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Direct numerical simulations have been performed for turbulent thermal convection
between horizontal no-slip, permeable walls with a distance H and a constant temperature
difference �T at the Rayleigh number Ra = 3 × 103–1010. On the no-slip wall surfaces
z = 0, H, the wall-normal (vertical) transpiration velocity is assumed to be proportional to
the local pressure fluctuation, i.e. w = −βp′/ρ, +βp′/ρ (Jiménez et al., J. Fluid Mech.,
vol. 442, 2001, pp. 89–117). Here ρ is mass density, and the property of the permeable wall
is given by the permeability parameter βU normalised with the buoyancy-induced terminal
velocity U = (gα�TH)1/2, where g and α are acceleration due to gravity and volumetric
thermal expansivity, respectively. The critical transition of heat transfer in convective
turbulence has been found between the two Ra regimes for fixed βU = 3 and fixed Prandtl
number Pr = 1. In the subcritical regime at lower Ra the Nusselt number Nu scales with
Ra as Nu ∼ Ra1/3, as commonly observed in turbulent Rayleigh–Bénard convection. In
the supercritical regime at higher Ra, on the other hand, the ultimate scaling Nu ∼ Ra1/2

is achieved, meaning that the wall-to-wall heat flux scales with U�T independent of
the thermal diffusivity, although the heat transfer on the wall is dominated by thermal
conduction. In the supercritical permeable case, large-scale motion is induced by buoyancy
even in the vicinity of the wall, leading to significant transpiration velocity of the order
of U. The ultimate heat transfer is attributed to this large-scale significant fluid motion
rather than to transition to turbulence in boundary-layer flow. In such ‘wall-bounded’
convective turbulence, a thermal conduction layer still exists on the wall, but there is no
near-wall layer of large change in the vertical velocity, suggesting that the effect of the
viscosity is negligible even in the near-wall region. The balance between the dominant
advection and buoyancy terms in the vertical Boussinesq equation gives us the velocity
scale of O(U) in the whole region, so that the total energy budget equation implies the
Taylor dissipation law ε ∼ U3/H and the ultimate scaling Nu ∼ Ra1/2.
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1. Introduction

The flow driven by buoyancy is called thermal convection, and it plays an important role
in a wide variety of phenomena of geophysics, astrophysics and engineering applications.
One of the canonical configurations of thermal convection is the Rayleigh–Bénard
convection (RBC) observed in a horizontal fluid layer heated from below and cooled from
above. In RBC, buoyancy forcing is characterised in terms of the Rayleigh number Ra, and
the flow becomes turbulent eventually as Ra increases.

It is known that the Nusselt number Nu (dimensionless vertical heat flux) is discussed
in terms of the power law of Ra, Nu ∼ Raγ , for a certain value of γ in the turbulent
state of RBC. For more than half a century, various predictions have been made to clarify
the scaling exponent γ . Priestley (1954) derived γ = 1/3 from a similarity argument,
and Malkus (1954) also led to γ = 1/3 based on the assumption that heat transfer
is determined by the marginal instability of a thermal boundary layer. Spiegel (1963)
suggested γ = 1/2 using the mixing-length theory, and Kraichnan (1962) modified γ =
1/2 with a logarithmic correction, Nu ∼ Pr1/2Ra1/2(ln Ra)−3/2, as a scaling in a high-Ra
asymptotic state with turbulent boundary layers, where Pr is the Prandtl number. The
scaling Nu ∼ Pr1/2Ra1/2 is currently known as the ultimate scaling. It has been derived
as a rigorous upper bound on the heat transfer in RBC by applying variational methods
to the Boussinesq equations (Doering & Constantin 1992, 1996; Plasting & Kerswell
2003), and has recently been obtained as a maximal heat transfer scaling between two
parallel plates (Motoki, Kawahara & Shimizu 2018). The ultimate scaling relates to the
Taylor energy dissipation law of high-Reynolds-number turbulence via the rigorous energy
budget equation of thermal convection. In the ultimate heat transfer the energy dissipation
and the scalar dissipation (corresponding to the vertical heat flux) are independent of the
kinematic viscosity or the thermal diffusivity.

Recently, Grossmann & Lohse (2000, 2002) have proposed the scaling law for Nu,
Ra and Pr in RBC, and its validity has been demonstrated by many experimental and
numerical studies (see Ahlers, Grossmann & Lohse 2009; Chillà & Schumacher 2012).
Their scaling argument is based on the energy budget equation relating the energy and
scalar dissipation rates, and on the decomposition of the flow field into a boundary layer
and a bulk region. The argument gives different scaling laws depending on whether the
total energy and scalar dissipation rates are dominated by the bulk or the boundary
layer. In a high-Ra regime, in which the contribution from the bulk is dominant, the
classical scaling Nu ∼ Ra1/3 is given if the thermal boundary layer is thinner than the
velocity boundary layer, but the ultimate scaling with a logarithmic correction yielding
the local ‘effective’ exponent γeff ≡ d(log Nu)/d(log Ra) ≈ 0.32–0.43 at Ra = 1011–1015

(γeff ≈ 0.38 at Ra = 1014) is anticipated for very high Rayleigh numbers at which the
boundary layer is turbulent (Grossmann & Lohse 2011).

The question of whether or not the ultimate scaling (or the one with the logarithmic
correction) can be achieved has long attracted a great deal of attention, and much effort has
been spent on both experimental and numerical studies in the past few decades. He et al.
(2012a), Ahlers et al. (2012) and He et al. (2013) have suggested that the ultimate regime
with turbulent boundary layers is observed at Ra � 1014, whereas Urban et al. (2012),
Skrbek & Urban (2015), Iyer et al. (2020) and Doering (2020) have cast doubts pointing
out the non-Oberbeck–Boussinesq (NOB) effects or low-aspect-ratio effects obscuring
transition to the ultimate regime.

It is known that the ultimate scaling Nu ∼ Pr1/2Ra1/2 can be observed in turbulent
thermal convection without horizontal bounding walls on which thermal and velocity
boundary layers should have appeared. Such wall-less ‘homogeneous’ thermal convection
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was numerically examined in a triply periodic domain with a constant temperature gradient
in the vertical direction (Calzavarini et al. 2005), and was experimentally investigated in
a vertical tube connecting high- and low-temperature chambers (Gibert et al. 2006; Pawar
& Arakeri 2016). The ultimate scaling has also been reported for the thermal convection
in a cylindrical container radiatively heated from below, instead of conventional RBC
heating (Lepot, Aumaître & Gallet 2018; Bouillaut et al. 2019). In the radiatively driven
convection, Nu ∼ Ra1/3 has been observed when the thickness of the heating layer is thin,
and the scaling has been found to change to Nu ∼ Pr1/2Ra1/2 with an increase in thickness.

The boundary conditions on the walls significantly affect heat and momentum transfer.
The modification of the wall conditions, such as surface roughness and suction, can
eliminate the logarithmic correction of the ‘ultimate’ momentum transfer (corresponding
to the Taylor dissipation law) in pipe flow, Taylor–Couette flow, plane shear flow, etc. (see
e.g. Cadot et al. 1997; Doering, Spiegel & Worthing 2000). Free-slip isothermal walls
can reduce rigorous upper bounds on wall-to-wall heat transfer from the ultimate scaling
Nu ∼ Ra1/2 to Nu ∼ Ra5/12 (Whitehead & Doering 2011). In case of conventional RBC
heating, it has been found that surface roughness on horizontal walls transiently yields the
ultimate scaling Nu ∼ Pr1/2Ra1/2 in the limited range of Ra where the thermal conduction
layer thickness is comparable to the size of roughness elements (Toppaladoddi, Succi &
Wettlaufer 2017; Zhu et al. 2017, 2019; MacDonald et al. 2019; Tummers & Steunebrink
2019). This transient scaling would not imply the transition to the asymptotic ultimate
scaling, because a further increase in Ra leads to saturation down to the classical scaling
Nu ∼ Ra1/3. It is still an open question whether or not the ultimate heat transfer can
be achieved by introducing an ingenious contrivance, such as wall roughness etc., into
wall-bounded RBC heated conventionally.

