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1. Introduction

The series Y*=o an is s a 'd to be summable \Ea\ (0 < a < 1) if

>.=£, (;)«•(> -«r -x ,
where ^v = aQ+al+ - - • +av , and

(1) E U B - ^ - i l < » .

Since

av(l-a)""vv«v = n0n -*„_,)

(see [2]), (1) is equivalent to

(2) Z
i = i n

< 00.

We suppose throughout that / ( x ) is a periodic function with period 2n,
integrable in the Lebesgue sense. Let

a °°
f(x) ^ + Z (an c o s nx + K s i n nx)

2 n=l

The series conjugate to (3) is

00 CO

(4) £ (bn cos nx - an sin nx) = £ Bn(x),
n = l n = l

and the differentiated series of (3) is

(5) I nBJLx).
n = l

129

https://doi.org/10.1017/S1446788700011198 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011198


130 B. Kwee [2]

We write

N. Tripathy [3] has shown the condition that <j>(t) is of bounded variation
in (0, n) does not ensure the summability of (3) by \EJ.

In this paper we shall prove

THEOREM 1. If g(t) = <p(t) log l/t is of bounded variation in 0 g t SJ <5 < 1,
then £" = 0 An{x) is summable \EJ. g(t) cannot be replaced by gn(t) = </>(r)(log l/tj1

for 0 < n < 1.

THEOREM 2. If

f
Jo

log — \d(j)(u)\ < oo,
u

^ ° = 0 An(x) is summable \Ea\.

J. M. Whittaker [4] proved that, if (j>(t)/t e £(0, 8), then the Fourier series (3)
is summable \A\. We shall prove

THEOREM 3. The condition (j)(t)/t'1 e L(0, n), where r\ < 2, does not ensure
that (3) is summable \EJ.

However we have

THEOREM 4. If(j)(t)/t2 e L(0, 5), then (3) is summable \Ea\.

For the conjugate series we have

THEOREM 5. 7 / > ( + 0 ) = 0 and

Cd 1
log — |<?iK0l < °°

Jo t

then the conjugate series (4) is summable \EJ.

Finally we shall prove the following theorem on the diiferentiated series.

THEOREM 6. / / iA(+0) = 0 and

Cd 1
(6) — \dij/(u)\ < oo,
then (5) is summable \EJ. (6) cannot be replaced by

(7) f - |#(u)| < oo
J o u

for any r\ < 2.
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2. Proof of Theorem 1

Let

Let

Then

2 f
*n = — <)

71 J o

(8) = -

7T

2

Now

(9) = Im — ( 1 - a + ae'")"

= nap" ~1 (u) cos (u + n -10(u)),

where

N • 2 «

— a) sin — ,
2

_, a sin u
= tan

1—a + a cos u

It is clear that p(w) ^ e'c"2 (0 ^ w ̂  7c), where c is a positive constant. Hence

00 I T / , , / / • « 00 \

E ^- '=0( l*(u)|(Ip--1(u))d«

„(«)=£ (log 1
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Then

/ ; = f 0(«)(log-) lGn(u)du
Jo \ u I

= g(5)EJL5)-

Hence

(ii) £^<«>
n = l tl

if

(12) £ !Mf)l < oo
n = l n

uniformly for 0 ^ w ̂  <5. Let

Hn(u) =

sin vu

= p\u) sin n9(u).

EJiu) = (log I ) lHn(u)-j" I l̂Og Ly2HJ

Then

(13)

\ u / j 0 t

Let JV be the smallest positive integer such that Nu4 > 1. Then

, p"(u) sin n9(u) z
(14) = 0 l o g - Z - ) + Q ( Z —

= 0(1),

uniformly for 0 < u ^ d. Now write

(15)

where

- ( l o g - Hn(t)dt = J'n + J'n',
J Q t \ t /
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Hi)-

Since sin vt = O(vt), we have

Hence

(16)

It is clear that

and hence, for u > l/n,

\n=2 tl log

0(1).

J1; = n(log n)'2 f" ( t (") av(l -a)""v sin vt)
J l/n \v=l \ V / /

dt

where l/« ^ £„ ^ w. It follows that

(17) Z ^ = 0(1).
n = l 71

From (13), (14), (15), (16) and (17), we see that (12), and hence (11) holds. The
first part of Theorem 1 follows from (8), (10) and (11).

To prove the second part, we required the following lemma due to L. S.
Bosanquet and H. Kestleman [1].
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LEMMA 1. Suppose that fn{x) is measurable in (a,b), where b — a^ oo, for
n = 1, 2, • • •. Then a necessary and sufficient condition that, for every function
h{x) summable over {a, b), the functions fn(x)h(x) should be summable over (a, b)
and

n=\
f\(x)fn(x)dx

J a
< oo

is that Yjn= il/n(*)l should be essentially bounded in (a, b).

(10) is unaffected when g{t) is replaced by gn{t). Let

f" / 1 \~n

Eftii)= l o g - \Gn{t)dt.
Jo \ ' /

Then

Jo
We have

Since

n = l tl \ n = l n

= 0(1),

and (16), (17) remain valid when (log I / / )"2 is replaced by (log 1/f)"""1,

(19) < oo.

