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1. Introduction and principal theorems. The present paper, an 
edited excerpt from my dissertation,1 arose from the suggestion of S. 
Bochner that I try to extend the maximal theorem of Hardy and Littlewood 
(2) to functions analytic in the solid unit hypersphere 

S2n: r 2 =|z 1 | 2 +. . .+ K|2 < 1. 

If one writes the analytic function of n complex variables, f(zu • . • , zn), as 
/ ( r , P) where 

PeS2w_i: h|2 + . . . + W2 = 1, 
then the theorem in question and its generalization are contained in 

THEOREM 1. / / , for some X > 0, / satisfies 

(1) f \f(r,P)\xdVP<C\ r<L, 
*J S2n-l 

where d VP is the volume element on SW-i at P and Cx is a constant, then for the 
same X 

(2) f (sup \f(r,P)\)xdVP<anC
X, 

J Stn-l 0<r<l 

an being independent of f. 
From Theorem 1 one can deduce a generalization of a classical theorem due 

to the brothers Riesz (7, Chap. VII) : 

THEOREM 2. Under the same general hypotheses in and preceding Theorem 1, 
and assuming (1), there exists a function f(P) of class Lx on S2n-i such that 

(3) lim f |f(r,P) - f{P)\xdVP = 0. 

Received May 6, 1955. 
Princeton, 1947. Abstracts of the results appeared as (3) and (4). The decision to publish 

in full, after so long a delay, is motivated by repeated requests of other workers in the field 
and by overlapping with published material obtained independently by Zygmund, Calderôn, 
and others. A particular impetus is the preceding paper by K. T. Smith (5), in which a sub­
stantial part of the underlying methods and results of my paper are obtained independently 
from a point of view not too different from mine. 
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As Zygmund remarked (9), Theorem 2 follows immediately from Theorem 1 
and the theorem of Calderôn and Zygmund to the effect that, under the same 
hypotheses,/(r, P) has a point-wise limit, / ( P ) , almost everywhere. For the 
latter, convergence would be majorized according to (2) and would, therefore, 
imply mean convergence. However, in the less delicate sense X > 1 (3) follows 
directly from (2) without the intervention of the theorem on point-wise 
convergence, as will be seen in §5. 

Now the proof of Theorem 1, to be found in §5, can be reduced by means 
of a sequence of theorems on analytic, harmonic, and subharmonic functions 
(§§4 and 5) exactly as in (2) to the proof of a theorem of purely real-variable 
nature : 

THEOREM 3. Let f(P) belong to Lp, p > 1, on 

Sn-.i: Xi2 + . . . + Xn
2 = 1, 

and let crr(P) be the spherical cap of radius r (measured on 5w_i) about P on 
Sn-i and V(r) its volume as measured on Sn-\. Define f*(P) by 

(4) / V ) = s u p - r ^ f \f(P')\dVP,. 

Then f* (P) satisfies 

(5) f \f(P)}vdVP<Cn,A \f{P)\vdVP, 
•J Sn-1 «^<S„_i 

where CntP depends only2 on n and p. If p = 1 this is no longer true; however, if 
| /(P)|log+|/(P)| is integrable, then 

(6) f / ( P ) dVP < Bn f | / (P) | log+ \f(P)\dVP+ Cn. 
•J Sn-1 ^ Sn-l 

The proof of Theorem 3 is the essence of the matter, and the method of 
analysis was supplied by Wiener in a profound paper (6). There he shows, by a 
reasoning which is closely related to F. Riesz's proof of the case n = 1 of 
Theorem 3, but simpler and more powerful, that both Birkhoff's ergodic 
theorem and the Hardy-Littlewood theorem for n = 1 have a common source 
and that both can be extended by the same method, the former to a theorem 
on averages over an ^-parameter abelian group, the latter to a theorem on 
averages over Euclidean w-space. 

Now, Wiener in a lucid fashion reduces everything to a simple measure-
theoretic lemma, which he calls "of Vitali type" although it is much more 
elementary. In studying his paper I noticed that this lemma, although formu­
lated for sets in ordinary w-space, in fact applied to a more general situation 
from which, in particular, Theorem 3 would follow by Wiener's arguments. 

