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Abstract
In the era of Unmanned Aerial Systems (UAS), an onboard autopilot occupies a prominent place and is inevitable
for many of their modern applications. The efficacy of autopilot heavily relies upon the accuracy of the sensors
employed and the capability of the onboard flight controller. In general, aerodynamic behaviour and flight dynamic
capabilities of Unmanned Aerial Vehicles (UAVs) govern the selection and the design of flight controllers. Precise
modeling of linear aerodynamic characteristics from flight data can be achieved using many of the existing classical
parameter estimation techniques such as Output Error Method (OEM), Equation Error Method (EEM), and Filter
Error Method (FEM). However, all the classical methods may not be readily applicable for aerodynamic model-
ing in nonlinear flight envelopes. The current manuscript is an attempt to exploit the capabilities of the Artificial
Intelligence (AI) technique, named Particle Swarm Optimisation (PSO), in combination with Least Squares (LS)
cost function to perform linear as well as nonlinear aerodynamic parameter estimation. The aforementioned task is
accomplished by considering flight data from manoeuvers pertaining to linear angles of attack, moderate and near
stall flight envelopes of two different UAVs with cropped delta planform geometry. Parameters estimated using the
proposed LS-PSO method are consistent with minimum standard deviation and are on a par with OEM estimates.
The proposed LS-PSO method enhances the capabilities of LS-based EEM while estimating stall characteristic
parameters, which was not possible with LS alone. The longitudinal and lateral-directional static parameters esti-
mated from the full-scale wind tunnel testing of the two UAVs were also used to corroborate the results obtained
from the flight data using the LS-PSO method.

Nomenclature
b wing span in m
c̄ mean aerodynamic chord in m
V air speed in m/s
q pitch rate in rad/s
p roll rate in rad/s
r yaw rate in rad/s
IX moment of inertial along body x-axis in kg − m2

IY moment of inertial along body y-axis in kg − m2

IZ moment of inertial along body z-axis in kg − m2

IXZ product moment of inertia in body xz-plane in kg − m2

S wing planform area in m2

g acceleration due to gravity in m/s2

Ft thrust produced by engine in N
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m mass of UAV in kg
CL nondimensional lift force coefficient
CD nondimensional drag force coefficient
CY nondimensional side force coefficient
Cl nondimensional rolling moment coefficient
Cm nondimensional pitching moment coefficient
Cn nondimensional yawing moment coefficient
CL0 lift force coefficient at zero deg angle-of-attack
CLα derivative of lift force coefficient w.r.t. angle-of-attack
CL

α2 derivative of lift force coefficient w.r.t. square of angle-of-attack
CLq damping coefficient of lift force w.r.t. pitch rate
CLδe derivative of lift force coefficient w.r.t. elevator deflection
CD0 drag force coefficient at zero lift
k induced drag force correction factor
Cm0 pitching moment coefficient at zero deg angle-of-attack
Cmα derivative of pitching moment coefficient w.r.t. angle-of-attack
Cmq damping coefficient of pitching moment w.r.t. pitch rate
Cmδe derivative of pitching moment coefficient w.r.t. elevator deflection
CY0 side force coefficient at zero deg sideslip angle
CYβ derivative of side force coefficient w.r.t. sideslip angle
CYp damping coefficient of side force w.r.t. roll rate
CYr damping coefficient of side force w.r.t. yaw rate
CYδa derivative of side force coefficient w.r.t. aileron deflection
Cl0 rolling moment coefficient at zero deg sideslip angle
Clβ derivative of rolling moment coefficient w.r.t. sideslip angle
Clp damping coefficient of rolling moment w.r.t. roll rate
Clr damping coefficient of rolling moment w.r.t. yaw rate
Clδa derivative of rolling moment coefficient w.r.t. aileron deflection
Clδr derivative of rolling moment coefficient w.r.t. rudder deflection
Cn0 yawing moment coefficient at zero deg sideslip angle
Cnβ derivative of yawing moment coefficient w.r.t. sideslip angle
Cnp damping coefficient of yawing moment w.r.t. roll rate
Cnr damping coefficient of yawing moment w.r.t. yaw rate
Cnδr derivative of yawing moment coefficient w.r.t. rudder deflection
X nondimensional distance of flow separation point
a1 aerofoil static stall characteristics parameter
CDX derivative of drag force coefficient w.r.t. X
CmX derivative of pitching moment coefficient w.r.t. X
J cost function
U vector of independent states and control inputs

Greek symbol

α angle-of-attack in rad
β sideslip angle in rad
ρ air density in kg/m3

φ roll angle in rad
θ pitch angle in rad
ψ yaw angle in rad
τ2 hysteresis time constant
α
 break point
δe elevator deflection angle in rad
δa aileron deflection angle in rad
δr rudder deflection angle in rad
� vector of unknown parameters
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1. Introduction
Unmanned Aerial Vehicles (UAVs) are addressed with many names such as Remotely Piloted Vehicle
(RPV), drone, robot plane, pilotless aircraft, to name a few, and are often employed to carry out various
beyond the line-of-sight missions such as reconnaissance, command and control, deception, homeland
security, combat surveillance, and arsenal delivery in military applications. With the advancement of
communication technology, which is now at the common person’s reach, these UAVs also found their
significance in industrial applications such as monitoring of intertidal reefs, drone journalism, fluvial
remote sensing, assessment of existing structures, telemedicine, aerial imagery in natural resource man-
agement and survey of the landscape. Due to their wide applications and operations in civilian airspace,
stringent safety measures are of paramount importance right from design-development to operations.
According to the report on UAV accidents published by Defense Technical Information Center USA,
47% of UAV accidents during its flight occur due to human error. Autonomous capability complemented
with a robust autopilot can significantly reduce human interference, which will enhance safe operations
of UAVs even in civilian airspace. A stable autopilot with an efficient controller can be designed with
the help of precise system dynamics modeling. Fixed-wing UAVs flight is heavily dominated by the
associated aerodynamic forces and moments, which indeed are functions of flight conditions. Hence,
detailed modeling of aerodynamic characteristics for various flight regimes is inevitable.

