VOL. 6 (1972), 19-24.

A finite set covering theorem II

Alan Brace and D.E. Daykin

```
Let n,s,t be integers with s>t>1 and n> (t+2)2 s-t-1.
We prove that if n subsets of a set S with s elements have
intersection I and union J then some t of them have
intersection I and union J . The result is best possible.
```


1. Introduction

Small letters denote non-negative integers and large letters denote sets. Also $[i, j]$ denotes the set $\{i, i+1, i+2, \ldots, j\}$. We assume $s>t>1$ and let $S=[1, s]$. If a family M of subsets of S has union S we say it covers S. If it covers S and has empty intersection 0 we say it laces S. We say we invert an element k of S in M when we adjoin k to all sets in M not possessing k and delete k from all sets in M possessing k. Clearly inversion will not affect lacing. An important family of subsets of S is

$$
E=\{X ; X=P \cup Q, P \subset[1, t+1],|P| \leq 1, Q \subset S \backslash P\}
$$

The number e of sets in E is

$$
e=e(s, t)=(t+2) 2^{s-t-1}
$$

and these e sets lace S. Our result is the
THEOREM. Let n, s, t be integers with $s>t>l$ and let $N=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be n different subsets X_{i} of $S=[1, s]$. Firstly suppose $I V$ covers S but no t sets X_{i} of N cover S. Then

$$
\text { (i) } n \leq e \text {, and }
$$

Received 10 August 1971.
(ii) if $3 \leq t$ and $n=e$ we can obtain N from E by permuting the elements of S.

Secondly suppose N laces S but no t sets X_{i} of N lace S. Then
(iii) $n \leq e$, and
(iv) if $3 \leq t$ and $n=e$ we can obtain N from E by permuting and imverting elements of S.

When $t=2$ the value e can be attained in many ways beside E, for instance

$$
F=\{X ; X=P \cup Q, P=1 \text { or } 2 \text { or } 3 \text { or }[1,3], Q \subset[4, s]\}
$$

In an earlier paper [1] we proved parts (i) and (ii) of the theorem and we will use them in proving the remainder. When the characterization of the extreme case is not required, the theorem takes the pleasing form presented in the abstract at the beginning of this paper.

2. Preliminary results

Let M be a family of subsets of S and for each $k \in S$ put

$$
\begin{aligned}
& A_{k}(M)=\{X ; X \cup k \in M, X \backslash k \in M\} \\
& B_{k}(M)=\{X ; X \in M, k \in X, X \backslash k \notin M\}, \\
& C_{k}(M)=\{X ; X \in M, k \notin X, X \cup k \notin M\}, \\
& B_{k}^{\prime}(M)=\left\{X \backslash k ; X \in B_{k}(M)\right\} .
\end{aligned}
$$

For example $C_{1}(E) \neq 0$ but $B_{1}(E)=B_{s}(E)=C_{s}(E)=0$. Then

$$
M=A_{k}(M) \cup B_{k}(M) \cup C_{k}(M)
$$

is a partition of M, and

$$
\Delta=\Delta(M, k)=A_{k}(M) \cup B_{k}^{\prime}(M) \cup C_{k}(M)
$$

defines and partitions a family Δ of subsets of S. Clearly

$$
\begin{equation*}
A_{k}(M)=A_{k}(\Delta(M, k)) \tag{1}
\end{equation*}
$$

(2)

$$
B_{k}(\Delta(M, k))=0
$$

(3)

$$
\left|B_{k}(M)\right|+\left|C_{k}(M)\right|=\left|C_{k}(\Delta(M, k))\right|,
$$

(4)

$$
|M|=|\Delta| .
$$

We will need
LEMMA 1. If $j, k \in S$ and M is a fomily of subsets of S and $\Delta_{k}=\Delta(M, k)$ then

$$
\left.\begin{array}{rl}
\left|A_{j}(M)\right| & \leq\left|A_{j}\left(\Delta_{k}\right)\right| \\
\left|B_{j}(M)\right| & \geq\left|B_{j}\left(\Delta_{k}\right)\right| \\
\left|C_{j}(M)\right| & \geq\left|C_{j}\left(\Delta_{k}\right)\right|
\end{array}\right\} \text { if } \quad j \neq k .
$$

Proof. To simplify notation suppose $k=1$ and $j=2$. Then for each fixed subset R of $[3, s]$ consider 16 cases as set out in Table 1.

R	Family M			Family $\Delta_{1}=\Delta(M, 1)$			
	$10 R$	2 u R	IU2UR	R	$1 u R$	$2 u R$	luzur
0	0	0	0	no	nge		
0	0	0	B	0	0	B	0
0	0	B	0	no	nge		
0	0	B	B				
0	c	0	0	C	0	0	0
0	A	0	A	A	0	A	0
0	c	B	0	A	0	A	0
0	A	B	A	A	0	A	B
c	0	0	0				
c	0	0	B	A	0	A	0
A	0	A	0		nge		
A	0	A	B		nge		
C	c	0	0				
c	A	0	A		C	A	0
A	C	A	0		nge		
A	A	A	A				

