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Abstract. Non-abelian homology of Lie algebras with coefficients in Lie algebras
is constructed and studied, generalising the classical Chevalley-Eilenberg homology of
Lie algebras. The relationship between cyclic homology and Milnor cyclic homology
of non-commutative associative algebras is established in terms of the long exact non-
abelian homology sequence of Lie algebras. Some explicit formulae for the second and
the third non-abelian homology of Lie algebras are obtained.
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0. Introduction. The non-abelian homology of groups with coefficients in groups
was constructed and investigated in [16, 17], using the non-abelian tensor product
of groups of Brown and Loday [4, 5] and its non-abelian left derived functors. It
generalises the classical Eilenberg-MacLane homology of groups and extends Guin’s
low dimensional non-abelian homology of groups with coefficients in crossed modules
[9], having an interesting application to the algebraic K-theory of non-commutative
local rings [9, 17].

The purpose of this paper is to set up a similar non-abelian homology theory for
Lie algebras and is mainly dedicated to state and prove several desirable properties of
this homology theory.

In [8] Ellis introduced and studied the non-abelian tensor product of Lie algebras
which is a Lie structural and purely algebraic analogue of the non-abelian tensor
product of groups of Brown and Loday [4, 5], arising in applications to homotopy
theory of a generalised Van Kampen theorem.

Applying this tensor product of Lie algebras, Guin defined the low-dimensional
non-abelian homology of Lie algebras with coefficients in crossed modules [10].

We construct a non-abelian homology H∗(M, N) of a Lie algebra M with
coefficients in a Lie algebra N as the non-abelian left derived functors of the tensor
product of Lie algebras, generalising the classical Chevalley-Eilenberg homology of
Lie algebras and extending Guin’s non-abelian homology of Lie algebras [10]. We
give an application of our long exact homology sequence to cyclic homology of
associative algebras, correcting the result of [10]. In fact, for a unital associative
(non-commutative) algebra A we obtain a long exact non-abelian homology
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sequence

· · · → H2(A, V (A), [A, A]) → H2(A, V (A)) → H2(A, [A, A]) → H1(A, V (A), [A, A])

→ H1(A, V (A)) → H1(A, [A, A]) → HC1(A) → HCM
1 (A)

→ [A, A]/[A, [A, A]] → 0.

In a forthcoming paper we will give a version of non-abelian cohomology theory of
Lie algebras following [10] and using ideas from [13, 14, 15]. We also hope to return to
detailed analysis of the non-abelian homology of Lie algebras of matrices in connection
with cyclic homology and de Rham cohomology following ideas of Loday and Quillen
[19].

NOTATIONS AND CONVENTIONS. We denote by � a unital commutative ring unless
otherwise stated. We shall use the term Lie algebra to mean a Lie algebra over �. [ , ]
and | | denote the Lie bracket and the coset of the quotient Lie algebra respectively.
We denote the category of Lie algebras over � by Lie.

1. The non-abelian tensor product. Let P and M be two Lie algebras. By an
action of P on M we mean a �-bilinear map P × M → M, (p, m) �→ pm satisfying the
following conditions:

[p,p′]m = p(p′
m) − p′

(pm), p[m, m′] = [pm, m′] + [m, pm′],

for all m, m′ ∈ M and p, p′ ∈ P. For example, if P is a subalgebra of some Lie algebra
Q, and if M is an ideal in Q, then Lie multiplication in Q yields an action of
P on M.

Now we give the definition of the tensor product of Lie algebras due to Ellis [8]
(see also [6], [10]). Let M and N be two Lie algebras acting on each other. The tensor
product M ⊗ N of the Lie algebras M and N is the Lie algebra generated by the
symbols m ⊗ n, m ∈ M, n ∈ N, and subject to the following relations:

(i) λ(m ⊗ n) = λm ⊗ n = m ⊗ λn,
(ii) (m + m′) ⊗ n = m ⊗ n + m′ ⊗ n,

m ⊗ (n + n′) = m ⊗ n + m ⊗ n′,
(iii) [m, m′] ⊗ n = m ⊗ (m′

n) − m′ ⊗ (mn),
m ⊗ [n, n′] = (n′

m) ⊗ n − (nm) ⊗ n′,
(iv) [(m ⊗ n), (m′ ⊗ n′)] = −(nm) ⊗ (m′

n′)
for all λ ∈ �, m, m′ ∈ M, n, n′ ∈ N.