In this study, we introduce wall permeability into RBC. Jiménez et al. (2001) have
investigated turbulent momentum transfer in numerically simulated porous channel
flow, finding that the wall permeability significantly enhances momentum transfer. In
their simulation the fluid crosses the porous wall surface with a wall-normal velocity
proportional to pressure fluctuations. This boundary condition mimics the behaviour
of a zero-pressure-gradient boundary layer over a Darcy-type porous wall (Batchelor
1967, pp. 223–224) with a constant-pressure plenum chamber underneath. We perform
direct numerical simulations (DNS) for convective turbulence between horizontal no-slip,
mass-neutral permeable walls with a constant temperature difference for fixed Prandtl
number Pr = 1 by using the boundary condition of Jiménez et al. (2001) on a permeable
wall. We report that the wall permeability brings about the ultimate heat transfer Nu ∼
Ra1/2 at a high Rayleigh number in spite of the presence of a thermal conduction layer on
the walls. We inspect scaling laws and turbulence structure in thermal convection between
the permeable walls as well as impermeable walls, to discuss why the ultimate heat transfer
can be achieved by the introduction of permeable walls.

This paper is organised as follows. The numerical procedure to solve the Boussinesq
equations with the no-slip, permeable boundary conditions is presented in § 2, and it is
confirmed that there are no additional energy inputs except for buoyancy power in § 3.
Scaling properties and turbulence structure in thermal convection between permeable and
impermeable walls are presented in § 4, and the physical interpretation of the scaling laws
is provided in § 5. The summary and outlook are given in § 6. Parameters in numerical
simulations are given for the Prandtl number Pr = 1 at Ra = 106–1010 in appendix A. The
Prandtl number dependence of the scaling of Nu with Ra is briefly shown together with
the Reynolds number scaling with Ra in appendix B, where it is demonstrated that the
ultimate scaling can also be observed for Pr = 7.
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2. DNS

We conduct DNS for turbulent thermal convection between horizontal plates with
a distance H and a constant temperature difference �T . The Oberbeck–Boussinesq
approximation is employed, wherein density variations are taken into account only in the
buoyancy term. The two horizontal and the vertical direction are denoted by x, y and z
(or x1, x2 and x3), respectively. The corresponding components of the velocity u(x, t) are
given by u, v and w (or u1, u2 and u3) in the horizontal and vertical directions, respectively.

The governing equations are the Boussinesq equations

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p + ν∇2u + gαTez, (2.2)

∂T
∂t

+ (u · ∇)T = κ∇2T, (2.3)

where p(x, t) is the pressure, T(x, t) is the temperature, and ρ, ν, g, α and κ are mass
density, kinematic viscosity, acceleration due to gravity, a volumetric expansion coefficient
and thermal diffusivity, respectively. Here ez is a unit vector in the vertical direction. The
velocity and temperature fields are supposed to be periodic in the horizontal (x- and y-)
directions, and the periods in the x- and y-directions are taken to be L.

We suppose that the two horizontal walls are composed of porous media with
constant-pressure plenum chambers underneath and overhead. The lower (or upper) wall
and the associated plenum chamber are heated from below (or cooled from above). On
the permeable wall surface the vertical velocity w is assumed to be proportional to the
local pressure fluctuation p′ (Jiménez et al. 2001). The boundary conditions imposed on
the walls are

u(z = 0) = u(z = H) = 0, v(z = 0) = v(z = H) = 0, (2.4a,b)

w(z = 0) = −β
p′(z = 0)

ρ
, w(z = H) = β

p′(z = H)

ρ
, (2.5a,b)

T(z = 0) = �T, T(z = H) = 0, (2.6a,b)

where β (� 0) represents the property of permeability, and the impermeability conditions
w(z = 0, H) = 0 are recovered for β = 0, while β → ∞ implies zero pressure fluctuations
and an unconstrained vertical velocity. The flow situation observed in the thermal
convection without horizontal walls (Calzavarini et al. 2005) is intuitively similar to
this limit, although not identical. Note that a zero net mass flux through the permeable
wall is instantaneously ensured because the transpiration velocity is proportional to the
pressure fluctuation with zero mean. We anticipate the no-slip and permeable conditions
(2.4a,b) and (2.5a,b) on a realistic wall (see § 6 for the realistic configuration) with a large
number of wall-normal through-holes connected to a constant-pressure plenum chamber
underneath (or overhead). In such a permeable wall the fluid is expected to go in or
out of the wall in the wall-normal direction through the holes, implying no wall-parallel
velocity component on the wall. We investigate this isothermal, no-slip and permeable
configuration so that we may have not only a thermal conduction layer but also a viscous
layer of the wall-parallel velocity on the wall as in a usual no-slip case.

The proportionality coefficient β has the dimension of an inverse velocity, and thus
βU represents a dimensionless parameter determining the property of permeable walls
if the buoyancy-induced terminal velocity U = (gα�TH)1/2 is a proper velocity scale.
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If the proper velocity scale (say, Uw) is smaller than U as in the subcritical permeable
case discussed later (see (5.2) in § 5), then the permeable condition βU = const. (=β ′Uw)
to be employed here implies a more permeable wall of larger β ′ (=(U/Uw)β). Thermal
convection between permeable walls is characterised in terms of the Rayleigh number Ra,
the Prandtl number Pr and the permeability βU, where

Ra = gα�TH3

νκ
, Pr = ν

κ
. (2.7a,b)

The vertical heat flux from the bottom to the top wall is quantified by the Nusselt number
Nu written as

Nu ≡ − H
�T

d〈T〉xyt

dz

∣∣∣∣
z=0

≡ − H
�T

d〈T〉xyt

dz

∣∣∣∣
z=H

= 1 + H
κ�T

〈wT〉xyzt, (2.8)

where 〈·〉xyt represents the average over the two horizontal directions and time, and 〈·〉xyzt
is the volume and time average. The rightmost equality is given by the volume and time
average of the energy equation (2.3). Note that, since the walls are isothermal in the
permeable and impermeable cases, the temperature fluctuation and so the convective heat
flux 〈Tw〉xyt are null on the walls (z = 0, H) in any case. In the near-wall region, therefore,
the conduction heat transfer dominates the convective one even in the permeable case.

The Boussinesq equations (2.1)–(2.3) are discretised by employing a spectral Galerkin
method based on the Fourier series expansion in the periodic horizontal directions and
the Chebyshev polynomial expansion in the vertical direction. The nonlinear terms are
evaluated using a spectral collocation method. Aliasing errors are removed with the aid of
the 2/3 rule for the Fourier transform and the 1/2 rule for the Chebyshev transform. Time
advancement is performed with the third-order Runge–Kutta scheme (or the second-order
Adams–Bashforth scheme) for the nonlinear and buoyancy terms and the implicit Euler
scheme (or the Crank–Nicolson scheme) for the diffusion terms in the permeable (or
impermeable) case. The numerical procedure developed by Jiménez et al. (2001) is applied
to satisfy the permeable boundary conditions. In the permeable case the evaluation of the
pressure is necessary for time marching of the evolution equation. A Poisson equation for
the pressure is numerically solved with the boundary conditions

1
ρ

∂p′

∂z
∓ β

ρ�t
p′ = ∓ β

ρ�t
p′
− + ν∇2w− + gαT (2.9)

on the walls z = 0, H, where �t is a time increment and (·)− denotes computed variables
at the prior time step. These boundary conditions for the pressure have been given by
the vertical component of the temporally discretised Navier–Stokes equation on the walls
in conjunction with the permeable conditions (2.5a,b). In this paper, we shall present
the results obtained from DNS for thermal convection in the impermeable case βU = 0
at Ra = 106–1011 and in the permeable case βU = 3 at Ra = 3 × 103–1010 for fixed
Prandtl number Pr = 1 and for fixed horizontal period L/H = 1. Numerical parameters
in the permeable simulations are given for the Prandtl number Pr = 1 at Ra = 106–1010

in appendix A. The Pr dependence is shown in appendix B. We have examined the
dependence of heat transfer on the horizontal period in the range of 1 � L/H � 4 to
confirm that the ultimate scaling Nu ∼ Ra1/2, to be shown in § 4, can also be achieved
for smaller βU in a wider periodic box of larger L/H.