A diagnosis of the elements needed explicitly or implicitly in extending 

2Wiener's method does not deliver the best constants. Smith's paper (5) does. 
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Wiener's argument to, say, the surface of the hypersphere leads one to de­
scribe a metric space with a metric M and an outer measure m as having 
Euclidean character or Property A if, without regard to logical niceties, it is 
such that (i) spheres of equal radius in M have equal measure in m and vice 
versa (this very restrictive condition of homogeneity may be replaced by a 
much weaker one of a sort of uniformity in important cases) ; (ii) countable 
sets are null-sets; and, most important, (iii) the measure of the set y covered 
by a sphere a and all spheres overlapping a and having smaller or equal radius 
satisfies m(y) < Cm (a) where C depends only on M and m. 
Then one has 

THEOREM A. In a space possessing Property A let a set S of outer measure 
m (S) be such that every P eS is the center of one member 1 a (P), of a certain 
family of spheres. Then given e > 0 there is a finite number of mutually disjoint 
members j au of the family such that 
(7) 2,w(<r<) > C-1m(S) - e 

where C is the constant of Property A. 

For (n — 1)-space and Sn-i (as will be seen) C = 3W_1. The proof of Theorem 
A will occupy §2, and the deduction of Theorem 3, §3. 

The generality of Theorem A permits the immediate extension of Wiener's 
generalization of Birkhoff's ergodic theorem to those groups of measure-
preserving transformations of a set which admit an invariant metric possessing 
Property A and which may well be non-commutative. This application is in 
my dissertation;3 but I do not reproduce it here since there is already a surfeit 
of related ergodic theorems on the market. 

Besides the hypersphere there are other generalizations of the unit circle, 
notably the poly cylinder : \zi\ = t\ < 1, . . . , \zn\ = rn < 1 whose boundary 
is the multitorus, 

Tn: \zi\ = 1, . . . , \zn\ = 1. 

The analogue of Theorem 1 for this domain was derived independently and 
announced almost simultaneously by Zygmund (8) in stronger form and me 
(3). I prove it again here not merely because the proof is different but because 
the technique of proof will serve to demonstrate a more interesting generaliza­
tion (4): 

THEOREM 4. Let f(zu . . . , z») be analytic in \zi\ < 1, 
satisfy 

... \ Ifine^ rne
iK) |V<?X. . . dBn < C ) n , . 

o «/o 
then 

3The reference at the end of (4) to ergodic theorems for compact groups is erroneous or at 
least misleading. The theorems actually meant are analogous to ergodic theorems (6) but deal 
with averages over sets tending to zero (like derivatives). 

. . , \zn\ < 1 and 

.,rn< 1 ; X > 0, 
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J
*2TT s*2ir 

... \ isup\f(rie
th,..., rne

i6n) \fdex. . . d6n < anC
x 

where an, Cx have the same meanings as before and A is the region, for fixed 
0i, . . . , 0n, described by 
(10) 0<~^<K; i,j= l,...,n,i9*j, 

K being any positive constant. 

The necessity for (10) is related to the fact that the values of a function 
harmonic in each \zt\ < 1 are determined solely by its boundary values on Tnt 

which is thus a "distinguished boundary surface" in Bergman's terminology. 
If in Theorem 3 and Theorem A one observes that when dealing with Tnt 

spheres may be replaced by hyper-cubes, while C = 3W, then one will see that 
Theorem 4 follows from them as Theorem 3 does—provided, that is, that one 
proves the more delicate version of the connecting link between Theorems 1 
and 3 (§4). 

2. Proof of Theorem A. Consider any point P of 5 whose a (P) overlaps 
only a finite number of <r(P). This certainly implies that we can find some 
sphere (not a cr(P)l) with P as center such that within this sphere there is 
no other point of S. This, by familiar reasoning, implies that the set of such 
points P is denumerable, hence of measure 0. Let us, therefore, discard this 
set and the a(P) belonging to it and ignore them in further reasoning. 

Let B\ be the least upper bound of the radii of a(P). Obviously one may 
assume B\ < <». Otherwise, the theorem is trivial. 

After this remark I shall, in fact, prove (7) with 5 replaced by the set 
consisting of the union a of all cr(P), and m (S) replaced by m (a) — e for any e. 
This, of course, will prove (7), since a contains S. 