Suppose that φ : M → A, ψ : N → B are Lie homomorphisms, A, B act on each
other, and φ, ψ preserve the actions in the following sense:

φ(nm) = ψ(n)φ(m), ψ(mn) = φ(m)ψ(n), m ∈ M, n ∈ N.

Then, by [8], there is a unique homomorphism φ ⊗ ψ : M ⊗ N → A ⊗ B such that
(φ ⊗ ψ)(m ⊗ n) = φ(m) ⊗ ψ(n) for all m ∈ M, n ∈ N. Furthermore, if φ, ψ are onto,
so also is φ ⊗ ψ .

The tensor product of Lie algebras is symmetric in the sense of the isomorphism
M ⊗ N → N ⊗ M given by m ⊗ n �→ −n ⊗ m [8].
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A precrossed P-module (M, µ) is a Lie homomorphism µ : M → P together with
an action of P on M satisfying the following condition:

µ(pm) = [p, µ(m)].

If in addition the precrossed module (M, µ) satisfies the Peiffer identity:

µ(m)m′ = [m, m′],

then it is said to be a crossed P-module. Note that for a crossed module (M, µ) the
image of µ is necessarily an ideal in P and the kernel of µ is a P-invariant ideal in
the center of M. Moreover the action of P on Ker µ induces an action of P/ Im µ on
Ker µ, making Ker µ a P/ Im µ-module.

In [8] the results on the tensor product M ⊗ N are obtained assuming the actions
of M and N on each other compatible, i.e.

(nm)n′ = [n′, mn] and (mn)m′ = [m′, nm], (1)

for all m, m′ ∈ M and n, n′ ∈ N. This is the case, for example, if (M, µ) and (N, ν) are
crossed P-modules, M and N act on each other via the action of P. These compatibility
conditions are not assumed to hold except in the following proposition.

PROPOSITION 1. Let M and N be Lie algebras acting on each other such that the
compatibility conditions (1) hold. Then there is a natural isomorphism of Lie algebras

M ⊗ N ∼= (M ⊗� N)/D(M, N),

where D(M, N) is the �-submodule of M ⊗� N generated by the elements

[m, m′] ⊗ n − m ⊗ (m′
n) + m′ ⊗ (mn),

m ⊗ [n, n′] − (n′
m) ⊗ n + (nm) ⊗ n′,

(nm) ⊗ (mn),

(nm) ⊗ (m′
n′) + (n′

m′) ⊗ (mn),

[nm, n′
m′] ⊗ (m′′

n′′) + [n
′
m′, n′′

m′′] ⊗ (mn) + [n
′′
m′′, nm] ⊗ (m′

n′),

for all m, m′, m′′ ∈ M and n, n′, n′′ ∈ N.

Proof. Let us introduce the �-module (M ⊗� N)/D(M, N) with a Lie structure
defined by the following formula

[m ⊗ n, m′ ⊗ n′] = −(nm) ⊗ (m′
n′).

To show that this multiplication could be extended from generators to any elements
of (M ⊗� N)/D(M, N) one has to check its compatibility with the defining relations
of (M ⊗� N)/D(M, N), which is routine and will be omitted. Now it is easy to see the
required isomorphism of Lie algebras. �

The interesting properties of the tensor product of Lie algebras, in particular its
compatibility with the direct limits and the right exactness, will be given.
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PROPOSITION 2. Let {Mα, φβ
α , α ≤ β} be a direct system of Lie algebras. Let N

be a Lie algebra and let for every α the Lie algebras Mα, N act on each other and the
homomorphisms φβ

α preserve the actions. Then there is a natural isomorphism of Lie
algebras (

lim−→
α

{Mα}
)

⊗ N ∼= lim−→
α

{Mα ⊗ N}.