Aerodynamic characterisation enables researchers to develop a mathematical description of a
flight vehicle’s associated aerodynamics, which can either be a linear or nonlinear function of non-
dimensional aerodynamic parameters. Quantification of these non-dimensional parameters for various
flight envelopes is well explored using estimation methods such as Equation Error Method (EEM) [1-5],
Output Error Method (OEM) [6-22], Filter Error Method (FEM) [23, 24] and Artificial Intelligence (AI)
method [11, 25, 26, 27, 28] from the flight data of manned aircraft for various predefined manoeuvers.
However in the case of UAVs, the availability of research related to the aerodynamic characterisa-
tion from flight data is minimal due to their classified applications. EEM is one of the simplest and
computationally efficient flight test methods to estimate flight vehicle aerodynamic stability and con-
trol derivatives from flight test data [29]. However, the formulation of EEM restricts its application in
estimating aerodynamic parameters from flight data pertaining to near stall and high angle-of-attack
manoeuvers. In contrast, the application of OEM and FEM can be extended to estimate the aforemen-
tioned parameters from flight data of highly nonlinear flight regimes [30, 31]. It is well observed that
both methods require priory information about initial conditions for better convergence and confidence
of solutions. On the contrary, the AI estimation method based on Neural Networks does not require
priory information about initial conditions and can be used to characterise the aerodynamic behaviour
of a UAV in linear and nonlinear flight regimes [29, 31]. In general, the Neural Networks estimation
method is based on OEM requires gradient computation to update the weights of networks, which
makes it a high computational effort demanding method. Moreover, the confidence in estimates heav-
ily depends upon the training criteria of Neural Networks, which will not be the same for different
data sets. In the recent past, it has been observed that the aforementioned limitation can be resolved by
another AI estimation technique based on Particle Swarm Optimisation (PSO). PSO is a data-driven
bio-inspired search technique for an optimal solution. This technique can be used to find a local and
global solution by providing proper bounds to the search space. PSO has been widely used in aerospace
applications such as structural optimisation, controller optimisation, and flight route optimisation
[32-36]. However, it started getting researchers’ attention as a tool of aerodynamic parameters esti-
mation of flight vehicles recently. In recent publications, PSO based on Maximum Likelihood (ML)
cost function formulation has been used to estimate the linear longitudinal aerodynamic parameters of
the VTOL aircraft, symmetrical projectile and UAVs from flight data[37-40]. It can be observed that the
ML cost function requires the numerical integration of equations of motion for each swarm particle and
every iteration, which can make the aforementioned method computationally less efficient. PSO-based
estimation method can be made computationally more efficient by augmenting with Least Squares (LS)
cost function formulation, which does not require integration of equations of motion for each iteration.
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Figure 1. Frame of reference.

Indirectly, the proposed LS-PSO method can also enhance the EEM method’s capability to estimate the
stall aerodynamic parameters.

Flight data pertaining to manoeuvers of various flight envelopes, generated using two UAVs, is used
to exploit the aerodynamic parameters estimation capability of the proposed LS-PSO method. The afore-
mentioned wing alone configurations share similar cropped delta planform and differ in cross-section
area. One UAV with rectangular cross-section is named Cropped Delta Flat Plate (CDFP), and the other
with reflex aerofoil as wing cross-section is named Cropped Delta Reflex Wing (CDRW) UAV. Flight
tests were performed for various predefined manoeuvers, and respective flight data was recorded using an
onboard dedicated data acquisition system. Aerodynamic parameters are estimated using the proposed
method from linear, nonlinear and near stall regime flight data. Estimates obtained from the proposed
method are compared with Maximum Likelihood Estimation (MLE) and wind tunnel estimates. The
rest of the paper is organised as follows. Section 2 describes the detailed dynamic, kinematic and aero-
dynamic mathematical structure of UAVs. Details of the PSO algorithm and problem formulation are
presented in section 3. Section 4 presents model description, instrumentation on board of UAVs and
flight data generation. Section 5 presents the results obtained from the proposed aerodynamic parame-
ter estimation technique and their comparison with the classical MLE method. Section 6 concludes the
effectiveness of the PSO algorithm-based aerodynamic parameter estimation technique in all four flight
regimes, limitations of the proposed method and future research opportunities.

