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A Note on the Diophantine Equation
x2 + y6

= ze, e ≥ 4

Konstantine Zelator

Abstract. We consider the diophantine equation x2 + y6
= ze, e ≥ 4. We show that, when e is

a multiple of 4 or 6, this equation has no solutions in positive integers with x and y relatively prime.

As a corollary, we show that there exists no primitive Pythagorean triangle one of whose leglengths is

a perfect cube, while the hypotenuse length is an integer square.

1 Introduction

At an instructional conference on diophantine equations held at Leiden University

in 2007 [1], some open questions were posed. One of them was the diophantine

equation,

(1.1) x2 + y6
= ze, e ≥ 4.

This equation is the subject matter of this paper. We offer a purely elementary

approach and an elementary proof of the the two main results of this work (Theorems

4.1 and 4.2).

In Theorem 4.1, we prove that if e is a multiple of 4, then the above diophantine

equation has no solutions in positive integers x, y, z with (x, y) = 1.

Theorem 4.2 states that if e is a multiple of 6, then equation (1.1) has no such solu-

tions either. To establish the two theorems, we make use of three well-known results

in the literature of diophantine analysis. We also use Lemma 3.1 and Proposition 3.2,

proved in Section 3.

At the end of the paper, we state two corollaries involving Pythagorean triangles

(Corollaries 5.3 and 5.4).

2 Some Results from Number Theory

First we state the well-known parametric formulas that describe the entire family of

Pythagorean triples.

Lemma 2.1 All positive integer solutions (up to symmetry with respect to x and y) of

the diophantine equation x2 + y2
= z2 are given by,

(2.1) x = d(m2 − n2), y = d(2mn), z = d(m2 + n2),

with m, n, d ∈ Z
+,m > n, (m, n) = 1, and m + n ≡ 1(mod 2). When d = 1, all the

primitive triples are obtained.
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The following result was first proved by Pocklington in 1914 [3]. For a quick

reference and proof see [2].

Theorem 2.2 All the positive integer solutions of the diophantine equation x4−x2 y2 +

y4
= z2, are given by x = y = t, z = t2, t a positive integer.

In particular, x = y = z = 1 is the only solution with (x, y) = 1.

Theorem 2.3 was established by Adrain [4, p. 636] in 1906.

Theorem 2.3 The diophantine equation x4 + x2 y2 + y4
= z2 has no solutions in

positive integers x, y, z.

Theorem 2.4 can be found in [2].

Theorem 2.4 All the integer solutions of the diophantine equation 2z3
= x3 + y3 with

z 6= 0, are given by x = y = z = t, t 6= 0, t ∈ Z, and the solutions with z = 0, are

given by z = 0, x = t, y = −t, t ∈ Z.

3 A Lemma and a Proposition

Using the identities

a3 ± b3
= (a ± b)(a2 ∓ ab + b2) = (a ± b)

[

(a ± b)2 ∓ 3ab
]

,

one establishes the following lemma.

Lemma 3.1 Suppose that a and b are relatively prime integers, (a, b) = 1. Then

(a ± b, a2 ∓ ab + b2) = 1 or 3, with 1 occurring when a ± b 6≡ 0(mod 3), while the

above greatest common divisor is equal to 3 in the case when a ± b ≡ 0(mod 3).

Proposition 3.2 All the positive integer solutions of the diophantine equation

(3.1) x6 + y6
= 2z2

are given by x = y = t, z = t3, t ∈ Z
+. In particular, the only such solution with

(x, y) = 1 is x = y = z = 1.

Proof One direction is trivial, namely that if (x, y, z) = (t, t, t3), with t a positive

integer. Then such a triple is a solution of (3.1). Below we establish the converse:

every such solution must be of the above form. First, observe that if x, y, z are positive

integers satisfying (3.1), then the highest power of 2 dividing x must be the same as

the highest power of 2 dividing y. This is easy to see by virtue of the fact that the

highest power of 2 dividing the right-hand side of (3.1) must be of the form 2v, v

being an odd integer. If x and y were exactly divisible by different powers of 2, then

the left-hand side of (3.1) would be exactly divisible by 2w, w being an even integer.

So we would have a contradiction. Therefore, based on this observation we can put

(3.2) {x = δ · 2r · x1, y = δ · 2r · y1} ,
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where δ is an odd positive integer and x1, y1 are relatively prime odd positive integers,

(x1, y1) = 1, and r a nonnegative integer. Accordingly, since x6
1 + y6

1 ≡ 2(mod 4),

(3.1) implies z = δ3 · 23r · z1, z1 an odd positive integer.