Proof. We only define the actions of lim−→
α

{Mα} and N on each other by the following

way:

|mα |n = mα n and n|mα| = |nmα|
for all mα ∈ Mα, n ∈ N, and the natural isomorphism of Lie algebras

f :
(

lim−→
α

{Mα}
)

⊗ N −→ lim−→
α

{Mα ⊗ N} by f (|mα| ⊗ n) = |mα ⊗ n|.

The details of the proof are straightforward. �

PROPOSITION 3. Suppose 0 → M′ φ→ M
ψ→ M′′ → 0 is a short exact sequence of

Lie algebras, N is an arbitrary Lie algebra acting on M′, M and M′′; the Lie algebras
M′, M, M′′ act on N and φ, ψ preserve these actions. Then there is an exact sequence of
Lie algebras

M′ ⊗ N −→ M ⊗ N −→ M′′ ⊗ N −→ 0.

Proof. This is similar to the proof of Proposition 9 [8] since it does not use
compatibility conditions (1). �

2. Construction of non-abelian homology. Let M be a �-module, N a Lie algebra
and α : M → Der(N) a �-homomorphism, where Der(N) is the Lie algebra of
derivations of N. Let us denote by F(M) the free Lie algebra on the �-module
M, i.e. the Lie algebra A(M)�B(M), where A(M) = ∑

0<k Ak(M) with A1(M) = M,
Ak(M) = ∑

0<i<k Ai(M) ⊗� Ak−i(M) is the free (non-associative) algebra on M and
B(M) is the two-sided ideal of A(M) generated by the elements

xx and x(yz) + y(zx) + z(xy) for all x, y, z ∈ A(M).

Then there exists a unique Lie homomorphism κ : F(M) → Der(N) such that
κi = α, where i : M → F(M) is the natural homomorphism of �-modules This means
that there is an action of the Lie algebra F(M) on the Lie algebra N.

Now if in addition M is an N-module, then the module action of N on M yields
an N-module structure on Ak(M): if x ⊗ y ∈ Ai(M) ⊗� Ak−i(M) and n ∈ N then,
inductively, we define

n(x ⊗ y) = nx ⊗ y + x ⊗ ny,

and this extends linearly to an action of n on an arbitrary element of Ak(M). The
action of N on Ak(M) extends linearly to an action of N on A(M), making A(M)
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into an N-module. Since B(M) is N-invariant, the action of N on A(M) induces a Lie
action of N on F(M).

Let AN denote, for a fixed Lie algebra N, the category whose objects are all Lie
algebras M together with an action of M on N by derivations of N and an action of N
on M by derivations of M. Morphisms in the category AN are all Lie homomorphisms
α : M → M′ preserving the actions, namely α(nm) = nα(m) and mn = α(m)n for all
m ∈ M, n ∈ N.

Let F : AN → AN be the endofunctor defined as follows: for an object M of
AN , let F(M) denote the free Lie algebra on the underlying �-module M with the
above-mentioned actions of N on F(M) and F(M) on N; for a morphism α : M → M′

of AN , let F(α) be the canonical Lie homomorphism from F(M) to F(M′) induced
by α.

Let τ : F → 1AN be the obvious natural transformation and let δ : F → F2 be
the natural transformation induced for every M ∈ ob AN by the natural inclusion of
�-modules M → F(M). We obtain the cotriple � = (F , τ, δ). Then for any object M
there is an augmented simplicial object in the category AN

· · · →...→ Fk+1(M)

dk
0→...→

dk
k

· · ·
d2

0→→→
d2

2

F2(M)
d1

0→→
d1

1

F1(M)
τM→ M,

F1(M) = F(M), Fk+1(M) = F(Fk(M)), dk
i = F i(τFk−i(M)), sk

i = F i(δFk−i(M)), k ≥ 1,
called the cotriple resolution of M and denoted by (F∗(M), τM, M).

Let T : AN → Lie be a covariant functor. Applying T dimension-wise to F∗(M)
yields the simplicial Lie algebra T F∗(M). Define the k-th derived functor L�

kT : AN →
Lie, k ≥ 0, of the functor T relative to the cotriple � as the k-th homotopy of
T F∗(M). Note that L�

kT (M), k ≥ 1, is an abelian Lie algebra and will be thought as
a �-module.