2. Mathematical modeling CDFP and CDRW UAVs
The six-DOF simulation model has been developed using rigid body dynamics equations of motion.
These equations, in general, are coupled in nature; a set of decoupled equations of motion are used in the
current research of aerodynamic parameter estimation pertaining to various flight envelopes. Equations
(1)-(4) and (5)-(8) represent the longitudinal and lateral-directional dynamics of UAVs, respectively.
The assumed frame of reference while deriving the equations of motion is given in Fig. 1.

https://doi.org/10.1017/aer.2022.46 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.46


80 Kumar et al.

V̇ = −ρSV2

2m
CD + g sin (α − θ ) + Ft

m
cos α (1)

α̇ = −ρSV

2m
CL + g

V
cos (α− θ ) − Ft

mV
sin α+ q (2)

q̇ = ρSc̄V2

2IY

Cm (3)

θ̇ = q (4)

β̇ = −ρSV

2m
CY − Ft

mV
sin β + g

V
sin φ − r (5)

ṗ = 1

2
ρSV2b[IZCl + IXZCn]

1

IXIZ − I2
XZ

(6)

ṙ = 1

2
ρSV2b[IXZCl + IXCn]

1

IXIZ − I2
XZ

(7)

φ̇ = p (8)

where, V , α, q, θ , β, p, r and φ are free stream airspeed, angle-of-attack, pitch angle, sideslip angle, roll
rate, yaw rate and roll angle, respectively. Since these UAVs are propeller-driven with a single brushless
motor and aligned to the body x-axis, the thrust force (Ft) has only component along the X-axis of
the body frame subsequently, and any external moment about the centre of gravity due to thrust force
has been considered zero. S, c̄, m are wing planform area, mean aerodynamic chord and mass of UAV,
respectively. IX , IY and IZ are the mass moment of inertia about body X, Y and Z axes, respectively. IXZ

is the product mass moment of inertia in the body XZ plane. ρ and g are atmospheric air density and
acceleration due to gravity at flight altitude, respectively.

Longitudinal aerodynamic parameters are estimated using the proposed LS-PSO method from the
flight data pertaining to linear, nonlinear and near stall flight envelopes. From wind tunnel results
Ref. [41], it is observed that two UAVs have a linear variation of aerodynamic coefficients with angle-
of-attack from −5 to 10 deg, nonlinear variation from 10 to 16 deg and can be considered near stall
(highly nonlinear) flight envelope if the angle-of-attack is more than 16 deg. Depending on the angle-
of-attack achieved following aerodynamic models have been considered in order to estimate respective
aerodynamic coefficients.

The following equations represent the linear low angle-of-attack (−5 to 10 deg) aerodynamic model
of UAV-

CL = CL0 + CLαα+ CLq

qc̄

2V
+ CLδe

δe (9)

CD = CD0 + kC2
L (10)

Cm = Cm0 + Cmαα+ Cmq

qc̄

2V
+ Cmδe

δe (11)

The non-linear high angle-of-attack (10–16 deg) longitudinal aerodynamics model of UAV can be
represented as follows –

CL = CL0 + CLαα+ CL
α2α

2 + CLq

qc̄

2V
+ CLδe

δe (12)

CD = CD0 + kC2
L (13)

Cm = Cm0 + Cmαα+ Cmq

qc̄

2V
+ Cmδe

δe (14)
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The following equations can give the quasi-steady stall model [42] –

X = 1

2
[1 − tanh{a1(α− τ2α̇ − α
)}] (15)

CL = CL0 + CLαα

[
1 + √

X

2

]2

+ CLq

qc̄

2V
+ CLδe

δe (16)

CD = CD0 + kC2
L + CDX (1 − X) (17)

Cm = Cm0 + Cmαα+ Cmq

qc̄

2V
+ Cmδe

δe + CmX (1 − X) (18)

The following equations can give the lateral-directional model-

CY = CY0 + CYβ β + CYp

pb

2V
+ CYr

rb

2V
+ CYδr

δr (19)

Cl = Cl0 + Clβ β + Clp

pb

2V
+ Clr

rb

2V
+ Clδa

δa + Clδr
δr (20)

Cn = Cn0 + Cnβ β + Cnp

pb

2V
+ Cnr

rb

2V
+ Cnδr

δr (21)

In aforementioned quasi-steady stall model, a1, τ2, α
, CDX and CmX are considered as stall characteristic
aerodynamic parameters, where a1 represents aerofoil static stall characteristics parameter, τ2 is the
hysteresis time constant, α
 is break point and X is non-dimensional flow separation point. The effect of
hysteresis on drag and pitching moment is modeled with CDX and CmX , respectively.

3. Parameter estimation methodology
3.1. Least square method
In general, mathematical model of a dynamic system in state space is given by following equations:

ẋ(t) = f [x(t), u(t),�] + Fw(t) (22)

y(t) = g[x(t), u(t),�] (23)

z(t) = y(t) + Gv(t) (24)

where, f and g are assumed to be nonlinear, real-valued and differentiable functions, x(t) is state vector,
u(t) is control input, y(t) is output vector and z(t) is measured output by sensors. In the above mathe-
matical model, additive process and measurement noise are considered; however, these are considered
zero for LS formulation. Further, the output is considered to be linearly dependent on states and control
input, and can be given by the following equation:

Y = U�+ ε (25)

where, Y is measured response of size N × 1, U is vector of independent states and control input of size
N × n, � is vector of unknown parameters of size n × 1 and ε is modeling error.

LS cost function for above output equation can be given by following equation:

J(�) = 1

2
εTε = 1

2
[YT −�TUT][Y − U�] (26)

Differentiation of above cost function w.r.t. to � leads to exact estimation of unknown parameters.