3. Energy budget

In this section, we discuss the total energy budget in thermal convection between no-slip,
permeable walls. By taking the volume and time average of an inner product of the

914 A13-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

86
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.867


K. Kawano, S. Motoki, M. Shimizu and G. Kawahara

Navier–Stokes equation (2.2) with the velocity u and taking account of the boundary
conditions (2.4a,b) and (2.5a,b), we obtain

gα〈wT〉xyzt = ε + 1
βH

(〈
w2

〉
xyt

∣∣∣∣
z=0

+
〈
w2

〉
xyt

∣∣∣∣
z=H

)
+ 1

2H

[〈
w3

〉
xyt

]z=H

z=0
, (3.1)

where

ε = ν

2

〈(
∂ui

∂xj
+ ∂uj

∂xi

)2
〉

xyzt

(3.2)

is a total energy dissipation rate per unit mass. The left-hand side of (3.1) represents
buoyancy power (energy input), while the second and the third terms on the right-hand
side denote pressure power on the permeable walls and outflow kinetic energy across
the permeable walls, respectively. The pressure power on the permeable walls is strictly
greater than zero, so that it is always an energy sink. Although its sign cannot be specified
rigorously, we have confirmed numerically that the outflow kinetic energy across the
permeable walls is also positive in the present DNS, implying that the kinetic energy flows
out of the system across the permeable walls. It turns out that as in the impermeable case,
thermal convection between the permeable walls is sustained only by the buoyancy power
without any additional energy inputs. It has also been found numerically that the pressure
power is comparable with the energy dissipation whereas the outflow kinetic energy is
much less than the dissipation. The energy to be lost in the system via the permeable walls
could be considered to be supplied to another system, i.e. the flow in porous media, to
eventually dissipate therein.

The rightmost equality of (2.8) yields the relation among the buoyancy power, the
Prandtl number, the Rayleigh number and the Nusselt number given by

Pr−2Ra(Nu − 1) = gα〈wT〉xyzt

ν3/H4 . (3.3)

Substituting (3.3) into (3.1) and taking into account the flow symmetries, we arrive at

Pr−2Ra(Nu − 1) = ε

ν3/H4 + 2
β(ν/H)3

〈
w2

〉
xyt

∣∣∣∣
z=0

− 1
(ν/H)3

〈
w3

〉
xyt

∣∣∣∣
z=0

. (3.4)

Note that in the impermeable case, i.e. conventional RBC, the energy budget is given by

Pr−2Ra(Nu − 1) = ε

ν3/H4 . (3.5)

4. Scaling properties and turbulence structure

4.1. Nu–Ra scaling
Let us first discuss the scaling property of the Nusselt number Nu with the Rayleigh
number Ra. Figure 1 shows Nu as a function of Ra. It can be seen that the wall
permeability leads to significant heat transfer enhancement over the entire Ra range. In
the impermeable case βU = 0 the present DNS data in the horizontally periodic domain
are in good agreement with the turbulent data obtained from the experiments (Chavanne
et al. 2001; Niemela & Sreenivasan 2006) and the numerical simulation (Stevens et al.
2010) performed in cylindrical containers. At high Rayleigh number Ra ∼ 109–1011, Nu
can be seen to scale with Ra as Nu ≈ 0.06Ra1/3, the prefactor and the exponent of which
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N
u/
Ra
1
/2

Figure 1. The Nusselt number Nu as a function of the Rayleigh number Ra. The open black and filled
red circles, respectively, represent the present DNS data in the impermeable case βU = 0 and permeable
case βU = 3 for the Prandtl number Pr = 1. The orange and green squares denote the experimental data
in a cylindrical cell, taken from Chavanne et al. (2001) (Pr � 0.7) and Niemela & Sreenivasan (2006)
(Pr � 0.69), respectively. The purple squares stand for DNS data in a cylindrical cell, taken from Stevens
et al. (2010) (Pr = 0.7). The red line represents the ultimate scaling Nu = 0.02Ra1/2. The upper and lower
blue lines indicate the classical scaling, Nu = 0.37Ra1/3 and Nu = 0.06Ra1/3, respectively. The inset shows
Nu compensated by Ra1/2 in the permeable case.

are nearly consistent with the well known turbulence scaling at much higher Ra (see
e.g. Urban, Musilova & Skrbek 2011; He et al. 2012b; Iyer et al. 2020; Doering 2020).
In the permeable case βU = 3, on the other hand, the ultimate scaling Nu ∼ Ra1/2 can
be observed at higher Rayleigh number Ra ∼ 107–1010, whereas the classical scaling
Nu ∼ Ra1/3 is confirmed at lower Rayleigh number Ra ∼ 106–107. It is worth noting
that the scaling property of Nu critically changes around Ra ∼ 107 from Nu ∼ Ra1/3 to
Nu ∼ Ra1/2 with increasing Ra.

This critical transition in the permeable case can also be confirmed undoubtedly for the
root mean square (RMS) vertical velocity wrms = 〈w2〉1/2

xyt on the wall as shown in figure 2.
In the subcritical Ra range 106 � Ra � 107, the wall-normal transpiration velocity is weak
in the sense that it is of the order of Ra−1/6U (see figure 2a), corresponding to the vertical
velocity scale in the near-wall region of RBC for Pr ∼ 1, i.e. the impermeable case, in
which the classical scaling Nu ∼ Ra1/3 has been observed. In the supercritical Ra range
107 � Ra � 1010, on the other hand, the RMS velocity on the wall is significantly strong
in the sense that it scales with the buoyancy-induced terminal velocity U (see figure 2b).
In § 5, for the case of Pr ∼ 1, the near-wall vertical velocity scale Ra−1/6U will be related
with the classical scaling Nu ∼ Ra1/3, and the relevance of the vertical velocity scale U to
the ultimate scaling Nu ∼ Ra1/2 will also be discussed.

We would like to stress that the ultimate heat transfer is not simplistically a consequence
of just the wall permeability. As will be shown later in this section, the wall permeability
can trigger a critical change in convection states, consequently leading to the ultimate
scaling Nu ∼ Ra1/2.
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Figure 2. The RMS vertical velocity on the wall z = 0 normalised by (a) Ra−1/6U and (b) U in the
permeable case βU = 3.

4.2. Mean temperature
Next we differentiate mean temperature profiles between the supercritical permeable case
βU = 3 at Ra � 107 and the impermeable case βU = 0. Figure 3 presents the mean
temperature profiles in the impermeable and permeable cases. In the impermeable case, at
higher Ra the profile becomes flatter in the bulk region, while the near-wall temperature
gradient becomes steeper. In short the mean temperature profile 〈T〉xyt/�T cannot scale
with z/H. The behaviour of the mean temperature in the subcritical case at Ra � 107

is similar to that in the impermeable case. In contrast to the impermeable case and the
subcritical case, the mean temperature profile in the bulk region seems to scale with �T
as a function of z/H in the supercritical permeable case at Ra � 107, and there remains
a finite value of the temperature gradient, i.e. the order of �T/H, therein even at high
Ra. This contrast should be a crucial consequence of the ultimate heat transfer as will be
discussed in § 5.

In the permeable case with isothermal wall boundaries, different from the thermal
convection without horizontal walls (Calzavarini et al. 2005; Pawar & Arakeri 2016),
there exists a thermal conduction layer on the wall, where heat transfer by conduction
dominates over that by convection. In figure 3(c,d) are shown the mean temperature
profiles 1 − 〈T〉xyt/�T as a function of z/δ, where δ is the thickness of a thermal
conduction layer defined as

δ ≡ −�T
(

d〈T〉xyt

dz

∣∣∣∣
z=0

)−1

= H
2Nu

. (4.1)

All the profiles in the impermeable case collapse onto a single curve in the thermal
conduction layer z/δ � 1. It is also the case in the permeable case; however, the thermal
conduction cannot be dominant around z/δ ∼ 1 where the convection is also important.
The large difference of the temperature profiles at z/δ � 1 in the supercritical permeable
case at Ra � 107 implies its reasonable scaling with z/H, shown in figure 3(b).