The non-abelian tensor product of Lie algebras defines a covariant functor − ⊗ N
from the category AN to the category Lie. Consider the derived functors L�

k(− ⊗ N),
k ≥ 0, of the functor − ⊗ N relative to the cotriple �.

PROPOSITION 4. Let M be a Lie algebra and N a module over the Lie algebra M,
then there are natural isomorphisms

L�
k(− ⊗ N)(M) ∼= Hk+1(M, N), k ≥ 1,

Ker ν ∼= H1(M, N), Coker ν ∼= H0(M, N),

where N is thought as an abelian Lie algebra acting trivially on M, ν : M ⊗ N → N is a
Lie homomorphism given by ν(m ⊗ n) = mn, m ∈ M, n ∈ N.

Proof. Let LieM denote the category of Lie algebras over M and DiffM : LieM →
U(M) − mod (category of U(M)-modules) a functor given by

DiffM(W ) = I(W ) ⊗U(W ) U(M),

where U(M) and U(W ) are the universal enveloping algebras of M and W respectively
and I(W ) is the augmentation ideal. By Proposition 13 [6] L�

∗(− ⊗ N)(M) are
isomorphic to the values of the cotriple derived functors of the functor DiffM(−) ⊗U(M)

N : LieM → � − mod (category of �-modules) for the object 1M of the category LieM
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which give the classical Chevalley-Eilenberg homology H∗(M, N) of Lie algebras with
the usual dimension shift, similarly to the cases of group (co)homology and Hochschild
(co)homology described as cotriple (co)homology [2, 3]. �

Using this proposition we make the following definition.

DEFINITION 5. Let M and N be Lie algebras acting on each other. Define the
non-abelian homology of M with coefficients in N by setting

Hk(M, N) = L�
k−1(− ⊗ N)(M), k ≥ 2,

H1(M, N) = Ker ν, H0(M, N) = Coker ν,

where ν : M ⊗ N → N�H, ν(m ⊗ n) = |mn|, and H is the ideal of the Lie algebra N
generated by the elements (nm)n′ − [n′, mn] for all m ∈ M, n, n′ ∈ N.

REMARK. (a) It is clear that Hk(M, N), k ≥ 2, are only �-modules, when H1(M, N)
and H0(M, N) are Lie algebras. If the actions of M and N satisfy the compatibility
conditions (1), then H1(M, N) is also an abelian Lie algebra.

(b) Let N be a crossed M-module, then H0(M, N) and H1(M, N) coincides with
zero and first non-abelian homology �-modules of the Lie algebra M with coefficients
in the crossed M-module N introduced by Guin [10].

One could define another non-abelian homology theory of Lie algebras using the
derived functors of the non-abelian tensor product relative to the cotriple over sets
which coincides with our theory for Lie algebras being free �-modules.

3. Some properties of non-abelian homology. First several long exact non-abelian
homology sequences with respect to both variables will be given.

THEOREM 6. Let α : N → N ′ be a surjective Lie homomorphism, M an arbitrary
Lie algebra acting on N and N ′ which act on M and α preserve the actions. Then there is
a long exact sequence of non-abelian homology

· · · → H3(M, N ′)
δ3→ H2(M, N, N ′)

j2→ H2(M, N)
i2→ H2(M, N ′)

δ2→ H1(M, N, N ′)
j1→ H1(M, N)

i1→ H1(M, N ′)
δ1→ H0(M, N, N ′)

j0→ H0(M, N)
i0→ H0(M, N ′) → 0,

(2)

where

Hk(M, N, N ′) = πk−1(Ker(1F∗(M) ⊗ α)), k ≥ 2,

H1(M, N, N ′) =
{
Ker

(
1F1(M) ⊗ α

) ∩ (
d0

0 ⊗ 1N
)−1

(Ker(1M ⊗ α) ∩ Ker ν)
}(

d1
1 ⊗ 1N

)(
Ker

(
1F2(M) ⊗ α

) ∩ Ker
(
d1

0 ⊗ 1N
)) ,

H0(M, N, N ′) = Ker α̃/ν(Ker(1M ⊗ α)),

(F∗(M), d0
0 , M) is the � cotriple resolution of the object M of the category AN and