�̂= [UTU]−1UTY (27)
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3.2. LS-PSO method
If the dependent variable (measured output) Y is a nonlinear function of U and �, exact estimation of
unknown parameters is not possible using the above method. However, the current challenge of unknown
parameter estimation can be addressed by an optimisation technique. In this paper, a solution to the
aforementioned problem is proposed using PSO. Consider the following nonlinear output equation as
follows:

Y = f (U,�) + ε (28)

And the nonlinear LS cost function can be given as

J(�) = 1

2
εTε = 1

2
[YT − f (U,�)T][Y − f (U,�)] (29)

As PSO method search for global best solution of an optimisation problem based on given bounds of
search space and can be used to optimize the above cast function w.r.t. �. The following steps are
involved, while implementing PSO.

Step 1: (Problem definition) The population size (N), dimensions of particle position (D), inertial
weight (w), personal cognitive coefficient (c1), social cognitive coefficient (c2), boundaries of search
space and cost function need to be defined. Considered values of c1, c2 and N are 2, 2 and 50, respectively
[43]. D is same as number of elements in �.

Step 2: (Initialisation) A swarm of particles, with problem definition, is generated using the randomi-
sation method. Each particle holds a random position in a swarm. The velocity of particles also needs
to be initialised.

Step 3: (Position and velocity update) The velocity of particles depends on their previous velocity,
personal cognition and global cognition. The position of particles depends on their previous position
and current velocity. The position and velocity of particles are updated as follows –

w = 0.9k (30)

Vi(k + 1) = wVi(k) + c1r1{Pbesti (k) − Pi(k)} + c2r2{Gbesti − Pi(k)} (31)

Pi(k + 1) = Pi(k) + Vi(k + 1) (32)

where, i denotes ith dimension of particle velocity and position. Pi(k) and Vi(k) are particle’s previous
position and velocity, respectively. Pi(k + 1) and Vi(k + 1) are particle’s current position and velocity,
respectively. w is inertial weight, c1 is personal cognitive coefficient and c2 is social cognitive coefficient.
Pbesti (k) and Gbesti are previous best position of particle and best position of particle that have minimum
cost in swarm.

Step 4: (Personal best and global best position update) In this step, the particle’s personal best position
is updated with the current position if the cost function value associated with the current position is less
than the cost function value associated with the previous best position. The global position is updated if
any particle’s best cost value is less than the previous global best position’s cost value.

Step 5: (Termination) If the desired termination criteria satisfy stop the algorithm else, go to Step 3.
Since in the current problem, CL, CD, Cm, CY , Cl and Cn are dependent variables and can not be mea-

sured directly during flight test rather these are reconstructed using measured output data from various
onboard sensors, which are given by following Equations (33)-(40). Now onward, these reconstructed
outputs are considered as dependent variable (measured outputs) and (α, β, V∞, p, q, r, δe, δa, δr) as
independent variables.

CX(i) = 1

q̄(i)S
[maXCG (i) − Ft(i)] (33)

CZ(i) = 1

q̄(i)S
[maXCG (i)] (34)
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Figure 2. Flow chart of LS-PSO method.

CL(i) = CX(i) sin α(i) − CZ(i) cos α(i) (35)

CD(i) = −CX(i) cos α(i) − CZ(i) sin α(i) (36)

Cm(i) = 1

q̄(i)Sc̄
[IY q̇(i)] (37)

CY(i) = maYCG (i)

q̄(i)S
(38)
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(a) (b)

CDFP(43) CDRW(43)

Figure 3. Instrumented CDFP and CDRW.

Cl(i) = 1

q̄(i)Sb
[IXṗ(i) − IXZṙ(i)] (39)

Cn(i) = 1

q̄(i)Sb
[IZ ṙ(i) − IXZṗ(i)] (40)

where, i denotes ith measurement. aXCG , aYCG and aZCG are net acceleration along X-axis, Y -axis and
Z-axis in body frame, respectively. q̄ is dynamic pressure, q̇ is pitch acceleration, ṗ is roll acceleration,
ṙ is yaw acceleration.

In current research, vector of unknown aerodynamic parameters can be given as follows for different
flight regimes.

�LG = [CD0 , k, CL0 , CLα , CLq , CLδe
, Cm0 , Cmα , Cmq , Cmδe

]T (41)

�NL = [CD0 , k, CL0 , CLα , CL
α2 , CLq , CLδe

, Cm0 , Cmα , Cmq , Cmδe
]T (42)

�ST = [CD0 , k, CL0 , CLα , CLq , CLδe
, Cm0 , Cmα , Cmq , Cmδe

, a1, τ2, α
, CDX , CMX ]T (43)

�LD = [CY0 , CYβ , CYp , CYr , CYδr
, Cl0 , Clβ , Clp , Clr , Clδa

, Clδr
, Cn0 , Cnβ , Cnp , Cnr , Cnδr

]T (44)

where,�LG,�NL and�ST represents the vector of unknown parameters of longitudinal linear (low angle-
of-attack), nonlinear (high angle-of-attack) and near stall flight regimes. While�LD represents the vector
of unknown parameters of lateral-directional flight regime.