4.3. RMS velocity and temperature
As mentioned before, the vertical velocity fluctuation on the permeable walls scales with
Ra−1/6U at subcritical Rayleigh number Ra � 107. In the impermeable case (in addition
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Figure 3. Mean temperature profiles as a function of (a,b) z/H and (c,d) z/δ; (a,c) the impermeable case
βU = 0 and (b,d) the permeable case βU = 3.

to the subcritical permeable case) the near-wall RMS vertical velocity wrms = 〈w2〉1/2
xyt also

scales with Ra−1/6U as a function of z/δ (see figure 4a). However, the vertical velocity
fluctuation in the supercritical case at Ra � 107 exhibits quite distinct behaviour from that
in the impermeable and subcritical cases (see figure 4b).

Figure 5(a–c) and figure 5(d–f ) show the RMS vertical velocity normalised by the
velocity scale Ra−1/18U and the buoyancy-induced terminal velocity U, respectively.
In the impermeable case at 106 � Ra � 1011 and the subcritical permeable case at
105.6 � Ra � 106.8, the RMS vertical velocity in the bulk region is seen to scale with
Ra−1/18U corresponding to the vertical velocity scale in the bulk region of RBC for
Pr ∼ 1 (figure 5a,b), and thus it decreases relatively with respect to U as Ra increases
(figure 5d,e). In the supercritical permeable case at 107 � Ra � 1010, on the other hand,
the velocity fluctuation in the bulk is found to scale with U (figure 5f ). The near-wall
gradient of wrms with respect to z/H in figure 5 is steeper at higher Ra in the impermeable
and the subcritical permeable cases, but the same is not true of the supercritical permeable
case. Although wrms is not null on the permeable walls as already shown in figure 2, the
ratio of near-wall wrms to bulk wrms should be of the order of Ra−1/9 in the subcritical
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Figure 4. The RMS vertical velocity normalised by Ra−1/6U as a function of z/δ; (a) the impermeable case
βU = 0 and (b) the permeable case βU = 3.
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Figure 5. The RMS vertical velocity normalised by (a–c) Ra−1/18U and (d–f ) U; (a,d) the impermeable
case βU = 0, (b,e) the subcritical permeable case βU = 3 at 105.6 � Ra � 106.8 and (c, f ) the supercritical
permeable case βU = 3 at 107 � Ra � 1010.

case, implying that the near-wall vertical velocity fluctuation becomes smaller than that
in the bulk region at higher Ra (see figure 5b). The vertical RMS velocities wrms/U as a
function of z/H are almost independent of the Rayleigh number Ra in the whole region of
the supercritical permeable case. Note that near the walls, the RMS velocity is suppressed
due to the presence of the walls even in the supercritical permeable case exhibiting the
ultimate scaling Nu ∼ Ra1/2. Needless to say, such suppression of the vertical velocity
has not been observed in the ultimate heat transfer in wall-less ‘homogeneous’ thermal
convection (Calzavarini et al. 2005; Pawar & Arakeri 2016).

The RMS temperature Trms = 〈(T − 〈T〉xyt)
2〉1/2

xyt normalised by the temperature scale
Ra−1/9�T and the temperature difference �T between the walls is shown in figure 6(a–c)

914 A13-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

86
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.867


Ultimate heat transfer in convective turbulence
T rm

s/
(R

a–1
/9
�

T
)

T rm
s/

�
T

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

2.0(a) (b)

(d ) (e)

(c)

( f )
0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0 0

1.0

2.0

3.0

4.0

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6
z /H z /H z /H

0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0

0.05

0.10

0.15

0.20

0.25

0.30

0

0.05

0.10

0.15

0.20

0.25

0.30

Ra = 105.6

Ra = 105.9

Ra = 106.2

Ra = 106.5

Ra = 106.8

Ra = 106

Ra = 107

Ra = 108

Ra = 109

Ra = 1010

Ra = 1011

Ra = 107

Ra = 107.5

Ra = 108

Ra = 109

Ra = 1010

Figure 6. The RMS temperature normalised by (a–c) Ra−1/9�T and (d–f ) �T; (a,d) the impermeable
case βU = 0, (b,e) the subcritical permeable case βU = 3 at 105.6 � Ra � 106.8 and (c, f ) the supercritical
permeable case βU = 3 at 107 � Ra � 1010.

and figure 6(d–f ), respectively. In the bulk region of the impermeable and subcritical
permeable cases, the RMS temperature is seen to scale with Ra−1/9�T (figure 6a,b),
and so it decreases as Ra increases. On the other hand, the temperature fluctuation in
the supercritical permeable case is found to scale with �T (figure 6f ). This remarkable
difference in the scalings of the temperature fluctuation originates from the scaling
difference in the mean temperature (cf. figure 3). In the supercritical permeable case
the vertical fluid motion across the sustaining mean temperature difference of O(�T) in
the bulk region can induce the temperature fluctuation of O(�T) even at higher Ra, but
in the impermeable and the subcritical cases the vanishing mean temperature difference
means small temperature fluctuations.

In § 5 we shall discuss the different scaling properties of the RMS vertical velocity with
Ra−1/18U and U as well as the difference in scaling of the temperature fluctuation with
Ra−1/9�T and �T .

In figure 7 are shown the near-wall profiles of the wall-parallel (horizontal) RMS
velocity urms = 〈u2〉1/2

xyt and the RMS temperature Trms. As can be seen from the figures,
in the impermeable case and the supercritical permeable case, the near-wall horizontal
velocity fluctuation could scale with the bulk velocity scale Ub as a function of z/δ at
higher Ra. Note that as shown in figure 5(a, f ), in the impermeable case Ub ∼ Ra−1/18U
(see also (5.9) in § 5) whereas in the supercritical permeable case Ub ∼ U (see also
(5.11) in § 5). At higher Ra the near-wall temperature fluctuation might scale with �T
as a function of z/δ in any case. These results imply that in the near-wall region of both
the impermeable case and the supercritical permeable case, the amplitude of turbulence
velocity and temperature fluctuations is determined by the bulk velocity scale Ub and
temperature difference �T , respectively. As will be discussed in § 5, the key to the
achievement of the ultimate heat transfer in the supercritical permeable case should be
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Figure 7. The near-wall RMS velocity and temperature as a function of z/δ. (a,b) The RMS horizontal velocity
normalised by Ra−1/18U and U and (c,d) the RMS temperature normalised by �T; (a,c) the impermeable case
βU = 0 and (b,d) the permeable case βU = 3.

the difference in scaling of Ub rather than transition to turbulence in boundary-layer flow,
which might be expected in conventional RBC at extremely high Ra (Kraichnan 1962;
Grossmann & Lohse 2011).

4.4. Turbulent thermal and flow structures
Let us now look into turbulence structure of thermal convection. Figure 8 visualises
the instantaneous thermal and vortical structures in the impermeable and supercritical
permeable case at Ra = 109. The high-temperature thermal plumes are represented by the
isotherms T/�T = 0.7, while the small-scale vortical structures are identified in terms of
the positive isosurfaces of the second invariant of the velocity gradient tensor

Q = −1
2

∂ui

∂xj

∂uj

∂xi
. (4.2)

In the impermeable case the small-scale hot plumes are confined to the near-wall region.
In contrast, high-temperature plumes of a remarkably large horizontal length scale fully
extend from the bottom wall to the top wall through the bulk in the supercritical permeable
case, so that heat transfer is highly enhanced. Recently, such promotion of large-scale
circulation has been reported for the convective turbulence, which exhibits the ultimate
scaling Nu ∼ Pr1/2Ra1/2, in the radiatively driven convection (Lepot et al. 2018) and in
the thermal convection between rough walls (Tummers & Steunebrink 2019). Although the
intensity and the size of small-scale tubular vortices playing a role in energy dissipation
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Figure 8. Instantaneous thermal and vortical structures in (a) the impermeable case βU = 0 and (b) the
supercritical permeable case βU = 3 at Ra = 109. The orange and grey objects, respectively, represent the
isosurfaces of the temperature T/�T = 0.7 and of the second invariant of the velocity gradient tensor,
(a) Q/(ν2/H4) = 8 × 1010 and (b) Q/(ν2/H4) = 4.8 × 1011. The colour indicates the temperature distribution
on the planes x = 0 and y = H.

are different between the impermeable and the supercritical permeable cases, their spatial
structure is more or less the same.