α̃ : N/H → N ′/H ′ is the homomorphism induced by α.
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Proof. The following commutative diagram of Lie algebras with exact columns

0 0 0 0
↓ ↓ ↓ ↓

· · · →→→ Ker(1F2(M) ⊗ α) →→ Ker(1F1(M) ⊗ α) → Ker(1M ⊗ α) → Ker α̃

↓ ↓ ↓ ↓
· · · →→→ F2(M) ⊗ N

d1
0 ⊗1N→→

d1
1 ⊗1N

F1(M) ⊗ N
d0

0 ⊗1N→ M ⊗ N
ν→ N/H

1F2(M)⊗α ↓ ↓ 1F1(M)⊗α ↓ 1M⊗α ↓ α̃

· · · →→→ F2(M) ⊗ N ′
d1

0 ⊗1N′→→
d1

1 ⊗1N′
F1(M) ⊗ N ′ d0

0 ⊗1N′→ M ⊗ N ′ ν ′→ N ′/H ′

↓ ↓ ↓ ↓
0 0 0 0

,

immediately induces the exactness of the sequence

· · · −→ H3(M, N ′)
δ3−→ H2(M, N, N ′)

j2−→ H2(M, N)
i2−→ H2(M, N ′).

Applying the “snake lemma” to the last two columns of this diagram one has the
following exact sequence

H1(M, N)
i1−→ H1(M, N ′)

δ1−→ H0(M, N, N ′)
j0−→ H0(M, N)

i0−→ H0(M, N ′) −→ 0.

We define the homomorphisms j1 and δ2 by

j1(|x|) = (
d0

0 ⊗ 1N
)
(x)

for x ∈ {Ker(1F1(M) ⊗ α) ∩ (d0
0 ⊗ 1N)

−1
(Ker(1M ⊗ α) ∩ Ker ν)} and

δ2(|y|) = ∣∣(d1
1 ⊗ 1N

)
(y′) − (

d1
0 ⊗ 1N

)
(y′)

∣∣
for y ∈ Ker (d1

1 ⊗ 1N ′ ) ∩ Ker (d1
0 ⊗ 1N ′ ), where y′ ∈ F2(M) ⊗ N such that (1F2(M) ⊗

α)(y′) = y. It is easy to check that j1 and δ2 are well defined and that the
sequence (2) is exact in terms H2(M, N ′), H1(M, N, N ′) and H1(M, N) by virtue of
Proposition 3. �

REMARK. (a) If the actions of M and N satisfy the compatibility conditions (1) (in
this case M and N ′ act on each other compatibly), then H0(M, N, N ′) = H0(M, N ′′),
where N ′′ = Ker α.

(b) Let 0 → (N ′′, 0) → (N, µ) → (N ′, ν) → 0 be an exact sequence of crossed M-
modules. Thanks to the result in [10] there is a six-term exact non-abelian homology
sequence

H1(M, N ′′) → H1(M, N) → H1(M, N ′) → H0(M, N ′′) → H0(M, N)

→ H0(M, N ′) →0. (3)

The first five terms of the sequence (3) coincide with the first five terms of the sequence
(2) and there is a natural homomorphism of �-modules H1(M, N ′′) → H1(M, N, N ′).
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Let

M2

D = ↓ α2

M1
α1→ M

(4)

be a diagram in the category AN with surjective α1. Let L∗(D, N) be the pullback of
the induced diagram

F∗(M2) ⊗ N
↓ F∗(α2)⊗1N

F∗(M1) ⊗ N
F∗(α1)⊗1N−→ F∗(M) ⊗ N.

Define Hk(D, N) = πk−1L∗(D, N), k ≥ 2.