Let V(Bi) be the volume of a sphere of radius B\. By the definition of Bu 

one can choose cr(Pi) such that its volume V\ > V(Bi) — ^e (obviously 
V\ < V(Bi)). Let 0*1 be the set consisting of the union of a (Pi) and all ad­
joining cr(P). The volume of <T\ is not greater than CV(B{). In fact, let d 
be a sphere of radius B\ about P i (not a a(P)ï) and hence of volume V(B\). 
Now ci is certainly contained in the union of <r and all spheres adjoining it. 
But these latter are certainly of radius <Z?i by the definition of B\. Hence 
Property A implies that the union in question has volume <CF(2*i). Let 
V(B2) be the least upper bound of the volumes of those cr(P) not in ci. Choose 
such a c(P2) whose volume V2 > V(B2) — | e . Let a2 be the union of a(P2) 
and all adjoining <r(P) not in <n. As before, the volume of <r2 is KCV(B2). 

Continue this process inductively. One obtains a sequence (r(Pk), obviously 
disjoint, with volumes Vk subject to these inequalities, where the V(Bk) are 
defined similarly, 

t,(v(Bt)--Ù< Ë Vk<m(a). 
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Since Y,kV(Bk) is convergent V(Bk) —» 0. This implies that the union of <jk 

where ak is defined inductively as above, exhausts all cr(P); for, if it did not, 
but omitted, say, one <T(P'), then from some kf on V{Bk) would equal the 
volume of <r(P'). 

Summing up, one has a = So*. Therefore, 

1 

but 

cm(a) < 2 V(Bk) 

2 Vk > 2 F(B*) - € > £ m ( < r ) - e . 

Now one chooses K so that 

Z7*> £ n-« 
and one has finally 

~m(<0 - 2 e < E Vk. 

LEMMA 1. Theorem A applies to Sn-i with spherical caps as the a(P) and to 
Tn with hyper cubes, — <£ < Bt < 0, (i = 1, . . . , n), as <r(P), where C = 3 n _ 1 

in the first and C = 3W in the second case. 

Proof. The first part is obvious as is the very last statement. In dealing with 
Sn-i I remark that 

= C - i J sin* VT = Cn-i I smn-26dd. 

Now the volume of a sphere of radius r plus those adjoining it of smaller r 
radius is certainly less than or equal to that of a sphere of radius 3r. Since 
Sr < v, 

sin 3r = 3 sin r — 4 sin3 r < 3 sin r 

so that sinw~2 3r < 3 n _ 2 sin71"1 r. Therefore 

f 'singeas = 3 ffsinn-23 dW < 3 n _ 1 f ' s in^ ' f t» . 

3. Proof of Theorem 3. The key to Theorem 3 is the important 

THEOREM 5. The measure of the set Sa of points P for which /* (P) > a does 
not exceed 

r>n- l /» 

JJ a/so does not exceed 

"— f | / ( P ) | d F p 

p f I/(P)I^ 
a «/|/(p)i>»a 

2.3" -1 
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Proof. For each P £ Sa by definition one can find an rP such that 

\f(P')\dVP.> V(rP)a. J" '<rp(rp) 

By Lemma 1 one can find a finite number of the aP{rP) whose total measure 
exceeds 3~ (n_1 ) m(Sa) — e. One has then 

f \f(P)\dVP> f\f(P)\dVP>~îm(Sa)a-e 

where 2 is the finite set of <rP(rP). The last statement is proved as follows: 
Let h(P) = | / (P) | when | / (P) | > \a, otherwise zero. Let h*(P) be defined in 
the same manner a s /* (P ) . Obviously, we have/*(P) < h*(P) + | a . Conse­
quently m (Sa) < the measure of the set of P for which h*(P) > \a, which 
by the preceding part of the theorem is 

< ^— h{P) dVP = ^— » \f(P)\dVP. 
<* J Sn-x Oi J|/(P)|>J« 

A similar proof yields 

THEOREM 6. Letf{P) belong to L on the multitorus Tn. Let y{P) be the "cube" 

Qip — 0 < Bi < 6ip + <t> 

with P as center and side 2<f>. Then the measure m(Sa) of the set of points P 
where 

f*(P) - l.u.b.—-, f /(P') dVP> > a 

is 

<Ç f \f(P)\dVP, 

where d VP is the volume element on Tn. It also does not exceed 

2.3 2-ff \f{P)\dVP. 