In figure 9 are shown snapshots of the convective heat flux wT (which is proportional
to local buoyancy power) on the horizontal plane z/δ ≈ 1 in the conduction layer and
on the midplane z/H = 1/2. Note that in these panels, wT is normalised so that its
mean and standard deviation may be zero and unity, respectively, in each plane of the
impermeable and the supercritical permeable cases. The spatial distribution near the wall
differs greatly between the impermeable and supercritical permeable cases (figure 9a,b).
The near-wall small-scale structures, corresponding to thermal plumes, can be observed in
the impermeable case, while the large-scale structure, which is part of the fully extended
large-scale plume, appears even in the vicinity of the wall in the supercritical case. On
the midplane there is no significant difference between the impermeable and supercritical
cases (figure 9c,d). In the bulk region the heat transfer is dominated by large-scale
convection, regardless of the difference in the near-wall dominant thermal structures.

4.5. Energy production by buoyancy
In figure 10 we show the one-dimensional premultiplied buoyancy-power spectra
ky

∑
kx

P̂(kx, ky, z) as a function of the distance to the wall, z, and the wavelength in the
horizontal (y-) direction, λ = 2π/ky. The buoyancy-power spectra P̂(kx, ky, z) is given by

P̂(kx, ky, z) = gαRe
[
〈ŵT̂†〉t

]
, (4.3)

where (̂·) represents the Fourier coefficients, (kx, ky) are the wavenumbers in the horizontal
(x- and y-) directions, † denotes the complex conjugate and 〈·〉t is the time average.
The lateral and longitudinal axes of the figures are normalised by the conduction layer
thickness δ or the wall distance H. Here P̂ denotes the spectrum of the energy input by
buoyancy, and it is also relevant to the spectrum of the convective heat flux shown in
figure 9. In the impermeable case we can see significant buoyancy power at small scales in
the vicinity of the wall, z/δ ∼ 100, leading to the near-wall thermal plumes (figure 9a),
in addition to greater buoyancy power corresponding to the large-scale convection in
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Figure 9. The instantaneous convection heat flux wT on (a,b) the near-wall plane z/δ ≈ 1 and (c,d) the
midplane z/H = 1/2 at Ra = 109; (a,c) the impermeable case βU = 0 and (b,d) the supercritical permeable
case βU = 3. The heat flux wT on the horizontal plane is normalised so that its mean and standard deviation
may be zero and unity, respectively.

the bulk region. The near-wall heat flux determined by the marginal instability of the
thermal conduction layer gives us the scaling Nu ∼ Ra1/3 widely observed in turbulent
RBC (Malkus 1954). The dashed lines in figure 10(a,d) stand for λ = 10z. The spectral
ridge is on this line, implying that the energy-inputted horizontal scale is proportional to
the distance to the wall. This observation suggests that the convective heat flux exhibits
hierarchical self-similar structure near the wall. In the subcritical permeable case at
Ra = 106 (figure 10b,e), the Rayleigh number is too low for the small-scale plumes of
λ� L(= H) to appear in the near-wall region. In the supercritical case (figure 10c, f )
the spectral peak is located at the large horizontal scale λ/δ ∼ 103 (λ/H ∼ 100) in the
near-wall region z/δ ∼ 100 roughly consistent with the wall-normal position of the spectral
peak of the small-scale thermal plumes in the impermeable case (figure 10a), suggesting
that the large-horizontal-scale plume is generated in the near-wall region by buoyancy
to fully extend from there to the other wall as observed in figure 8(b). This near-wall
large-scale energy input corresponds to the large-scale convective heat flux shown in
figure 9(b). As will be discussed in § 5, the ultimate heat transfer Nu ∼ Ra1/2 can be
attributed to the generation of this long-wavelength (and so intense) thermal mode near
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Figure 10. One-dimensional premultiplied buoyancy-power spectra ky
∑

kx
P̂(kx, ky, z) as a function of the

wavelength λ = 2π/ky in the horizontal (y-) direction and the distance to the bottom wall, z. (a–c) The spectra
normalised with Raν3/H5 as a function of λ/δ and z/δ, (d–f ) the spectra normalised with gα〈wT〉xyt/H
as a function of λ/H and z/H; (a,d) the impermeable case βU = 0 at Ra = 109, (b,e) the subcritical
permeable case βU = 3 at Ra = 106, (c, f ) the supercritical permeable case βU = 3 at Ra = 109. In panel
(d) gα〈wT〉xyt/(ν

3/H4) = 3.7 × 108–6.3 × 1010, in panel (e) gα〈wT〉xyt/(ν
3/H4) = 5.6 × 106–3.3 × 107, and

in panel ( f ) gα〈wT〉xyt/(ν
3/H4) = 6.2 × 1011–6.8 × 1011. The dashed lines indicate λ = 10z.

the wall. In the bulk region, apart from the walls, the energy is inputted at the large
horizontal length scale in all the impermeable and permeable cases. We note, however,
that just in the supercritical case the energy to be inputted at the large horizontal scale in
the bulk is smaller than that in the near-wall region (figure 10c).

5. Physical interpretation of scaling laws

Here we shall discuss the physical mechanisms of the classical scaling Nu ∼ Ra1/3 and the
ultimate scaling Nu ∼ Pr1/2Ra1/2 in turbulent thermal convection between impermeable
and permeable walls. In the present study the Prandtl number has been set to unity, i.e.
Pr = 1, and thus in this section we assume that Pr ∼ 1 (or ν ∼ κ).

5.1. Impermeable and subcritical permeable cases
Let us start with the thermal convection in the impermeable case and the subcritical
permeable case, where the temperature profile is flatter in the bulk region at higher Ra
and temperature variation is confined to the thermal conduction layer of the thickness of
O(δ) (see figure 3a,b). The vertical velocity is strictly zero on the impermeable walls.
In the subcritical permeable case, as shown in figures 2 and 4, transpiration has not
been activated in the near-wall region although the walls are permeable. In both the
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impermeable and subcritical cases, the near-wall vertical velocity scale Uw is estimated
to be κ/δ from the near-wall comparability of thermal conduction to convective heat
transfer, κ�T/δ ∼ �TUw, being small in comparison to the velocity scale Ub in the bulk
region. We now suppose that in the near-wall viscous layer with thickness δ′ of O(δ) and
with a temperature difference of O(�T), where the vertical velocity is small, the effect
of viscosity is also significant. In the vertical component of the Navier–Stokes equation
(2.2), the viscous term can be comparable with the advection term and the buoyancy term
(driving force of the flow), that is,

ν
Uw

δ′2 ∼ U2
w

δ′ ∼ gα�T, (5.1)

in the near-wall viscous region. The balance (5.1) between the viscous, the advection and
the buoyancy terms in the equation of motion determines the near-wall velocity and the
length scales as

Uw ∼ Ra1/3Pr−1/3ν/H ∼ Ra−1/6Pr1/6U ∼ Ra−1/6U, (5.2)

δ′ ∼ Ra−1/3Pr1/3H ∼ Ra−1/3H (5.3)

(recall that U = (gα�TH)1/2∼ Ra1/2Pr−1/2ν/H and H are the buoyancy-induced
terminal velocity and the wall distance, respectively). In (5.2) and (5.3), the leftmost
equality has been given by solving (5.1) while the rightmost one holds for Pr ∼ 1. In
the present DNS we have confirmed that the vertical velocity near the impermeable and
subcritical permeable walls actually scales with Ra−1/6U (see figures 2a and 4). Since
δ′ ∼ δ, and thus the definition (4.1) of the thermal conduction layer thickness implies that
δ′ ∼ H/(2Nu), (5.3) suggests the scaling law

Nu ∼ Ra1/3, (5.4)

which has been observed in RBC (i.e. the impermeable case) as well as in the subcritical
permeable case (see figure 1). The scaling law Nu ∼ Ra1/3 has already been given by the
several arguments on similarity (Priestley 1954), the marginal instability (Malkus 1954)
and the bulk contribution to energy and scalar dissipation (Grossmann & Lohse 2000).