The flow chart of the proposed LS-PSO method is given in Fig. 2. It can be referred from the flow
chart that the proposed methodology takes control inputs, measured outputs, and a mathematical model
to start. Based on inputs and outputs LS cost function is defined. A swarm of particles is generated
using the cost function and initial conditions of the PSO algorithm in the following step. In the next
step, iteration will start and end with termination criteria. These termination criteria can be a maximum
number of iterations or minimum cost function value.

4. Model description and flight data generation
As mentioned earlier, two cropped delta wing UAVs with similar planform geometry and differs in
wing crossectional profile are used for flight data generation. Wing of CDFP and CDRW are designed
with rectangular cross-section and NACA23110 reflex aerofoil, respectively. Directional control of both
UAVs is achieved by all movable high aspect ratio dedicated vertical tail. These UAVs are controlled
using ailevons, which are located at the trailing edge of the configuration. Pitch is controlled by sym-
metric deflection of control surfaces, and roll is controlled by differential deflection of control surfaces.
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(a)
(b)

(c) (d)

Figure 4. Various flight data sets generated using CDFP.

Both UAVs have a wingspan of 1.5m, a root chord of 0.9m, a tip chord of 0.15m, a mean aerodynamic
chord of 0.61m, an aspect ratio of 2.86 and the wing tapered about the wing trailing edge. Masses of
CDFP and CDRW UAVs are 3.5 and 3.6kg, respectively.

Flight data during flight tests have been measured and recorded using onboard sensors and a dedi-
cated data acquisition system. A high accuracy 9-DOF Inertial Measuring Unit (IMU) has been mounted
to measure body accelerations, body rates, and Euler angles. In-house fabricated and calibrated air data
boom is used to measure airspeed, angle-of-attack and sideslip angle. Pulse Width Modulated (PWM)
signals are used to control the speed of brushless DC motor and deflection of control surfaces using ser-
vos, and these signals are logged into the data acquisition system. Figure 3 shows instrumented CDFP
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Figure 5. Various flight data sets generated using CDRW.

and CDRW prototypes for flight testing. Eight sets of flight data pertaining to linear, non-linear, near
stall and lateral-directional flight regimes are used in current research. The nomenclature adopted for
each flight data set is as follows-each data set name starts with CDFP and CDRW, followed by an under-
score and two alphabets. LG stands for linear longitudinal flight data, NL non-linear longitudinal flight
data, ST stands for near stall longitudinal flight data and LD stands for lateral-directional flight data.
E.g. CDFP_NL means non-linear flight data of CDFP configuration. Figures 4 and 5 represent linear,
nonlinear, stall and lateral-directional flight data for CDFP and CDRW configurations, respectively.

From Figs 4(a) and 5(a), it can be seen that in flight data CDFP_LG a doublet kind of elevator
control input is used to exit the longitudinal dynamics, while a 3-2-1-1 kind of control input is used
in generating CDRW_LG flight data. Elevator deflections vary from 0 to −8 deg and 2 to −2 deg in
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Table 1. Linear flight regime longitudinal aerodynamic parameters

CDFP_LG CDRW_LG

Wind MLE LS-PSO Wind MLE LS-PSO
Parameters Tunnel [31] [31] Tunnel [29] [29]
CD0 0.035 0.035 0.035

[5.89E-09]
0.02 0.02 0.020

[5.36E-09]
k – – 0.16

[1.26E-07]
– – 0.16

[8.62E-08]
CL0 0 0.006 0

[1.48E-07]
0.067 0.064 0.063

[2.46E-05]
CLα 3.250 3.355 3.249

[6.65E-06]
2.980 3.003 2.989

[5.45E-04]
CLq – 0.749 0.691

[1.58E-05]
– 0.698 0.632

[1.5E-03]
CLδe

0.26 0.304 0.259
[5.48E-06]

0.401 0.455 0.426
[1.1E-03]

Cm0 0 −0.001 0
[3.39E-07]

0.010 0.012 0.010
[5.75E-07]

Cmα −0.390 −0.411 −0.390
[1.53E-05]

−0.241 −0.258 −0.240
[1.27E-05]

Cmq – −0.016 −0.070
[3.62E-05]

– −0.073 −0.070
[3.39E-05]

Cmδe
−0.284 −0.291 −0.284

[1.26E-05]
−0.41 −0.404 −0.410

[2.54E-05]
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Figure 6. Measured and estimated states of CDRW and CDFP in longitudinal linear flight regime.
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Table 2. Linear flight regime lateral-directional aerodynamic parameters

CDFP_LD CDRW_LD

Wind MLE LS-PSO Wind MLE LS-PSO
Parameters Tunnel[41] [41] Tunnel[29] [29]
CY0 0 0.001 0

[1.76E-06]
0 −0.001 0

[4.52E-07]
CYβ −0.12 −0.113 −0.079

[1.56E-05]
−0.131 −0.127 −0.097

[1.14E-05]
CYp – −0.56 −0.059

[2.80E-05]
– −0.081 −0.057

[6.12E-05]
CYr – 0.128 0.127

[9.92E-05]
– 0.134 0.132

[5.71E-05]
CYδr

0.459 0.451 0.379
[6.37E-04]

0.429 0.447 0.459
[1.13E-05]

Cl0 0 0 0
[1.10E-06]

0 −0.001 0
[2.66E-07]

Clβ −0.09 −0.083 −0.09
[2.20E-05]

−0.101 −0.089 −0.09
[3.83E-05]

