is both a special principal ideal ring and an absolute subretract if and only 
ifko[S]^k[X]/(X2). 

PROOF. This follows at once from Proposition 1 and Corollary 4. • 
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