In the bulk region of the impermeable and the subcritical cases, where the effects of
viscosity or thermal conduction are no longer significant, the characteristic thermal (and
flow) length scale is H instead of δ (and δ′), and the temperature difference with respect to
the height difference of O(H) and the vertical velocity scale are supposed to be �T ′ and
Ub, respectively. In this region the advection and the buoyancy terms balance each other
out in the Navier–Stokes equation as

U2
b

H
∼ gα�T ′. (5.5)

Rewriting the Nusselt number (2.8) as

Nu = 〈wT〉xyt − κ d〈T〉xyt/dz
κ�T/H

(5.6)

and taking into consideration the dominance of convective heat transfer in the bulk and
the scaling (5.4), we have

Nu ∼ 〈wT〉xyt

κ�T/H
∼ Ub�T ′

κ�T/H
∼ Ra1/3. (5.7)
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Solving equations (5.5) and (5.7) we have the bulk temperature difference and velocity
scale as

�T ′ ∼ Ra−1/9�T, (5.8)

Ub ∼ Ra4/9Pr−2/3ν/H ∼ Ra−1/18Pr−1/6U ∼ Ra−1/18U. (5.9)

The leftmost equality in (5.9) means that the Reynolds number for thermal convection,
Re = 〈w2〉1/2

xyztH/ν, is of the order of Ra4/9Pr−2/3, being consistent with the scaling of
Grossmann & Lohse (2000) based on the energy and scalar dissipation in the bulk region.
It has been confirmed that the vertical velocity and the temperature fluctuation really scale
with Ra−1/18U and Ra−1/9�T , respectively, in the bulk region of the impermeable and
subcritical permeable cases (see figures 5a,b, 6a,b and appendix B).

5.2. Supercritical permeable case
Next we consider the thermal convection between the supercritical permeable walls.
In this case intense vertical transpiration is induced even in the vicinity of the wall
in contrast to the impermeable and the subcritical cases (see figure 2). Although the
thermal conduction layer still exists on the wall, there is no near-wall layer of significant
reduction in the vertical velocity, suggesting that the effect of the viscosity on the vertical
velocity is negligible anywhere in comparison to the advection effect. The vertical motion
should exhibit the length scale comparable with H (see figure 8b), and the corresponding
temperature difference is of the order of �T even in the bulk region (recall the temperature
gradient of O(�T/H) in figure 3b and the temperature fluctuation of O(�T) in figure 6f ).
Therefore, the balance of the advection term with the buoyancy term (the driving force) in
the Navier–Stokes equation, (2.2), gives us

U2
b

H
∼ gα�T, (5.10)

leading to

Ub ∼ U∼ Ra1/2Pr−1/2ν/H. (5.11)

Equation (5.11) means that Re ∼ Ra1/2Pr−1/2, being consistent with the ultimate scaling
of the Reynolds number. This scaling has been confirmed in the supercritical permeable
case of the present DNS (see figures 5a,b and appendix B). The comparability between
the energy dissipation (the first term in the right-hand side) and the pressure power (the
second term) in the energy budget (3.4),

ε

ν3/H4 ∼ U3

(ν/H)3 , (5.12)

suggests the Taylor dissipation law (energy dissipation independent of ν),

ε ∼ U3

H
, (5.13)

where we have taken account of 〈w2〉xyt|z=0 ∼ U2 and β ∼ U−1. The balance of the
buoyancy power (the left-hand side) with the dissipation (and the pressure power) in (3.4)
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then yields

Pr−2RaNu ∼ U3

(ν/H)3 . (5.14)

Equations (5.11) and (5.14) provide us with the ultimate scaling

Nu ∼ Pr1/2Ra1/2 ∼ Ra1/2. (5.15)

Alternatively, it follows from (5.6) at z/δ  1 and (5.11) that

Nu∼ 〈wT〉xyt

κ�T/H
∼ Ub�T

κ�T/H
∼ Pr1/2Ra1/2 ∼ Ra1/2. (5.16)

The ultimate scaling Nu ∼ Ra1/2 has been suggested by Spiegel (1963), and its logarithmic
correction with turbulent boundary layers has been given by Kraichnan (1962) and
Grossmann & Lohse (2011) at extremely high Ra. In conventional RBC, it is still an open
question whether or not the ultimate scaling (or the one with the logarithmic correction)
can be observed (Ahlers et al. 2012; He et al. 2012a; Urban et al. 2012; He et al. 2013;
Skrbek & Urban 2015; Doering 2020; Iyer et al. 2020). In the present DNS of the
supercritical permeable case, the vertical velocity has been seen to actually scale with U in
the whole region (see figure 5f ), and it has been confirmed that Nu ∼ Ra1/2 at Ra � 107

(see figure 1).

5.3. Linear instability on permeable wall
In the above discussions we have considered the difference in the vertical length scale of
thermal convection, δ and H, between the impermeable (and subcritical permeable) case
and the supercritical permeable case and its crucial consequences on the scaling properties
of heat transfer. The key to the difference in the vertical length scale is the excitation of
transpiration in the near-wall region of the permeable wall. As suggested in figure 10, there
should be different convection modes of the instabilities in a thermal conduction layer, one
of which is the small-scale thermal plume in the impermeable (and subcritical permeable)
case, and the other of which is the large-scale plume extending to the other wall in the
supercritical permeable case. The excitation of the near-wall transpiration velocity on the
permeable wall could be attributed to the different length of convection instability from
that on the impermeable wall. In order to identify the different length of the instability, we
have performed the linear stability analysis of a conduction state between the impermeable
and permeable walls by conducting DNS in conjunction with the Arnoldi iteration, that
is a Krylov-subspace method to compute eigenvalues in subspace without any full matrix
construction. Although the global onset of thermal convection in the conduction state is
distinct from the local one in the thermal conduction layer of turbulent convection, we
could expect their qualitative similarity.

Figure 11 presents the onset Rayleigh number of thermal convection between
impermeable and permeable walls. In the impermeable case (black symbols) we confirm
the known lowest value Rac = 1708 for λ/H = 2π/3.117 = 2.02 (see Reid & Harris
1958). In the permeable case, on the other hand, much larger-scale thermal convection
can arise from the instability (colour lines with symbols). If such a larger-horizontal-scale
thermal plume appears in the thermal conduction layer of convective turbulence, then the
plume should also possess a larger vertical length scale to induce the significant vertical
velocity. Actually the large-horizontal-scale thermal plume has been observed to extend
from the near-wall region to the other wall in turbulent convection on the supercritical
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106
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100
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Figure 11. The critical Rayleigh number Rac of the onset of two-dimensional thermal convection between
impermeable and permeable walls as a function of the horizontal wavelength λ. The black symbols denote the
impermeable case βU = 0. The lines with the colour symbols represent the permeable case: blue, βU = 0.1;
cyan, βU = 0.5; green, βU = 1; orange, βU = 2; red, βU = 3; purple, βU = 4. The black curve stands for
the analytical marginal stability relation given by Prosperetti (2011) for RBC (i.e. the impermeable case).

permeable walls (see figures 8b and 9b). The critical transition to the ultimate heat
transfer observed in figures 1 and 2 could be a consequence of the exchange of near-wall
unstable convection modes on the permeable wall, although the critical values of Ra are
quantitatively distinct between figure 1 (or figure 2) and figure 11, depending on the local
and the global onset of convection.

It is known that the installation of roughness elements on the wall yields the ultimate
scaling in the limited range of Ra where the thickness of a thermal conduction layer is
comparable with the size of the elements (Toppaladoddi et al. 2017; Zhu et al. 2017, 2019;
MacDonald et al. 2019; Tummers & Steunebrink 2019). Surface roughness of a comparable
size can promote near-wall flow instability generating turbulence in the conduction layer to
enhance a wall heat flux, so that the ultimate scaling could be achieved. In the supercritical
permeable case the wall transpiration is induced by the instability on the permeable walls
as in the case of surface roughness to significantly enhance large-scale turbulence leading
to the ultimate heat transfer. In contrast with the roughness case, there should not be
the limited range of Ra for the ultimate heat transfer in the supercritical permeable case
because no specific length scale, such as roughness elements, is on the permeable walls.