Clp – −0.488 −0.505
[1.11E-04]

– −0.503 −0.505
[2.31E-04]

Clr – 0.076 0.103
[6.64E-05]

– 0.083 0.106
[2.99E-05]

Clδa
−0.096 −0.093 −0.096

[2.11E-05]
−0.102 −0.094 −0.096

[4.44E-05]
Clδr

0.02 0.009 0.019
[3.99E-04]

0.021 0.029 0.021
[6.95E-06]

Cn0 0 0 0
[5.74E-07]

0 0 0
[2.10E-07]

Cnβ 0.02 0.022 0.019
[5.09E-06]

0.02 0.021 0.019
[5.26E-06]

Cnp – 0.021 0.018
[9.15E-06]

– 0.025 0.019
[2.84E-05]

Cnr – −0.036 −0.029
[3.24E-05]

– −0.067 −0.028
[2.65E-05]

Cnδr
−0.01 −0.032 −0.009

[2.08E-04]
−0.011 −0.014 −0.009

[5.23E-06]

flight data CDFP_LG and CDRW_LG, respectively. Slow time-varying control input is used to generate
lateral-directional flight data sets. It can be observed from Figs 4(b) and 5(b) that aileron deflection
are 5 to −10 deg and −5 to 5 deg for CDFP_LD and CDRW_LD, respectively. From Figs 4(c) and
5(c), it can be referred that to generate nonlinear longitudinal flight data CDFP_NL and CDRW_NL,
maximum elevator deflections of −18 and −9 deg are given to achieve about 20 deg angle-of-attack.
Precise elevator control inputs are given to generate quasi-steady stall data. Similarly, from Figs 4(c) and
5(c), it can be observed that angle-of-attack varies slowly from low angle-of-attack to the high angle-
of-attack and drops rapidly from high angle-of-attack to low angle-of-attack, which makes flight data
CDFP_ST and CDRW_ST suitable for stall hysteresis modeling.
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Figure 7. Measured and estimated states of CDRW and CDFP in lateral-directional linear flight
regime.

5. Result and discussion
The LS-PSO parameter estimation technique is applied to estimate the longitudinal and lateral-
directional aerodynamic derivatives of CDFP and CDRW UAVs from flight data sets belonging to
different flight regimes. From flight data sets CDFP_LG and CDRW_LG, it can be observed that angle-
of-attack (AOA) falls within the range of −2 to 7 deg and −2 to 6 deg, respectively, hence aerodynamic
model presented in Equations (9)-(11) is used to estimate unknown aerodynamic parameters given by
Equation (41). A nonlinear longitudinal aerodynamic model given by Equations (12)-(14) and flight
data sets CDFP_NL and CDRW_NL are used to estimate unknown aerodynamic parameters given by
Equation (42). It can be observed from flight data sets CDFP_ST and CDRW_ST that the maximum
AOA achieved during flight tests is more than 16 deg; hence near stall aerodynamic model presented
in Equations (15)-(18) is used to estimate unknown aerodynamic parameters given by Equation (43).
Lateral-directional flight data sets CDFP_LD and CDRW_LD along with aerodynamic model given in
Equations (19)-(21) are used to estimate the aerodynamic parameter given in Equation (44). All the
estimated aerodynamic parameters of the above-mentioned flight regimes are corroborated with wind
tunnel results and MLE method estimates. Confidence in estimates is quantified in terms of standard
deviation, and these are represented with square brackets “[ ]” in the following tables. Furthermore,
computed (simulated) outputs, using estimated aerodynamic parameters and measured control inputs,
have been compared with measured flight data. Simulated outputs and measured outputs during flight
tests have been labeled with LS-PSO and EXP in proceeding figures.

All the longitudinal aerodynamic parameters mentioned in Equation (41) have been estimated using
the LS-PSO method from flight data sets CDFP_LG and CDRW_LG. These aerodynamic parameters
have been tabulated in Table 1 along with wind tunnel and MLE method estimates. Computed outputs
using these aerodynamic parameters and measured control inputs have been compared with measured
outputs during flight tests. It can also be referred from Table 1 that estimated CD0 , CL0 , CLα , CLδe

, Cm0 , Cmα

and Cmδe
using LS-PSO method have relative error of 0%, 0%, 0.03%, 0.38%, 0%, 0% and 0% w.r.t.

wind tunnel results for CDFP UAV. Similarly, estimated CD0 , CL0 , CLα , CLδe
, Cm0 , Cmα and Cmδe

using LS-
PSO method have relative error of 0%, 6%, 0.3%, 6.2%, 0%, 0.4% and 0% w.r.t. wind tunnel results for
CDRW UAV. From the same table, it can be noticed that standard deviations of estimated aerodynamic
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Table 3. Nonlinear flight regime longitudinal aerodynamic parameters

CDFP_NL CDRW_NL

Wind MLE LS-PSO Wind MLE LS-PSO
Parameters Tunnel[31] [31] Tunnel[41] [41]
CD0 0.035 0.035 0.035

[9.08E-09]
0.02 0.02 0.02

[7.40E-09]
k – – 0.16

[9.07E-09]
– – 0.16

[4.74E-08]
CL0 0 0.006 −0.01

8.21E-05
0.067 0.064 0.06

[5.65E-05]
CLα 3.25 3.355 3.309

[2.70E-03]
2.98 3.003 3.004

[1.25E-03]
CL2

α
– – 0.374

[9.60E-03]
– – −0.533

[4.75E-03]
CLq – 0.749 0.561

[4.78E-03]
– 0.698 0.372

[2.34E-03]
CLδe

0.26 0.304 0.161
[1.46E-03]