THEOREM 7 (MAYER-VIETORIS SEQUENCE). For any diagram (4) there is a long
exact sequence of �-modules

· · · → Hk+1(M, N) → Hk(D, N) → Hk(M1, N) ⊕ Hk(M2, N) → Hk(M, N)

· · · → H2(D, N) → H2(M1, N) ⊕ H2(M2, N) → H2(M, N) → π0L∗(D, N)

→ π0(F∗(M1) ⊗ N) ⊕ π0(F∗(M2) ⊗ N) → π0(F∗(M) ⊗ N) → 0. (5)

Proof. There is a commutative diagram of simplicial Lie algebras with exact rows

0 −→ I∗
σ∗−→ L∗(D, N)

p∗−→ F∗(M2) ⊗ N −→ 0
|| ↓ q∗ ↓ F∗(α2)⊗1N

0 −→ I∗ −→ F∗(M1) ⊗ N
F∗(α1)⊗1N−→ F∗(M) ⊗ N −→ 0,

where I∗ = Ker(F∗(α1) ⊗ 1N). Hence one has the following commutative diagram with
exact rows

· · · → π1(F∗(M2) ⊗ N) → π0(I∗) → π0L∗(D, N) → π0(F∗(M2) ⊗ N) → 0
↓ ‖ ↓ ↓

· · · → π1(F∗(M) ⊗ N)
δ1→ π0(I∗) → π0(F∗(M1) ⊗ N) → π0(F∗(M) ⊗ N) → 0.

(6)

The connecting homomorphism πk(F∗(M) ⊗ N) → πk−1L∗(D, N), k ≥ 1, is
the composite map πk−1(σ∗)δk. The homomorphism πk(L∗(D, N)) → πk(F∗(M1) ⊗
N) ⊕ πk(F∗(M2) ⊗ N), k ≥ 0, is induced by πk(q∗) and πk(p∗). The homo-
morphism πk(F∗(M1) ⊗ N) ⊕ πk(F∗(M2) ⊗ N) → πk(F∗(M) ⊗ N), k ≥ 0, is given by
πk(F∗(α1) ⊗ 1N) − πk(F∗(α2) ⊗ 1N). To get the exactness of the sequence (5) it remains
to use the diagram (6). �

COROLLARY 8. There is a long exact sequence of the non-abelian homology of Lie
algebras with respect to the first variable.

Proof. This follows by applying Theorem 7 for M2 = 0. �

Let us consider H1(−, N) as a functor from the category AN to the category Lie
of Lie algebras and its derived functors L�

k(H1(−, N)) relative to the cotriple �.
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THEOREM 9. There is a natural isomorphism

Hk(−, N) ∼= L�
k−1(H1(−, N)), k ≥ 1.

Proof. This follows from the long exact homotopy sequence of the following short
exact sequence of simplicial Lie algebras

0 0 0
↓ ↓ ↓

· · · →...→ H1(F3(M), N)
→→→ H1(F2(M), N) →→ H1(F1(M), N)

↓ ↓ ↓
· · · →...→ F3(M) ⊗ N

→→→ F2(M) ⊗ N →→ F1(M) ⊗ N,

↓ ν ↓ ν ↓ ν

· · · →...→ Im ν
→→→ Im ν →→ Im ν

↓ ↓ ↓
0 0 0

where the bottom simplicial Lie algebra is a constant simplicial Lie algebra and
ν : M ⊗ N → N/H is a homomorphism given in Definition 5. �

PROPOSITION 10. Let {Mα, φβ
α , α ≤ β} and {Nα, ψβ

α , α ≤ β} be direct systems of
Lie algebras. Let M and N be Lie algebras and for every α the Lie algebras Mα, N and
M, Nα act on each other and the homomorphisms φβ

α , ψβ
α preserve the actions. Then there

are natural isomorphisms

Hk

(
M, lim−→

α

{Nα}
)

∼= lim−→
α

{Hk(M, Nα)}, k ≥ 0,

Hk

(
lim−→

α

{Mα}, N
)

∼= lim−→
α

{Hk(Mα, N}), k ≥ 0.