Proof of Theorem 3. Let m{x) be the measure of the set of points where 
| / (P) | > Xj and m*(x) be the measure of the set of points where f*(P) > x. 
lij(x) is any non-negative increasing function of x then 

f 5 (f(P) )dVP= - (s (x) dm (x) 
J Sn-l *^0 

f 5 (f * (P) ) d VP = - (s (x) dm* (x) 
Jsn-i Jo 

(7, p. 242). 
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Since, from Theorem 5, 

m*(x)<^—\ \f(P)\dVP=-Z-±r-\ ydm(y), 
x J\f{P)\>\« X J$z 

by formal substitution and interchange of integrations we have 

r°°w*(x) of-xdx < - 2 . 3 n _ 1 f V " V x (œydm(y) 
Jo Jo J\x 

= - 2.3n_1 Vydm (y) f "of~2dx 
Jo Jo 

c\V oW—1 /»co 

But this latter 

and is, therefore, finite. As a consequence 

J»2£ 

rn*(x) y?~xdx = 0; 

however, since m*(x) is a decreasing function 

w*(2£) ^ ^ T 1 ^ = ™*(2£) f x?~ldx < f m*(x) xp~ldx; 
P Js Jk 

therefore, lim m*(£)£p = 0, and we can integrate by parts, getting 

Js y*(P)\pdvP = - JVi«*(«) <-§?Y)jSo \f(p)\pdvP, 
which is (5) with Cn,v = 2*.Zn-y{p - 1). 

The second statement has been proved by Hardy-Littlewood (2) for 
« = 2. The third statement has a similar proof. This time we notice that for 
the same reasons 

P°m*(x) dx < - 2.3"-1 pydm (y) j " ̂  = - 2.3tt_1 f "y log 2y dm[y) 

< 2.3"-1 f |/(P) |log+ |/(P) \dVP + 2.3,,-1log 2 f | /(P) | rf7, . 

Integrating by parts and noting that 
\f\<e + l/l log+|/| 

and 

J m*(x)dx < F(5M_i) 
o 

we have (6). These constants are not as good as those of Hardy-Littlewood 
in the original case, n = 2. 
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THEOREM 7. LetfÇP) belong to Lp, p > 1 on Tn. Then iff*(P) is defined as in 
Theorem 7 

f {f*(P)\'dvP < c, f \f(P)\pdvP 

where Cn>v depends only on n and p. This is no longer true for p = 1; however, if 
\f(P)\ log+|/(P)| is integrable on Tn, then 

f /*(P) dVP < Bn f \f(P)\log+\f(P)\dVP + Ca 

where Bn depends only on n. 

The proof is exactly like that of Theorem 3 with appropriate changes. 
I t will now be seen immediately that Theorem 3 can be extended to an 

arbitrary space with Property A, where 3 n _ 1 is replaced by C. 

4. Theorems which relate radial suprema to averages. 

THEOREM 8. Letf(P) belong to L on 5n_i. Let u(r, P) be the harmonic function 
in Sn which takes on the values f(P) on 5n_i. If 

U{P) = sup|«(r ,P) | 
0<r<l 

then U(P) < Anf* (P), wheref* (P) is defined as in Theorem 3 and An is a constant 
depending only on n. 

Proof. Define polar coordinates in w-space: 

Xi = r cos 0i, 

Xi = r sin 0i cos 02, 

xn-i = r sin 0i . . . sin 0n_2 cos 0n_i, 
xn = r sin 0i . . . sin 0w_i. 

For fixed P we may assume that P is the point Xi = 1, xt = 0;i > 1, in which 
case 0i becomes the geodesic distance of any other point on 5w_i from P . 
We have then 

u(r, P) = - f d 0i . . . f d 0„_2 f Pn(r, Ôi) s in""V(G)« -d 0„_i 

where 

^ " T f̂ and p'{r'd) 

is the Poisson kernel for the sphere, 

(l-2rcos
re + rT ' w = S i n " " ^ • * • S i n 6*->' 
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and Q has coordinates (0i, . . . , 0M_i) (1, Chap. IV). Now let us observe that 
in order to prove the lemma, it is sufficient to prove \u(r, P)\ < Arf*(P) 
where An is fixed and independent of r. We integrate by parts, then, with 
respect to B\ and obtain 

u(r, P) = — \pn(r9 TT) f dd1 . . . f f(Q) s in^W^-i 

- f/di-dFndd[
6l) ' £ fa* f <*W(Q0 smn-26œdd} 

where the coordinates of Q' are (0, 02, . . . , 0n-i)- Recalling the definition of 
f*(P), more explicitly 