Combining (3.1) and (3.2) we obtain,

(3.3) x6
1 + y6

1 = 2z6
1, or equivalently, (x2

1 + y2
1)(x4

1 − x2
1 y2

1 + y4
1) = 2z2

1

Since x1 and y1 are relatively prime, it follows by Lemma 3.1 that the two factors

on the left-hand side of (3.3) are either co-prime or, their only factor in common is

3. The latter possibility is ruled out, since (x1, y1) = 1 easily implies that x2
1 + y2

1 6≡
0(mod 3) (More generally, as is well known, a sum of two relatively prime squares

cannot be divisible by a prime congruent to 3 modulo 4.) We conclude that the two

factors on the left-hand side of (3.3) must be co-prime, and since x1 and y1 are both

odd, equation (3.3) implies

(3.4) x2
1 + y2

1 = 2k2
1, x4

1 − x2
1 y2

1 + y4
1 = k2

2

for some relatively prime integers k1, k2, with k2 being odd and with k1k2 = z1.

The second equation in (3.4) combined with Theorem 2.2 implies that x1 = y1 =

ρ, k2 = ρ2 for some odd positive integer ρ.

Combining this with the first equation in (3.4) and the formulas in (3.2) and

k1k2 = z1 leads to x = y = t, z = t3, where t = δ · 2r · ρ. The proof is com-

plete.

4 The Two Theorems

Theorem 4.1 Let e be a positive integer that is a multiple of 4. Then the diophantine

equation

(4.1) x2 + y6
= ze

has no solutions in positive integers x, y, z such that (x, y) = 1.

Proof Suppose that x, y, z are positive integers satisfying equation (4.1), with x and

y being relatively prime. Then x, y, z are pairwise relatively prime, and (x, y3, z2k) is

a primitive Pythagorean triple, where k =
e
4

and e = 4k. We apply the formulas in

(2.1). Throughout the two cases in the proof, m and n will be assumed to be relatively

prime integers, with one even while the other is odd, and with m > n.

Case 1: x odd, y even

We have

(4.2)
{

x = m2 − n2, y3
= 2mn, z2k

= m2 + n2
}

.

In the arguments to follow, only y and z are involved. Consequently, since the

second and third equations in (4.2) are symmetric with respect to m and n, there is

no loss of generality in assuming m to be even and n to be odd. With that in mind, the
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third equation in (4.2) shows that (m, n, zk) is a primitive Pythagorean triple. Hence,

since m is even and n is odd,

(4.3) m = 2MN, n = M2 − N2, zk
= M2 + N2,

with positive integers M,N such that M > N, (M,N) = 1, and M + N ≡ 1(mod 2).

On the other hand, since m is even, n is odd, and (m, n) = 1, the second equation

in (4.2) implies

(4.4) m = 4a3, n = b3,

for some relatively prime integers a and b, with b being odd.

Combining the first equations in (4.3) and (4.4) yields

(4.5) 4a3
= 2MN, MN = 2a3

Since M and N are relatively prime and have different parities, equation (4.5)

implies either

M = 2c3 and N = d3(4.6)

or alternatively,

M = d3 and N = 2c3(4.7)

for positive integers c, d such that (c, d) = 1 and with d odd.

Combining (4.6) and (4.7) with the second equations in (4.4) and (4.3), we see

that either b3
= 4c6 − d6 or alternatively b3

= d6 − 4c6.

Equivalently, we must have either

b3
= (2c3 − d3)(2c3 + d3)(4.8)

or

b3
= (d3 − 2c3)(d3 + 2c3).(4.9)

Due to the fact that (c, d) = 1 and d being odd, the two factors on the right-hand

sides of equations (4.8) and (4.9) must be relatively prime. Thus, if (4.8) holds, then

each of the two factors on the right-hand side of (4.8) must be an integer cube. In

particular, 2c3 + d3
= g3 for some integer g. Obviously g must be positive, since c

and d are. Moreover, 2c3
= g3 + (−d)3, which shows that the triple (g,−d, c) is an

integer solution of the diophantine equation 2Z3
= X3 + Y 3.

By Result 2.4, and since c 6= 0, we must have c = t , g = t , −d = t ; d = −t for

some nonzero integer t . But, this is impossible by virtue of the fact that c and d are

both positive. The argument is identical if (4.9) holds.