Proof. This is straightforward. �
We end this section with explicit descriptions of the second and the third non-

abelian homology of Lie algebras.
Let M and N be Lie algebras acting on each other. Let F be an object of the

projective class � induced by the cotriple � and F
ε→ M be a �-epimorphism in the

category AN . Let us consider the augmented Čech resolution (Č(ε)∗, ε, M) of the object
M in the category AN , where

Č(ε)k = F ×
M

· · · ×
M

F︸ ︷︷ ︸
(k+1)−times

, k ≥ 0,

dk
i (x0, . . . , xk) = (x0, . . . , x̂i, . . . , xk), k ≥ 1, 0 ≤ i ≤ k,

sk
i (x0, . . . , xk) = (x0, . . . , xi, xi, . . . , xk), k ≥ 0, 0 ≤ i ≤ k.

Applying the functor − ⊗ N dimension-wise to the Čech resolution of M, yields the
augmented simplicial Lie algebra (Č(ε)∗ ⊗ N, ε ⊗ 1N, M ⊗ N).
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THEOREM 11. (i) There is an isomorphism of �-modules

H2(M, N) ∼= {
Ker

(
d1

0 ⊗ 1N
) ∩ Ker

(
d1

1 ⊗ 1N
)}/[

Ker
(
d1

0 ⊗ 1N
)
, Ker

(
d1

1 ⊗ 1N
)]

;

(ii) there is an epimorphism of �-modules

H3(M, N) −→
2⋂

i=0

Ker
(
d2

i ⊗ 1N
)
/
∑
I,J

[KI , KJ ],

where ∅ �= I, J ⊂ {0, 1, 2} such that I ∪ J = {0, 1, 2}, KI = ⋂
i∈I Ker(d2

i ⊗ 1N), and
KJ = ⋂

j∈J Ker(d2
j ⊗ 1N) .

Proof. We have an isomorphism

H2(M, N) = L�
1(−⊗ N)(M) ∼= π1(Č(ε)∗ ⊗ N), (7)

and an epimorphism

H3(M, N) = L�
2(−⊗ N)(M) −→ π2(Č(ε)∗ ⊗ N), (8)

(see e.g. [12], Theorem 2.39 (ii)).
The Lie algebra Č(ε)2 ⊗ N coincides with its ideal generated by the degenerate

elements. In fact, for any (x, y, z) ⊗ n ∈ Č(ε)2 ⊗ N there is an equality

(x, y, z) ⊗ n = (x, x, x) ⊗ n + (0, y − x, y − x) ⊗ n + (0, 0, z − y) ⊗ n

= (
s1

0 ⊗ 1N
)
((x, x) ⊗ n) + (

s1
1 ⊗ 1N

)
((0, x − y) ⊗ n)

+ (
s1

0 ⊗ 1N
)
((0, z − y) ⊗ n).

It is easy to verify the similar fact for Č(ε)3 ⊗ N. Then by [1], Theorem 1

Im ∂2 = [
Ker

(
d1

0 ⊗ 1N
)
, Ker

(
d1

1 ⊗ 1N)
]
,

Im ∂3 = ∑
I,J

[KI , KJ ],

where ∂2 and ∂3 are differentials of the Moore complex of Č(ε)∗ ⊗ N. Hence the
assertion follows from (7) and (8). �

4. Application to cyclic homology. The results of [11, 19, 20] (see also [18]) make
one think of the cyclic homology HC∗ and the Milnor cyclic homology HCM

∗ as
additive version of the algebraic K-theory and the Milnor K-theory respectively. It
is well known [18] that the Milnor cyclic homology groups HCM

∗ (A) coincide with
�∗

A|�/d�∗−1
A|� for commutative algebra A, where �∗

�A are the Kähler differentials forms
of A.

Using the non-abelian group homology the relation of algebraic K-functor K2 and
Milnor K-functor KM

2 is established for non-commutative local rings [9, 17]. To this
end we give an additive version of this result. In particular, the relation of the first
cyclic homlogy HC1 and the first Milnor cyclic homology HCM

1 of unital associative
algebras is expressed in terms of a long exact non-abelian homology sequence of Lie
algebras which corrects and extends the six-term exact sequence of Theorem 5.7 [10].
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Now we introduce the definition of the first Milnor cyclic homology by generators
analogously to Dennis-Stein generators [7].