/*(P) = l.u.b.(c„ f sinw-20^) f f ^ 2 . . . f d»»-i|/(Q)| -sîn*-atf • « \dd 

where 

Cn = I d02. . . I uddn-i = cow_i; 
«/0 •/-7T 

therefore 

R f (Mi) • smn-26d0 \de1 

< f*(P)\Kn + Cn £ I ̂  (r, 0X) J • |̂ | •<% J 

where i£n is a constant depending only on n. The last expression (2, p. 107) in 
brackets is <Z)„. This completes the proof. 

THEOREM 9. Letf(P) belong to L on Tn. Let u(ru . . . , rn, P) be the function 
which is harmonic in the poly cylinder, 

Pn: \zt\ < 1 ( i = l , . . . , n ) 

and w/ncfe assumes the values f(P) on Tn. Then, iff*(P) is defined as in Theorem 
7, we have 

sup \u{r1,...%rn,P)\ <.4Af*(P) 
( r i , . . . , r„ )«A 

^ e r ^ A is /Ae region of 0 < r* < 1, (i = 1, . . . , w), described by (10). ^4A 

depends only on A (i.e., i£) awd n. 

Proof. I remark that the latter restriction seems quite essential as is 
evidenced not only in the proof but by the implications of the lemma (cf. the 
next section). I observe again that one can assume that P is the point 0* = 0 
(i = 1, . . . , n) on Tn. Because of a few complications it will be easier to 
present here the proof for n = 2 only. The extension to arbitrary n is straight­
forward. 
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u(rh r2, P) = -~p J J P(ru Si) P(r2, d2)f(du 62) d61dd2 

where P(r,d) = (1 — r 2 ) / ( l — 2 cos 8 + r2) is the usual Poisson kernel. 
Repeated integration by parts and interchange of integration gives, after 
taking absolute values 

Hru r„ P) I < ^ [ f ^ -\=% £ £ \m, *) I dS^ 

(sgn ffx -sgn 62) J J |/(0, 0') | dftW'J dM»2 J 

J0J0' 

= -^lA + /, + h + hi 
4t7T 

Recalling the definition of/*(P) one has Ji < 47r2/*(P). T O get an inequality 
for I2 (and 73) one observes that the inner double integral is less than or equal 
to 

J j | / (01,02) |^1^2<47T2 /*(P). 

Furthermore, 

d$i 

Therefore J2 (and 73) < 4?r2 . 4:Kf*(P). Next, in 74 the inner double integral is 
less than or equal to 

»02 /»(sgn0i)|02l J»02 •» 

o *Jo 

J 02 /»#2 

, |*i | < \e* 
-82 *J—d2 

I £ £ • w > ^ 
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We split up I4, 

l * i l < l * 2 l \8i\>\0t 

which with the previous remark gives us 

h < 4/*(P)[ j J ~ P(rlf 61) -J- P(r2j 02) I • \61\
2dd1dd2 

\el\>\e2\ 

+ S S\&p^v-àp<rM-M'd9>#,'\' 
M<\h\ 

the first integral in brackets is less than 

2^(1-^) f \-—^±——sJde. f U~P(r2,6) 
«/_.,. I (1 — 2r 1 cos 6 + r\ ) I J-T I dd 

< 

(1 - 2r 1 cos 6 + r{y 

6 sin 0 

de 

2rM1 + riW.r,{2il±zf\.Jl d$. 
(1 - 2ri cos (9 + fi)21 

The integral on the right is less than or equal to a constant C (the 
reasoning is the same as in the Hardy-Littlewood reference in the proof of 
Lemma 3). Therefore, this first integral in brackets (and similarly the other) 
is less than or equal to 16wK C. Setting 

AA = (1 + SK + 32KC/<JT), 

one completes the proof. 

5. Proofs of Theorems 1, 2, and 4 and related theorems. 
THEOREM 10. Letf(P) belong to Lp, p > 1 on Sn-\. Let u(r, P) be the function 

harmonic in Sn with boundary values f(P). If U(P) = sup \u(r, P) | , then 
0<r<l 

- i - f {U{P)YdVP < Cn,P~ f \f(P)\pdVP 

where CntV is a constant, depending only on n and p. For p = 1 this is not true. 
However, if \f{P)\ log+ | /(P)| is integrable on 5w_i, then 

±r f U(P) dVP < ^ f \f(P) | log+ |/(P) \dVP + -% 

where Bn and Cn depend only on n. 