In DNS of the permeable case we have increased the horizontal period L in the range
of 1 � L/H � 4 and have observed stronger convection in a wider periodic box of larger
L/H for βU = 3. We have fitted the ultimate scaling law Nu = cRa1/2 (or Re = c′Ra1/2)
to the numerical data to estimate the prefactor c (or c′) as c = 0.022 (or c′ = 0.23) for
L/H = 1, c = 0.065 (or c′ = 0.35) for L/H = 2 and c = 0.17 (or c′ = 0.52) for L/H = 4,
respectively. This intensification would be because longer-wavelength convection is more
significant as a result of the convection instability (see figure 11). Smaller βU ∼ 10−1

would, however, lead to an optimal length scale of convection and thus no significant
dependence of convective turbulence on the horizontal domain size.

6. Summary and outlook

We have performed the three-dimensional DNS of turbulent thermal convection between
horizontal no-slip, permeable walls with a distance H and a constant temperature
difference �T . On the no-slip wall surfaces z = 0, H, the vertical transpiration velocity
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has been assumed to be proportional to the local pressure fluctuation (Jiménez et al.
2001), i.e. w = −βp′/ρ, +βp′/ρ mimicking a Darcy-type permeable wall (Batchelor
1967, pp. 223–224). A zero net mass flux through the permeable wall is instantaneously
ensured, and convective turbulence is driven only by buoyancy without any additional
energy inputs. The permeability parameter is set to βU = 0 (an impermeable case) and
βU = 3 (a permeable case) where U = (gαΔTH)1/2 is the buoyancy-induced terminal
velocity. Direct numerical simulations has been carried out at the Rayleigh number up to
Ra = 1011 in the impermeable case and Ra = 1010 in the permeable case for fixed Prandtl
number Pr = 1. We have found that the wall permeability leads to the critical transition
of the Nusselt number scaling with the Rayleigh number from Nu ∼ Ra1/3 to the ultimate
scaling Nu ∼ Ra1/2 as Ra increases.

In the subcritical regime 106 � Ra � 107 we have found the classical scaling law
Nu ∼ Ra1/3 commonly observed in turbulent RBC although on the permeable wall, there
are weak vertical velocity fluctuations of the order of Ra−1/6U comparable with the
velocity scale of near-wall small-scale thermal plumes in RBC (i.e. the impermeable case).
The mean temperature gradient becomes small in the bulk region as Ra increases, and
temperature fluctuations scale with Ra−1/9�T in the bulk.

In the supercritical regime 107 � Ra � 1010, on the other hand, the ultimate scaling
Nu ∼ Ra1/2 has been found. In this supercritical regime the mean temperature profile
exhibits a steeper gradient in the very near-wall thermal conduction layers at higher Ra
while a finite value of the temperature gradient remains in the bulk region, implying
temperature fluctuations of O(�T), in contrast to the vanishing bulk temperature gradient
in the impermeable and subcritical permeable cases. This situation is very different from
convective turbulence without horizontal walls (Calzavarini et al. 2005; Pawar & Arakeri
2016), in which there is no thermal conduction layer and the ultimate scaling has also
been observed. In the supercritical case the significant transpiration velocity is induced
even in the vicinity of the wall. The vertical velocity fluctuation scales with U at any
height. Although the vertical velocity fluctuation is suppressed near the permeable wall
in comparison to the bulk region, there is no near-wall layer of large change in the
vertical velocity, suggesting that the effect of viscosity is negligible even in the near-wall
region. In such ‘wall-bounded’ convective turbulence the vertical fluid motion exhibits
the large length scale of O(H) in the whole region, and the buoyancy acceleration by the
temperature difference of O(�T) can achieve the vertical velocity comparable with the
terminal velocity U. The ultimate heat transfer is attributed to the resulting large-scale
strong plumes extending from the near-wall region of one permeable wall to the other
wall. The balance between buoyancy power, energy dissipation and pressure power on the
permeable walls in the total energy budget equation provides us with the Taylor dissipation
law ε ∼ U3/H as well as the ultimate scaling Nu ∼ Ra1/2. The key to the achievement
of the ultimate heat transfer is the activation of transpiration in the near-wall region of
the permeable wall, leading to the large-scale and so intense vertical fluid motion rather
than to transition to turbulence in boundary-layer flow. The excitation of transpiration is
considered to be a consequence of near-wall larger-horizontal-scale unstable convection
mode on the permeable wall, distinct from that on the impermeable or less-permeable
wall.

Finally, we would like to suggest the possibility of the ultimate heat transfer in physical
experiments. The properties of the present permeable wall can be estimated as a porous
wall of many fine through-holes in the vertical direction with a constant-pressure plenum
chamber underneath (or overhead). We install so many holes in the wall that the entire
surface of the wall is almost covered by the holes. Supposing the flow through the holes to
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be laminar and thus be represented by the Hagen–Poiseuille flow, we have its mean outflow
velocity from the holes

w̄ = − d2

32νl
�p
ρ

, (6.1)

where d, l and �p represent the diameter of the holes, the thickness of the wall and the
pressure drop through the wall (or the pressure difference with respect to the constant
pressure in the plenum chamber), respectively. From the permeable boundary condition
(2.5a,b), the permeability coefficient β can be expressed rigorously as

β = d2

32νl
(6.2)

and its dimensionless expression is

βU = 1
32

(
d
H

)2 H
l

Pr−1/2Ra1/2. (6.3)

The permeability condition βU ∼ Ra0 employed in the present DNS is not consistent
with the estimate βU ∼ Ra1/2 in (6.3) for fixed geometry. If we suppose that the estimate
βU ∼ Ra1/2 holds in the fixed geometry of experiments, then the Nusselt number could
increase as Nu ∼ Raγ for an exponent γ � 1/2 in the experiments. This is because in
the ultimate scaling Nu = cRa1/2, a ‘prefactor’ c might also increase with increasing
βU ∼ Ra1/2 as Ra is increased. The above estimate Nu ∼ Raγ for γ � 1/2 could suggest
the physical realisability of the ultimate scaling in the sense that we can achieve the heat
transfer comparable with or exceeding the ultimate scaling Nu ∼ Ra1/2.

In experiments, however, there could appear a type of NOB effect obscuring the ultimate
heat transfer. The NOB effects are observed if fluid properties vary with the temperature,
possibly altering the heat flux. The NOB effects would arise in the permeability parameter
β as well for fixed geometry. The time dependence of the flow (such as laminar
reciprocation) in the holes could also affect the estimate (6.1) for steady flow. There would
be such causes for the deviation from the estimate (6.3) and the ultimate scaling. Taking
account of their effects on the resulting heat flux we might realise the ultimate heat transfer
by properly modifying the geometry of porous walls.

The pressure power on the permeable walls, i.e. the second term on the right-hand side
of the total energy budget, (3.1) (and (3.4)), is strictly greater than zero, implying that the
pressure power is always an energy sink taking the energy out of the thermal-convection
system. The taken energy would be used to drive the viscous flow in the holes of the
wall, that is another flow system considered here. The power driving the viscous flow is
estimated to be −w̄�p/(ρl). Therefore, if all the pressure power on the permeable wall by
thermal convection is consumed to drive the flow in the porous wall, we have

1
βH

〈
w2

〉
xyt

∣∣∣∣
wall

∼ −w̄
�p
ρl

= 1
βl

w̄2, (6.4)

where we have used the permeable boundary condition w̄ = −β�p/ρ for the rightmost
equality. If we suppose that the wall-normal velocity fluctuations on the permeable wall
are comparable to the flow velocity in the holes, i.e.