Table 1

We explain the table by discussing the third line up. This line corresponds to the case $R \in M, 1 \cup R \in M, 2 \cup R \nmid M, 1 \cup 2 \cup R \in M$, so that R is in $C_{2}(M)$ while $1 \cup R$ and $1 \cup 2 \cup R$ are in $A_{2}(M)$. These facts are indicated by the letters $C, A, 0, A$ in the left hand columns headed $R, \perp \cup R, 2 \cup R, 1 \cup 2 \cup R$ respectively. The sets $R, 1 \cup R$ are in $A_{1}(M)$ and so are unaltered when changing from M to $\Delta_{1}=\Delta(M, 1)$. However the set $1 \cup 2 \cup R$ is in $B_{1}(M)$ and so is changed to $2 \cup R$. Thus in Δ_{1} we get R and $2 \cup R$ in $A_{2}\left(\Delta_{1}\right)$ and $1 \cup R$ in $C_{2}\left(\Delta_{1}\right)$, as indicated by the letters $A, C, A, 0$ in the right hand columns.

The table is not difficult to check. The inequalities of the lemma hold for each line of the table, and the result follows.

LEMMA 2. Let M be a family of subsets of S which lace S, and such that no t of the subsets lace S. Then if $\Delta=\Delta(M, 1)$ can be obtained from E by permuting and inverting elements of S, so can M.

Proof. If $C_{1}(M)=0$ then Δ is obtained from M by inverting element l, so M can be obtained from E by permuting and inverting. Now suppose $C_{1}(M) \neq 0$. Then $C_{1}(\Delta) \neq 0$ by (3), and therefore, by suitably permuting and inverting the elements $2,3, \ldots, s$ in M and Δ simultaneously, we can make $\Delta=E$. If $B_{1}(M) \neq 0$ there must be a set X in M containing two elements of $[1, t+1]$ and hence t sets in M lacing S, a contradiction. Therefore $B_{1}(M)=0$ and $M=\Delta$. This completes the proof.
3. Proof of parts (iii) and (iv) of the theorem

The case $t=2$ is trivial because we can't have a set and its complement among the X_{i}. For $t>2$ we use induction. We assume the theorem true for $s-l, t-1$ and deduce its validity for s, t. Also we suppose that n is as large as possible.

We define a sequence $N_{0}, N_{1}, \ldots, N_{s}$ of families of subsets of S by $N_{0}=N$ and

$$
N_{k}=\Delta\left(N_{k-1}, k\right) \text { for } k=1,2, \ldots, s
$$

We have $\left|N_{k}\right|=\left|N_{0}\right|=n$ by (4). Also we notice from (2) that
$B_{k}\left(N_{k}\right)=0$. So if t sets of N_{k} were to lace S at least one of them would possess the element k and so lie in $A_{k}\left(N_{k}\right)$. Then we would easily get t sets of N_{k-1} lacing S. Thus by induction we know that for $0 \leq k \leq s$ no t sets of N_{k} lace S.

Next we claim that if $I \leq j \leq s$ and $0 \leq k \leq s$ then $A_{j}\left(N_{k}\right) \neq 0$. For otherwise, by (1) and Lemma 1 , we would have $A_{j}(N)=0$. Then by renumbering the elements of S we could have $j=1$ so $A_{1}(N)=0$. Since N laces S this would imply $B_{1}(N) \neq 0$ and $C_{1}(N) \neq 0$. Consider the family N^{\prime} of subsets of $[2, s]$ defined by

$$
N^{\prime}=\{X \backslash 1, X \in N\}
$$

There are as many sets in N^{\prime} as in N and they lace [2, s]. Moreover no $t-1$ of them lace $[2, s]$, for if they did, because $B_{1}(N) \neq 0$ and $C_{1}(N) \neq 0$, we would immediately get t sets of N lacing S. Thus by our induction hypothesis

$$
|N|=\left|N^{\prime}\right| \leq e(s-1, t-1)<e(s, t)=|E|,
$$

contradicting our assumption that n is maximal. This proves that no $A_{j}\left(N_{k}\right)$ is 0 , and hence that each of $N_{0}, N_{1}, \ldots, N_{s}$ lace S. Consider now N_{s}. By (2) and Lemma 1 we have $B_{j}\left(N_{s}\right)=0$ for $1 \leq j \leq s$. Further no t sets Y_{1}, \ldots, Y_{t} of N_{s} can cover S. For suppose they did and let $h \in S$. If h is in every Y_{i} then every Y_{i} is in $A_{h}\left(N_{s}\right)$, and we replace Y_{1} by $Y_{1} \backslash h$. Repeating this for every $h \in S$ would produce t sets of N_{s} which lace S, which we just proved was impossible. Thus part (i) of the theorem applies to N_{s} and we have $n=\left|N_{s}\right| \leq e$ proving ($i i i$).

Finally suppose $\left|N_{s}\right|=e$ and $t>2$. Then part (ii) of the theorem says that N_{s} can be obtained from E by permuting elements of S. In turn Lemma 2 says that N_{s-1} can be obtained from E by permuting and inverting elements of S and, by repeated application of the lemma, so
can $N_{0}=N$. This proves (iv).

Reference

[1] Alan Brace and D.E. Daykin, "A finite set covering theorem", BuZZ. Austral. Math. Soc. 5 (1971), 197-202.

University of Western Australia, Nedlands, Western Australia, and

Univerșity of Reading,
Reading,
England.