It follows from Lemma 1, (18) and (19) that a necessary condition for (11) to
hold is that

(20)
n = l

should be essentially bounded for 0 ^ u ^ d. Now

and from (15), (16) and (17) with (log l/t)~2 replaced by (log I//)"""1

11 = 1 n

f" 1 / 1 X"11"1

- ( l o g - tfn < 00
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uniformly for 0 g u ^ 8. Since (see [3], page 24)

2^ •——— -> oo
U ! n = l tl

as u -* 0, (20) is not essentially bounded. This proves the second part of the
theorem.

3. Proof of Theorem 2

We shall deduce Theorem 2 from Theorem 1.
Suppose that the conditions of Theorem 2 are satisfied. Then <j)(u) is of

bounded variation in (0, S), and hence it must tend to a limit as / -» 0. By altering
the value of ^ if necessary, we may suppose that this limit is 0. (Note that the
hypothesis of Theorem 2 is unaffected by a change of the value of s.) Now

(21) f| dg{u)\ g f log - | d<Mu)\ + f - \<Ku)\ du.
Jo Jo u Jo u

The first term on the right of (21) is finite by hypothesis. Since <j>(u) -» 0 as u -> 0,

f
o

so that the second term on the right of (21) does not exceed
f* 1 C C6 Cd dt

- |d#0ldu= l#0)l -
J 0 « Jo ">0 Ju *

f
o u

< 00.

Hence the result.

4. Proof of Theorem 3

Since

(22) xH = - f<t>(u)Gn(u)du,
n Jo

it follows from Lemma 1 that (3) is summable \EJ if and only if u" £*= x \Gn(u)\/n,
is essentially bounded for 0 ^ u ^ n, or, from (9),

(23)
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is essentially bounded for 0 ^ u ^ n. Let M = [1/K] and N = [1/M2]. Then (23)
is greater than

N

«"Z Pn~
t

1(u)\ cos (u + n>,-W(u))\^

. n N

N

""Z
= — > O ( U ) + — > 0 \U)

2 n = M 2 n = M

Without loss of generality, we assume that 1 < r\ < 2. Then

S2 = 0{u>Af-1(u)| max £ cos (2u + 2«-10(u))|}
AfgmgN n = M

= 0
sin 6{u)

= 0(1).

There exists a positive constant c± such that p2(t/) ^ e~cx" . Hence, for n ^ 1/M2,
^ " " ' ( M ) ^ c2 for some constant c2 > 0. Therefore

2

as u -> 0 + . Hence (23) is not essentially bounded.

5. Proof of Theorem 4

It follows from (22) that (3) is summable \EX\ if

(24) " 2 Z - \Gn(u)\ < oo
n = l n

uniformly for 0 ^ w ̂  %. Now the left hand side of (24) is equal to

<xu2 X pn~\u)\ cos (u + n-l6(u))\ = 0(u2 £ e"CT"
n = l n = l

- 0 ( 1 )

uniformly for 0 < u < n. Hence (24) is satisfied.
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Let

Then

(25)

We have

Hence

(26)

Now

so that

(27)

if

Since

we have

Absolute Euler summability of Fourier series

6. Proof of Theorem 5

v sin vu.

137

* . = !
v = l

= 1 r^(u)
n Jo

= - ( f +
2

n

L ^ = o(X>-"-^2)
w — 1 fT n — 1

= o(i).

I -

f Fn(
J u

cos cos
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co !z L
n

r
v u

Fn(t)dt = °(Z-
Vi=l n /

aco -city \

,7")
V J , y J \Ji/u y 1

I rllu dv\ I f°° 2 \

\ Jt y! \Jllu J

= 0 — .

Hence (27) holds and the theorem follows from (25), (26) and (27).

7. Proof of Theorem 6

We have

= -1 \\{u)
n J 0

n w 0 jd

-{Y'+Y")
n

du

Since

du

[10]

n(n- l)a V " \u) sin (2« + « - 20(u)) - nap""l (u) sin (« + » -16(u))

0(nVncu2),

(28)

00 1 Y " l / /*« 00 \

n=i n \Jd «=i /

00

ne-"cd2)
B = l
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We have

From (23),

(29)

and

Absolute Euler summability of Fourier series

Y; =

139

= 0(1),

\Gn(u)\

n = l M n = l

Hence

(30)
CO l y / l

Z - - = 0(1).
n = l «

It follows from (28) and (30) that (2) holds, and hence the first part of
Theorem 6 is true.

When (6) is replaced by (7), (28) and (29) are not affected. Since, from the
proof of Theorem 3, w"Z*=i \Gn{u)\ln is not essentially bounded, there exists
a summable function a{x) such that

1

I 1

n

f u"a(u)Gn{u)du
Jo

= 00.

Let ij/(u) = \u
ou

na(u)du. Then ^ ( + 0 ) = 0. Since

| T I > _ iy'1 \Y"\
n n

f'Gn(M)#(u)| - -?• -
n

we have

«=i n

which proves the second part of the theorem.
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