〈
w2〉

xyt |wall ∼ w̄2, then (6.4) suggests
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that

l/H ∼ 1. (6.5)

Substitution of (6.5) in (6.3) yields

d/H ∼ (βU)1/2Pr1/4Ra−1/4. (6.6)

Now we map the above estimates onto turbulent thermal convection between the
permeable walls in this study where the NOB effects have been neglected. In the
supercritical permeable case βU = 3 (βU ∼ Ra0), since the RMS vertical velocity on
the permeable wall is approximately 10−1U (see figure 2b), the Reynolds number of
the flow in the holes is estimated to be w̄d/ν ∼ 10−1Ud/ν ∼ 10−1Ra1/2Pr−1/2d/H,
where (5.11) has been used for the rightmost equality. Equation (6.6) then tells us that
w̄d/ν ∼ 10−1Ra1/2Pr−1/2d/H ∼ 10−1Ra1/4Pr−1/4. It turns out that at 108 � Ra � 1012

for Pr ∼ 1, the permeability parameter βU ∼ 1 could characterise the present porous
walls with geometry of l/H ∼ 1 and 10−3 � d/H � 10−2, between which the ultimate
heat transfer should be observed. In this realistic configuration, the Reynolds number of
the flow in the holes is in the range 101 � w̄d/ν � 102, where the flow is laminar, so that
the supposed ‘Darcy law’, (6.1), is valid on the porous walls. At Ra � 1016 for Pr ∼ 1,
however, the Reynolds number w̄d/ν � 103 estimated from the ‘Darcy law’ would be
high enough for transition to turbulence in the holes. Such extremely high-Ra thermal
convection is, therefore, beyond the simplified argument based on (6.1) here.
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Appendix A. Parameters in numerical simulations

Parameters in numerical simulations at Ra = 106–1010 are shown for the permeable case
of βU = 3, L/H = 1 and Pr = 1 in table 1. As shown in the table, the grid spacing
is comparable to the Kolmogorov length η = (ν3/ε)1/4 estimated from the total energy
dissipation ε. The averaging time τU/H = 528–3 × 104 is comparably long with τU/H =
400 in Stevens et al. (2010) except for τU/H = 37.5 at the highest Rayleigh number
Ra = 1010. Before averaging we have performed preliminary numerical simulations
starting from the initial data taken at lower Ra for the duration 31.4H/U–315H/U to
confirm statistically stationary time sequence of 〈∂T/∂z〉xy|z=0. At Ra = 1010, before
averaging, we have performed the simulation for relatively long time 136H/U although
the averaging time is rather short.

Appendix B. Prandtl-number dependence

In order to examine the effects of the Prandtl number Pr on the scaling of the Nusselt
number Nu and the Reynolds number Re with the Rayleigh number, we have performed
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Ra Nx × Ny × Nz
max(�z)

η

min(�z)
η

�x
η

Nu τU/H �tκ/H2

106 642 × 64 1.66 0.041 1.06 33.4 30 000 1 × 10−5

106.1 642 × 64 1.79 0.044 1.14 35.5 11 220 1 × 10−5

106.2 642 × 64 1.94 0.048 1.23 38.2 12 589 1 × 10−5

106.3 642 × 64 2.10 0.052 1.34 41.2 14 125 1 × 10−5

106.4 642 × 64 2.27 0.056 1.45 44.1 7924 5 × 10−6

106.5 642 × 64 2.46 0.060 1.57 48.0 8891 5 × 10−6

106.6 642 × 64 2.66 0.065 1.69 51.3 9976 5 × 10−6

106.7 642 × 128 1.44 0.018 1.83 55.5 5597 2 × 10−6

106.8 642 × 128 1.56 0.019 2.00 60.9 6280 2 × 10−6

106.9 642 × 128 1.70 0.021 2.16 67.5 3523 1 × 10−6

107 1282 × 128 1.84 0.023 1.17 73.4 11 859 1 × 10−6

107.1 1282 × 128 2.00 0.025 1.27 81.3 4435 1 × 10−6

107.2 1282 × 128 2.16 0.027 1.38 87.0 3981 1 × 10−6

107.3 1282 × 128 2.36 0.029 1.50 98.9 3350 1 × 10−6

107.4 1282 × 128 2.57 0.032 1.64 111 2506 5 × 10−7

107.5 1282 × 128 2.79 0.034 1.78 121 2812 5 × 10−7

107.6 1282 × 128 3.05 0.037 1.94 140 3155 5 × 10−7

107.7 1282 × 256 1.66 0.010 2.12 159 1770 5 × 10−7

107.8 1282 × 256 1.81 0.011 2.31 178 3972 5 × 10−7

107.9 1282 × 256 1.98 0.012 2.52 201 2228 1 × 10−7

108 1282 × 256 2.15 0.013 2.74 224 3763 1 × 10−7

108.1 1282 × 256 2.33 0.014 2.97 246 1403 1 × 10−7

108.2 1922 × 256 2.55 0.016 2.17 283 1888 1 × 10−7

108.3 2562 × 384 1.84 0.008 1.76 308 1059 1 × 10−7

108.4 2562 × 384 2.03 0.008 1.94 362 792 5 × 10−8

108.5 2562 × 384 2.19 0.009 2.09 388 1334 5 × 10−8

108.6 2562 × 384 2.36 0.009 2.25 408 748 2 × 10−8

108.7 2562 × 384 2.61 0.011 2.49 496 840 2 × 10−8

108.8 2562 × 384 2.81 0.012 2.69 532 942 2 × 10−8

108.9 2562 × 384 3.06 0.013 2.92 589 528 1 × 10−8

109 2562 × 384 3.35 0.014 3.20 684 1185 1 × 10−8

1010 5122 × 768 3.90 0.008 3.72 2002 37.5 1 × 10−9

Table 1. Parameters of the numerical simulations for turbulent thermal convection between the permeable
walls at Ra = 106–1010 for βU = 3, L/H = 1 and Pr = 1. Ra is the Rayleigh number. Nx (= Ny) and Nz are
the number of grid points in the horizontal x- (or y-) and the vertical z-directions, respectively. Here �x (= �y)
and �z are the grid spacing in the horizontal and the vertical directions, respectively. Here η = (ν3/ε)1/4 is
the Kolmogorov length, where ε is the total energy dissipation (3.2); Nu is the Nusselt number. The numerical
data are compiled for the duration τ . Here �t is the time increment of numerical simulation.

DNS of turbulent convection between the permeable walls for Pr = 7. We inspect the
ultimate scaling law

Nu ∼ Pr1/2Ra1/2, Re ∼ Pr−1/2Ra1/2. (B1a,b)

Figure 12 shows Nu compensated by Pr1/2 as a function of the Rayleigh number Ra
at Pr = 7 and Pr = 1 for the horizontal period L/H = 1 and the permeability βU = 3.
The transition to the ultimate scaling Nu ∼ Pr1/2Ra1/2 is also observed for Pr = 7. In the
supercritical Ra range, the compensated Nu-plots roughly collapse onto a single line. The
scaling behaviour in the subcritical Ra-range for Pr = 7 is different from that for Pr = 1,
and the transition point seems to have a slight Pr dependence.
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Figure 12. The Nusselt number Nu compensated by Pr1/2 as a function of the Rayleigh number Ra. The
filled and open circles represent the present DNS data for Pr = 7 and Pr = 1 in the permeable case βU = 3,
respectively. The red and blue line indicate Nu ∼ Pr1/2Ra1/2 and Nu ∼ Ra1/3, respectively. The inset shows
Nu compensated by (RaPr)1/2.
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Figure 13. The RMS vertical velocity on the wall z = 0 normalised by (a) Ra−1/6Pr1/6U and (b) U in the
permeable case βU = 3 for Pr = 7.

The critical transition is also observed in the RMS vertical velocity on the wall for
Pr = 7 as shown in figure 13. We have confirmed that the other turbulent statistics and
structures are similar to those observed for Pr = 1.

In figure 14 is shown the Reynolds number

Re = 〈w2〉1/2
xyztH

ν
(B2)

as a function of Ra in the permeable case for Pr = 1 and Pr = 7. We can see that in
the supercritical permeable case, Re scales with Pr−1/2Ra1/2 (or equivalently the RMS
velocity scales with U = (gα�TH)1/2), implying the ultimate scaling (see (5.11) in § 5 for
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Figure 14. The Reynolds number Re = 〈w2〉1/2
xyztH/ν compensated by Pr−1/2 as a function of the Rayleigh

number Ra. The filled and open circles represent the present DNS data for Pr = 7 and Pr = 1 in the
permeable case βU = 3, respectively. The red and blue line indicate Re ∼ Pr−1/2Ra1/2 and Re ∼ Pr−2/3Ra4/9,
respectively. The inset shows Re compensated by Ra1/2Pr−1/2.

physical interpretation of the ultimate scaling). In the subcritical permeable case, on the
other hand, Re seems to be proportional to Ra4/9 as in the impermeable case (see (5.9) in
§ 5 for physical interpretation of the classical scaling).
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