0.401 0.455 0.257
[1.63E-03]

Cm0 0 −0.001 0
[7.72E-07]

0.01 0.0122 0.01
[1.15E-06]

Cmα −0.39 −0.411 −0.39
[1.62E-05]

−0.7241 −0.258 −0.24
[1.95E-05]

Cmq – −0.016 −0.069
[4.74E-05]

– −0.073 −0.07
[5.42E-05]

Cmδe
−0.284 −0.291 −0.284

[1.44E-05]
−0.41 −0.404 −0.41

[3.92E-05]
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Figure 8. Measured and estimated states of CDRW and CDFP in longitudinal nonlinear flight regime.

https://doi.org/10.1017/aer.2022.46 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.46


The Aeronautical Journal 91

Table 4. Stall flight regime longitudinal aerodynamic parameters

CDFP_ST CDRW_ST

Wind MLE LS-PSO Wind MLE LS-PSO
Parameters Tunnel[31] [31] Tunnel[44] [44]
CD0 0.035 0.036 0.027

[5.36E-03]
0.02 0.024 0.029

[1.49E-03]
k – – 0.348

[1.75E-02]
– – 0.123

[4.40E-03]
CL0 0 −0.01 −0.123

[2.78E-02]
0.067 0.077 0.115

[7.40E-03]
CLα 3.25 3.338 3.341

[1.84E01]
2.980 3.340 1.723

[1.54E-01]
CLq – 1.176 1.852

[2.06E-01]
– 5.105 4.829

[4.41E-01]
CLδe

0.26 0.301 −0.282
[1.74E-01]

0.401 0.677 −0.644
[2.36E-01]

Cm0 0 −0.004 −0.002
[5.52E-03]

0.010 0.022 0.009
[3.77E-04]

Cmα −0.390 −0.405 −0.301
[2.18E-02]

−0.241 −0.182 −0.179
[7.88E-03]

Cmq – −0.037 −0.73
[6.70E-02]

– −0.669 −0.411
[2.10E-02]

Cmδe
−0.284 −0.308 −0.236

[2.99E-02]
−0.410 −0.299 −0.249

[1.20E-02]
a1 7.680 10.121 11.486

[3.87E-01]
7.62 9.401 33.098

[8.16E-01]
τ2 – 6.132 2.013

[1.58E-02]
– 14.187 −0.98

[1.67E-01]
α
(deg) 24.420 18.810 16.385

[1.58E-02]
23.200 26.885 23.083

[2.95E-03]
CDX – 0.074 −0.067

[9.90E-03]
– 0.09 0.062

[7.62E-03]
CmX – −0.122 −0.11

[1.44E-02]
– −0.055 −0.003

[1.23E-03]

parameters are very small and LS-PSO method estimates are close to MLE method estimates, which
further strengthen the efficacy of estimates. Comparison of simulated and measured responses can be
seen from Fig. 6.

Lateral-directional aerodynamic parameters have been estimated from flight data using the proposed
method. All the estimated parameters have been tabulated in Table 2 along with wind tunnel and MLE
estimates. It can be seen that estimated CY0 , CYβ , CYδr

, Cl0 , Clβ , Clδa
, Clδr

, Cn0 , Cnβ and Cnδr
using LS-

PSO method have relative absolute offset of 0, 0.041, 0.08, 0, 0, 0, 0.001, 0, 0.001 and 0.001 w.r.t.
wind tunnel results for CDFP UAV. Similarly, estimated CY0 , CYβ , CYδr

, Cl0 , Clβ , Clδa
, Clδr

, Cn0 , Cnβ and
Cnδr

using LS-PSO method have relative absolute offset of 0, 0.052, 0.03, 0, 0.011, 0.006, 0, 0., 0.001
and 0.002 w.r.t. wind tunnel results for CDRW UAV. Standard deviations of estimated parameters using
proposed method are small which signifies good confidence in estimates. From Fig. 7, it can be referred
that computed outputs, using LS-PSO method estimated aerodynamic parameters and measured control
inputs, are having small relative error w.r.t. to experimental outputs. From Table 2, It can also be referred
that LS-PSO method estimates are comparable to MLE.
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Figure 9. Measured and estimated states of CDFP in near stall flight regime.

Figure 10. Measured and estimated states of CDRW in near stall flight regime.