Proof. The first and third statements are corollaries of Theorem 3 and 
Theorem 9. The second statement has been proved in (2) for n = 2. As a 
corollary of Theorem 10 we have 

THEOREM 11. Let u(r, P) be harmonic in Sn and let it be such that 

(11) " ^ f \u(r,P)\'dVP<C 
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for all r < 1, and fixed p > 1. Then if U(P) is defined as in Theorem 10 

V1 
(12) ~r f {U(P)}pdVP < Cn,pC 

1 J Sn-l 

Proof. Let 

UR(P) = sup | « ( r ,P ) | ; 
0<r</2<l 

then 

^1 JSn-i Vl J Sn-l 

by Theorem 10. Now UR(P) Î U(P) as P —> 1. Hence, Lebesgue's monotone 
convergence theorem completes the proof. 

THEOREM 12. Let u(r, P) satisfy (11). Then there exists a function u{P) 6 LP 
on Sn-i such that 

(13) lim (\u(r,P) - u(P)\pdVP = 0 

Proof. Holder's inequality implies 

— f l « ( ^ ^ ) l ^ p < ( l 7 f \u(r,P)\pdVP)* < (Cn,P)1/p. 

As a result 

F ( r ,S ) = fu(r,P)dVP, 
J s 

where 5 is a measurable subset of Sn_i, constitute a set of absolutely contin­
uous set-functions on Sn-i which are uniformly bounded. According to Radons 
theory of integration one can form, for any $ continuous on Sn_i, the Radon-
Stieltjes integral 

f QdF(r,S). 
J Sn-l 

Now it is a classic theorem of Radon that from the uniformly bounded set of 
set-functions F(r, S) on 5w_i one can extract a sequence F(rm, S) and find 
another bounded set-function F(S) such that, for any continuous $, 

(14) lim f $ dF(rm} S) = f $ dF(S) 
W->oo«^5n- l J Sn-i 

where the rm —» 1, otherwise the theorem is trivial. 
Now 

(15) | F ( r , S ) | < f\u(r,P)\dVp< ( U(P) dVP 
J s J s 

so that the F(r, S) are uniformly absolutely continuous, since U(P) by (12) 
and Holder's inequality belongs to L. Therefore, by choosing <£ in (14) to be 
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the characteristic function (rounded-off) of S one sees that F (S) is also 
absolutely continuous, and, therefore, the integral of a point function u(P) 
of class L. Accordingly, if one picks $ in (14) to be the Poisson kernel one finds 

(16) u(r,P) = f Pn(r,Q)u(Q) dVQ. 
•J Sn-1 

One also sees from (15), by applying Lebesgue's differentiation theorem, 
that \u(r, P)\ < U(P) almost everywhere so that u(P) is in Lv by (12). 

The reasoning in (7, p. 85) using (16) completes the proof of (13). 
To prove (2), I observe first that a subharmonic function w(r, p) satisfying 

(11) also satisfies the analogue of (12). The proof of this is reduced to (12) 
by the device of the harmonic majorant of w(r, P) and is to be found in (2, 
p. 113, footnote 1) which carries over word for word to several variables. 

Next, following Hardy and Littlewood, I set w(r, P) = |/|*x and observe that 
(1) implies that w(r, P) satisfies (11) with p = 2 > 1. That |/|*x is subharmonic 
is a simple consequence of the mean-value theorem for the function /*x which 
is analytic in the neighborhood of any point where / 9e 0. Then (2) follows 
immediately. 

The proof of (9) follows from Theorems 6 and 9 through the intermediary 
of theorems analogous to 10 and 11 exactly as in the proof of (2). 

Finally (3), Theorem 2, follows from Theorem 12 when X > 1 since 
l^/l < l/l a n d \If\ < l/l and the convergence of / follows from that of Rf 
and If by Minkowski's inequality. When X = 1 the Hardy-Littlewood in­
equality is still valid for/, unlike the harmonic function; therefore the reason, 
ing of Theorem 12 may be repeated to account for this case. 

Obviously, a similar theorem may be deduced for the polycylinder (cf. 
also 10). 
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