Case 2: x even and y odd

In this case, we have (from equation (4.1))

(4.10)
{

x = 2mn, y3
= m2 − n2, z2k

= m2 + n2
}

.
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Because (m, n) = 1 and m + n ≡ 1(mod 2), we have (m − n, m + n) = 1, which,

when combined with y3
= (m − n)(m + n), implies

(4.11)
{

m − n = λ3
1, m + n = λ3

2

}

for some odd relatively prime integers λ1 and λ2.

From (4.11) we obtain

(4.12)
{

m =

λ3
1 + λ3

2

2
, n =

λ3
2 − λ3

1

2

}

.

From (4.12) and the third equation in (4.10) we obtain

(4.13) 2z2k
= λ6

1 + λ6
2.

According to (4.13), the triple (λ1, λ2, zk) is a positive integer solution to the dio-

phantine equation 2Z2
= X2 + Y 6, with (λ1, λ2) = 1. Hence, by Proposition 3.2, it

follows that λ1 = λ2 = zk
= 1, which is a contradiction since, for example, n is a

positive integer (and so nonzero).

Theorem 4.2 Let e be a positive integer that is a multiple of 6. Then the diophantine

equation

(4.14) x2 + y6
= ze

has no solutions in positive integers x, y, z such that (x, y) = 1.

Proof We set e = 6k, k a positive integer and x, y, z ∈ Z
+, satisfying (4.14) and with

(x, y) = 1. Therefore, (x, y) = 1 = (x, z) = (z, y). Moreover, since e is even, then

according to (4.14), z must be odd, while x and y must have different parities. (This

is clear when (4.14) is considered modulo 4.) Equation (4.14) is equivalent to

(4.15) x2
=

(

z2k − y2
)(

z4k + z2k y2 + y4
)

.

Since z and y are relatively prime, by Lemma 3.1 the two factors on the right-hand

side of (4.15) must be either co-prime or their greatest common divisor must equal

3. If they are relatively prime, then (4.15) implies that each of them must be a perfect

square. In particular,

(zk)4 + (zk)2 y2 + y4
= u2

for some positive integer u, which is contrary to Theorem 2.3. Next, suppose that

the greatest common divisor of the two factors on the right-hand side of (4.15) is 3.

Equation (4.15) gives

(4.16)
{

z2k − y2
= 3x2

1, z4k + z2k y2 + y4
= 3x2

2

}

for some relatively prime positive integers x1 and x2, with 3x1x2 = x. By combining

the two equations in (4.16), a straightforward calculation establishes that

(4.17) y4 + 3x2
1 y2 + 3x4

1 = x2
2.
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If x is odd and y is even, then both x1, x2 are odd. But in this case, (4.17) is

rendered impossible modulo 4, since the left-hand side would be congruent to 3,

while the right-hand side would be congruent to 1 modulo 4.

If x is even and y is odd, we go back to (4.14) with e = 6k. Then (x, y3, z3k) is a

primitive Pythagorean triple. We must have

(4.18)
{

x = 2mn, y3
= (m − n)(m + n), z3k

= m2 + n2
}

.

Accordingly, m − n = v3
1, m + n = v3

2, for positive, relatively prime, odd integers

v1 and v2. In combination with the third equation in (4.18), this then yields 2z3k
=

v6
1 + v6

2. Thus, by Theorem 2.4 it follows that v2
1 = v2

2 = t = zk for some t ∈ Z.

Since v1 and v2 are positive and co-prime, the only choice for t is t = 1, which a

contradiction, since this implies n = 0.

5 Corollaries

Corollary 5.1 The diophantine equation x2 + y6
= z6 has no solutions in positive

integers x, y, z.

Proof Suppose to the contrary that x, y, z are positive integers satisfying the above

equation. If D = (y, z), then D6 is a divisor of x2, and so D3 | x. We have x = D3x1,

y = Dy1, z = Dz1, where x1, y1, z1 are positive integers such that x2
1 + y6

1 = z6
1

and with (y1, z1) = 1; and thus also with (x1, y1) = 1. Clearly, x2
1 + y6

1 = z6
1 and

(x1, y1) = 1 contradict Theorem 4.2 (with e = 6).

Two other corollaries follow at once.

Corollary 5.2 Let e be a multiple of 6. Then the diophantine equation x2 + y6
= ze

has no solutions in positive integers x, y, z.

Corollary 5.3 There exists no Pythagorean triangle one of whose leg lengths is a perfect

cube, while the hypotenuse length is also an integer cube.

Finally, as a result of Theorem 4.1, we have the following corollary.

Corollary 5.4 There exists no primitive Pythagorean triangle one of whose leg lengths

is a perfect cube, while the hypotenuse length is an integer square.
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