DEFINITION 12. Let A be a unital associative �-algebra. The first Milnor cyclic
homology HCM

1 (A) of A is the quotient of A ⊗� A by the relations

a ⊗ b + b ⊗ a = 0,

ab ⊗ c − a ⊗ bc + ca ⊗ b = 0,

a ⊗ bc − a ⊗ cb = 0

for all a, b, c ∈ A.

Our definition of HCM
1 (A) coincides with the definition in the sense of [18] when

� is a field of characteristic not equal to 2.
It is well known that the first cyclic homology HC1(A) of a unital associative

�-algebra A is the kernel of the homomorphism of �-modules

A ⊗� A/J(A) −→ [A, A],

a ⊗ b �→ ab − ba,

where [A, A] is the additive commutator submodule of A and J(A) is the submodule
of A ⊗� A generated by the elements

a ⊗ b + b ⊗ a, ab ⊗ c − a ⊗ bc + ca ⊗ b,

for all a, b, c ∈ A.
It is clear that HCM

1 (A) coincides with HC1(A) when A is commutative.
Given a unital associative (non-commutative) �-algebra A, consider A as the Lie

algebra with the usual induced Lie structure [a, b] = ab − ba, a, b ∈ A. Denote by
V (A) the quotient Lie algebra of the non-abelian tensor square A ⊗ A by the ideal
generated by the elements

a ⊗ b + b ⊗ a,

ab ⊗ c − a ⊗ bc + ca ⊗ b,

for all a, b, c ∈ A. We compile the results of [10] on the Lie algebra V (A) into the
following proposition.

PROPOSITION 13. Let A be a unital associative �-algebra.
(i) There is an action of the Lie algebra A on the Lie algebra V (A) defined by the

formula

a′
(a ⊗ b) = [a′, a] ⊗ b + a ⊗ [a′, b]

and a homomorphism µ : V (A) → A given by a ⊗ b �→ [a, b] has the structure of crossed
A-module;

(ii) There is a natural isomorphism of �-modules

V (A) ∼= A ⊗� A/J(A);

(iii) A acts trivially on HC1(A);
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(iv) There is a short exact sequence of crossed A-modules of Lie algebras

0 → HC1(A) → V (A) → [A, A] → 0.

Proof. The proof of (i) and (iii) is given in [10]. To prove (ii) one can show that
J(A) ⊇ D(A, A) and then examine similar arguments as in Proposition 1. The proof of
(iv) is straightforward from (i), (ii) and (iii). �

We have the following theorem.

THEOREM 14. Let A be a unital associative (non-commutative) �-algebra. Then there
is an exact sequence of �-modules

· · · → H2(A, V (A), [A, A]) → H2(A, V (A)) → H2(A, [A, A]) → H1(A, V (A), [A, A])

→ H1(A, V (A)) → H1(A, [A, A]) → HC1(A) → HCM
1 (A)

→ [A, A]/[A, [A, A]] → 0,

Proof. Proposition 13, Theorem 6 and its Remark yield the following long exact
sequence of �-modules

· · · → H2(A, V (A), [A, A]) → H2(A, V (A)) → H2(A, [A, A]) → H1(A, V (A), [A, A])

→ H1(A,V (A)) →H1(A,[A, A]) →H0(A, HC1(A)) →H0(A,V (A))

→ H0(A,[A, A]) →0.

It is easy to see that

H0(A, HC1(A)) = HC1(A), H0(A, [A, A]) = [A, A]/[A, [A, A]].

Since H0(A, V (A)) = Coker ν, where ν : A ⊗ V (A) → V (A) is the Lie homomor-
phism given by ν(a ⊗ (b ⊗ c)) = a(b ⊗ c). Calculations in the Lie algebra V (A)
[10, Lemma 5.4] say that

a(b ⊗ c) = a ⊗ [b, c] = a ⊗ bc − a ⊗ cb, a, b, c ∈ A.

Now one easily deduces that there is a natural isomorphism of �-modules

H0(A, V (A)) ∼= HCM
1 (A). �
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