Nonlinear longitudinal aerodynamic parameters are estimated from high angle-of-attack flight data
using the proposed method. A second-order aerodynamic derivative CL

α2 has been used to model the
nonlinear variation of CL w.r.t. angle-of-attack, whereas a linear aerodynamic model is used to esti-
mate aerodynamic derivatives with MLE in Ref. [31]. All the aerodynamic parameters mentioned in
Equation (42) have been estimated using LS-PSO method and tabulated in Table 3 along with MLE
and Wind tunnel results. It can be referred from same table that estimated CD0 , CL0 , CLα , CLδe

, Cm0 , Cmα

and Cmδe
using LS-PSO method have relative absolute offset of 0, 0.01, 0.059, 0.101, 0, 0 and 0 w.r.t.
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Figure 12. Proof-of-match performed in longitudinal linear flight regime.

wind tunnel results for CDFP UAV. Similarly, estimated CD0 , CL0 , CLα , CLδe
, Cm0 , Cmα and Cmδe

using LS-
PSO method have relative error of 0, 0.007, 0.024, 0.144, 0, 0.001 and 0 w.r.t. wind tunnel results for
CDRW UAV. From Fig. 8, it can be seen that computed outputs using LS-PSO method estimated aero-
dynamic parameters and measured control inputs are consistent with experimental outputs. From Table
3, it can also be referred that the standard deviations of estimated parameters are low, which indicates
high confidence in estimates. Higher-order aerodynamic term CL

α2 also has a standard deviation order
of 10−3, which provides extra confirmation about the efficacy of the proposed nonlinear longitudinal
aerodynamic model.
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Quasi-steady stall aerodynamic parameters given in Equation (43) are estimated from flight data
sets CDFP_ST and CDRW_ST using the proposed method. Linear flight regime CLα is considered
while modeling quasi-steady stall. However, nonlinearity in the stall model is addressed by a nondi-
mensional distance of flow separation point. All the estimated parameters are tabulated in Table 4 along
with wind tunnel and MLE estimates. Since nondimensional aerodynamic coefficients are not mea-
sured directly, the reconstructed nondimensional aerodynamic coefficients from measured outputs are
considered experimental outputs. From Figs 9(a) and 10(a), it can be observed that simulated outputs,
using LS-PSO method estimated aerodynamic parameters and measured control inputs, are following
the trend of measured flight data. The lowest value of the nondimensional distance of flow separation
point achieved for CDFP and CDRW UAVs are 1 and 0.5, respectively, which indicates that flow separa-
tion happens at the leading edge of the wing in the case of CDFP UAV and at half of the mean chord in
case of CDRW UAV. From Table 4, break points estimated using the LS-PSO method are consistent with
wind tunnel and MLE estimates, while other stall characterizing parameters have offset. It can be seen
from Figs 9(b) and 10(b) that the proposed method is able to predict the stall hysteresis. A higher-order
standard deviation of estimated parameters is observed due to the presence of about 5% white Gaussian
noise in data, which indicates low confidence in estimates.

The nonlinear cost function mentioned in Equation (29) can also be solved with nonlinear optimisa-
tion techniques other than PSO such as Gauss-Newton Optimisation (GNO), Trust Region Optimisation
(TRO), Newton-Raphson Ridge Optimisation (NRRO), Neural Networks (NN) and Evolutionary
Algorithm (EA). The techniques GNO, TRO and NRRO rely on the gradient and Hessian matrix, which
can be more computationally demanding than the search-based methods. The NN method requires rig-
orous training, which can be time-consuming. On the other hand, PSO is a search-based technique that
does not require gradient or Hessian matrix calculation. In order to understand the computational burden
using the LS-PSO method, the convergence of cost function values is plotted w.r.t. CPU time. A total of
50,000 measured data samples are considered to evaluate the performance of the proposed method on
a computer running with Intel(R) CORE(TM) i5-10300H CPU @ 2.50GHz processor. It takes 4.8 sec-
onds to estimate all the aerodynamic parameters mentioned in Equation (41) without parallel computing
enabled and the same can be referred from Fig. 11.

Two new flight data sets belonging to the longitudinal linear flight regime, which is not considered for
parameter estimation, are used to test the prediction capability of the LS-PSO method. All the simulated
responses of CDFP and CDRW UAVs are produced using estimated aerodynamic parameters mentioned
in Table 1 and compared with measured flight responses. From Fig. 12, it can be observed that simulated
α, θ , q, V∞, ax and az show good consistency with experimental outputs of CDFP UAV, while simulated
V∞ is following the trend of the measured value with a slight offset in case of CDRW UAV. This analysis
validates the acceptable prediction capabilities of the proposed method.

6. Conclusion
Current research work is aimed to formulate and implement AI-based LS-PSO aerodynamic parameter
estimation technique for aircraft. During its formulation, least-squares of the error cost function, aug-
mented with reconstructed nondimensional aerodynamic coefficients as the dependent variable, is used,
making it one of the computationally efficient method. In this paper, the LS-PSO method is proposed
to estimate the linear and nonlinear aerodynamic parameters of UAVs. The aforementioned capabil-
ities of the proposed method are demonstrated with flight data sets of two mini-cropped delta wing
UAVs pertaining to the low angle-of-attack, moderate angle-of-attack, near stall and lateral-directional
flight regimes. It is observed that most of the estimated aerodynamic parameters belonging to longitu-
dinal linear flight regimes using the proposed method are close to wind tunnel results and are par with
MLE method estimates, whereas nonlinear aerodynamic parameters estimates are comparable to MLE
method estimates. Implementation of the LS-PSO method also covers the estimation of stall characteris-
ing parameters, which was a limitation of the ordinary EEM. The proposed method is able to model stall
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hysteresis of both UAVs satisfactorily. The efficacy of estimated aerodynamic parameters is quantified
in terms of standard deviation. Confidence bounds (standard deviations) of estimates using the LS-PSO
method are low, indicating reasonable belief in estimates. Further study is required to investigate its
applicability in identifying coupled aerodynamic derivatives of unstable aircraft.
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